Artificial Systems Can Complement Human Vision in Medical Imaging

Authors

  • Hugues Gentillon Department of Radiology and Diagnostic Imaging, Barlicki University Hospital, Medical University of Lodz. Institute of Electronics, The Faculty of Electrical, Electronic, Computer and Control Engineering, Technical University of Lodz, Poland

Keywords:

texture analysis, computer-assisted radiology, media cybernetics, radiomics, hugues gentillon, mazda, artificial intelligence, differential diagnosis, computational visual cognition.

Abstract

Texture analysis is an emerging field; and it is just beginning to integrate with radiology. Carrying out research with thousands of images can be overwhelming, without an effective and efficient sorting algorithm. The aim of this experiment was to develop a sample selection-elimination protocol for a large research project seeking to compare fetal 1.5- tesla versus 3-tesla magnetic resonance images. Firstly, we had to find optimal methods for image selection. In a compiled database of 1.5-tesla and 3-tesla images, we began by manually selecting sequences based on discernible-anatomical structures (ventricle, thalamus, grey matter, white matter). Then 1.5-tesla and 3-tesla image batches were categorized into two groups based on gestational age (i.e. first group: 20-28 week; second group: 29 week). The final stage was sample elimination by variance and by real bit-depth

References

. Kallio-Pulkkinen, S., Haapea, M., Liukkonen, E., Huumonen, S., Tervonen, O., & Nieminen, M. T. Comparison between DICOM-calibrated and uncalibrated consumer grade and 6-MP displays under different lighting conditions in panoramic radiography. Dentomaxillofacial Radiology, 44(5), 20140365. 2015

. Tashakkori, R., Ghadiri, A., & Tashakkori, S. Involving high school students with visualization & image processing. Journal of Computing Sciences in Colleges, 30(6), 127-134. 2015

. Kimpe, T., & Tuytschaever, T. Increasing the number of gray shades in medical display systems

. Indrajit, I. K., & Verma, B. S. Digital imaging in radiology practice: An introduction to few fundamental concepts. Indian Journal of Radiology and Imaging, 17(4), 230. 2007

. Berg E. Forensic image processing. Digital imaging: An introduction to image enhancement. Available from: http://www.imaging forensics.com/forensic.pdf. 1996

. Fukui Y. Human eyes as an image sensor. Available from: http://faculty-web.at.north western.edu/med/fukui/Human%20eye.pdf. Back to cited text no. 30. 2007

. Zheleznyak, A. G., & Sidorov, V. G. Flatbed scanner as an instrument for physical studies. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 1(2), 134-141. 2015.

. Cromey D.W. Avoiding Twisted Pixels: Ethical Guidelines for the Appropriate Use and Manipulation of Scientific Digital Images. Science and Engineering Ethics. Volume 16, Issue 4: pp 639-667. 2010

. Kim, T. J., Lee, K. H., Kim, B., Kim, K. J., Chun, E. J., Bajpai, V., ... & Lee, K. W. Regional variance of visually lossless threshold in compressed chest CT images: lung versus mediastinum and chest wall. European journal of radiology, 69(3), 483-488. 2009

. Kim, K. J., Kim, B., Choi, S. W., Kim, Y. H., Hahn, S., Kim, T. J., ... & Lee, K. H. Definition of compression ratio: difference between two commercial JPEG2000 program libraries. Telemedicine and e- Health, 14(4), 350-354. 2008

. Kim, K. J., Lee, K. H., Kim, B., Richter, T., Yun, I. D., Lee, S. U., ... & Shim, H. JPEG2000 2D and 3D reversible compressions of thin-section chest CT images: improving compressibility by increasing data redundancy outside the body region. Radiology, 259(1), 271-277. 2011

. Koff, D., Bak, P., Brownrigg, P., Hosseinzadeh, D., Khademi, A., Kiss, A., ... & Volkening, A. Pan- Canadian evaluation of irreversible compression ratios (

. Rose, Chris J., et al. "Quantifying spatial heterogeneity in dynamic contrast?enhanced MRI parameter maps." Magnetic Resonance in Medicine 62.2: 488-499. 2009

. Jensen, J. H., & Helpern, J. A. MRI quantification of non?Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine, 23(7), 698-710. 2010

. Van der Geest, R. J., & Reiber, J. H. Quantification in cardiac MRI. Journal of Magnetic resonance imaging, 10(5), 602-608. 1999.

. Materka, A. et al. Texture Analysis Methods

. Taylor, K. M., Kim, J. S., Rieter, W. J., An, H., Lin, W., & Lin, W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. Journal of the American Chemical Society, 130(7), 2154-2155. 2008.

. Cho, H. S., Dong, Z., Pauletti, G. M., Zhang, J., Xu, H., Gu, H., ... & Shi, D. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. Acs Nano, 4(9), 5398-5404. 2010.

. Brigger, I., Dubernet, C., & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews, 54(5), 631-651. 2002.

. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4), 600-612. 2004.

. Owsley, C., & Sloane, M. E. Contrast sensitivity, acuity, and the perception of' real-world'targets. British Journal of Ophthalmology, 71(10), 791-796. 1987.

. Motoyoshi, I., Nishida, S. Y., Sharan, L., & Adelson, E. H. Image statistics and the perception of surface qualities. Nature, 447(7141), 206-209. 2007.

. Liu, C., & Fairchild, M. D. Measuring the relationship between perceived image contrast and surround illumination. In Color and Imaging Conference. Society for Imaging Science and Technology. Vol. 2004, No. 1, pp. 282-288. 2007.

. Meylan, L., & S

. Bandoh, Y., Qiu, G., Okuda, M., Daly, S., Aach, T., & Au, O. C. Recent advances in high dynamic range imaging technology. In Image Processing (ICIP), 2010 17th IEEE International Conference on (pp. 3125-3128). IEEE. 2010.

. Gibbon, M. A., Zhou, S. Z., Adkins, S., Anikitchev, S. G., Moss, G. H., & Eckersley, B. Equipment and techniques for increasing the dynamic range of a projection systemU.S. Patent No. 7,050,122. Washington, DC: U.S. Patent and Trademark Office. 2006.

. Nair, M. K., & Nair, U. P. Digital and advanced imaging in endodontics: a review. Journal of endodontics, 33(1), 1-6. 2007.

. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D., & Stark, W. J. Robust Chemical Preservation of Digital Information on DNA in Silica with Error?Correcting Codes. Angewandte Chemie International Edition, 54(8), 2552-2555. 2015.

. Castillo, M. From Hard Drives to Flash Drives to DNA Drives. American Journal of Neuroradiology, 35(1), 1-2. 2014.

. Church, G. M., Gao, Y., & Kosuri, S. Next-generation digital information storage in DNA. Science, 337(6102), 1628-1628. 2012.

. Cox, J. P. Long-term data storage in DNA. TRENDS in Biotechnology, 19(7), 24. 2001.

. Frahm, J., Merboldt, K. D., & H

. Walker, L., Chang, L. C., Nayak, A., Irfanoglu, M. O., Botteron, K. N., McCracken, J., ... & Pierpaoli, C. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). NeuroImage, 124, 1125-1130. 2016.

. Robinson, S., Windischberger, C., Rauscher, A., & Moser, E. Optimized 3 T EPI of the amygdalae. Neuroimage, 22(1), 203-210. 2004.

. Wellmer, J., Von Oertzen, J., Schaller, C., Urbach, H., K

. Mun, S. K., Elsayed, A. M., Tohme, W. G., & Wu, Y. C. Teleradiology/telepathology requirements and implementation. Journal of medical systems, 19(2), 153-164. 1995.

. Gillespy, T., & Rowberg, A. H. Radiological images on personal computers: Introduction and fundamental principles of digital images. Journal of digital imaging, 6(2), 81-87. 1993.

. Elgammal, A., Harwood, D., & Davis, L. (2000). Non-parametric model for background subtraction. Springer Berlin Heidelberg. In Computer Vision

. Birchfield, S. T., & Rangarajan, S. Spatiograms versus histograms for region based tracking. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 1158-1163). IEEE. 2005

. Strzelecki, M., Szczypinski, P., Materka, A., & Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images, Nuclear Instruments & Methods In Physics Research A, 702, pp. 137-140. 2013

. Szczypi?ski, P. M., Strzelecki, M., Materka, A., & Klepaczko, A.MaZda-A software package for image texture analysis, Computer Methods and Programs in Biomedicine, 94(1), pp 66-76. 2009.

. Materka, A. Texture analysis methodologies for magnetic resonance imaging. Dialogues in clinical neuroscience, 6(2), 243. 2004

Downloads

Published

2016-03-10

How to Cite

Gentillon, H. (2016). Artificial Systems Can Complement Human Vision in Medical Imaging. International Journal of Sciences: Basic and Applied Research (IJSBAR), 25(3), 259–271. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5394

Issue

Section

Articles