The Influence of Biological Environment on the Silver-Coated Implants

Authors

  • Beata Swieczko-Zurek Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, Biomaterials Group, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Iwona Inkielewicz-Stepniak Medical University of Gdansk, Marii Sk?odowskiej-Curie str. 3A, 80-210 Gdansk, Poland
  • Karolina Siwicka Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology

Keywords:

implants, silver coatings, bacteria.

Abstract

The environment of the human body is very aggressive, containing among others bacteria, which contribute to the degradation of metal implants. Therefore sometimes implants are covered with nanometals to prevent development of aggressive bacteria. This paper deals with implants covered with nanosilver (15nm), which is antibacterial. The tested implants included: PE vein implant, an intramedullary implant made of stainless steel  and  brass implant for tracheotomy. The results showed an appearance of implants covered with silver as dependent on the type of bacteria: although silver significantly protected implants against some bacteria, a presence of some amounts of Staphylococcus aureus and Staphylococcus epidermidis was noticed after long term exposure in the human body. Only single bacteria could be observed on the surface of the tested materials. Such behavior is evidence, that silver coatings are effective for different form of materials in the presence of various bacteria, however, such behavior is related to form of  bacteria.

References

Percival SL, Bowler PG, Dolman J. 2007. Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 4:186191

Shao W., Zhao Q.: Influence of reducers on nanostructure and surface energy of silver coatings and bacterial adhesion. Surface & Coatings Technology 204 (2010) 1288–1294

Kajzer W., Krauze A., Kaczmarek M., Marciniak J.: FEM analysis of the expandable intramedullary nail. Conference on Information Technologies in Biomedicine June 16 - 18, 2008. Advances in soft computing 47, 2008 Springer-Verlag, pp.537-544

Gasquères C., Schneider G., Nusko R. et al.: Innovative antibacterial coating by anodic spark deposition. Surface & Coat. Techn. 206 (2012) 3410-3414

Zheng Y.F., Zhang B.B., Wang B.L. et al.: Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomaterialia 7 (2011) 2758–2767

Zhang W., Chu P.K.: Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation. Surface & Coat. Techn. 203 (2008) 2009-2012

Schierholz J., Lucas L.J., Rump A., Pulverer G.: Efficiency of silver-coated medical devices. J. Hosp. Infect. 40 (1998), 257-262

Davenport K., Keeley F.X.: Evidence for the use of silver-alloy-coated urethral catheters. J. Hosp. Infect. 60 (2005), 298-303

Bosetti M., Masse A., Tobin E., Cannas M.: Silver coated materials for external fixation devices; in vitro biocompatibility and genotoxicity. Biomaterials 23 (2002), 887-892

Choi O., Chang-Ping Yu C.-P., Esteban Fernandez G., Hu Z.: Interactions of nanosilver with Escherichia colicells in planktonic and biofilm cultures. waterrese arch 44 (2010) 6095-6103

Hatchett DW, White HS. 1996. Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100:98549859

Schreurs WJ, Rosenberg H. Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 1982;152:7–13

Ghandour W, Hubbard JA, Deistrung J, Hughes MN, Poole RK. The uptake of silver ions by E. coli: toxic effects and interactions with copper ions. Appl Microbiol Biotechnol 1988;28:559–65

Petering HG. Pharmacology and toxicology of heavy metals: silver. Pharmacol Ther A 1976;1:127–30

Del Re M, Gouttebarn R, Dauchota JP, Lecle`re P, Lazzaronib R, Wauteleta M, et al. Growth and

morphology of magnetron sputter deposited silver films. Surface and Coatings Technology 2002;

–152:86–90

Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns 2004;30(Suppl. 1):S1–9

Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005;26:2081–8

Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 2006;5:22

Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R., 2008.Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42 (23), 8959-8964

Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107 (3), 668-677

Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, K.L., Hess, K.L., Jones, R.L., Schlager, J.J., 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112 (43), 13608-13619

Choi, O., Hu, Z., 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42, 4583-4588

Jiang, W., Kim B. Y.S., Rutka, J.T., Chan W. C.W., 2008. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3 (3), 145-150

Zhao L., Wang H., Huo K. et al.: Antibacterial nano-structured titania coating incorporated with silver

nanoparticles. Biomaterials 32 (2011) 5706-5716

Chen Y., Zheng X., Xie Y., Ji H., Ding C.: Antibacterial properties of vacuum plasma sprayed titanium

coatings after chemical treatment. Surface & Coat. Techn. 204 (2009) 685-690

Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 2013 Feb;33(2):78-89

Inkielewicz-Stepniak I, Santos-Martinez MJ, Medina C, Radomski MW. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomedicine. 2014;9:1677-87

Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N: Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011, 201 (1):27-33

Meghan E Samberg, Elizabeth G Loboa, Steven J Oldenburg, Nancy A Monteiro-Riviere

Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond). 2012 August; 7(8): 1197–1209

Chen W., Liu Y., Courtney H.S. et al.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27 (2006) 5512–5517

Akhavan O., Ghaderi E.: Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous

TiO2layer. Surface & Coat. Techn. 203 (2009) 3123-3128

Song L., Xiao Y.-F., Gan L., Wu Y., Wu F., Gu Z.-W.: The effect of antibacterial ingredients and coating microproperties of plasma sprayed hydroxyapatite coatings. Surface & Coatings Technology 206 (2012) 2986–2990

Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;

:4383–91

Akhavan O., Ghaderi E.: Self-accumulated Ag nanoparticles on mesoporous TiO2thinfilm with high

bactericidal activities. Surface & Coatings Technology 204 (2010) 3676–3683

Wijnhoven S.W.P., Peijnenburg W.J.G.M., Herberts C.A., Hagens W.I., Oomen A.G., Heugens E.H.W., Roszek B. et al.: Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3 (2009) 109-138

Chen Y., Zheng X., Xie Y. et al.: Silver release from silver-containing hydroxyapatite coatings.

Surface & Coatings Technology 205 (2010) 1892–1896

Ennever F.K., 1994. Metals. Principles and methods of toxicology. Raven Press New York, 3rd Ed.,

-446

Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as anti-microbial agent: A case study on E. coli a

model for Gram-negative bacteria. J Colloid Interface Sci 275:177182

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-2353

Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. 2006. Conduction electron spin resonance of small silver particles. Spectrochim. Acta A 63:189-191

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95-101.

Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B, Gu MB. 2008. Analysis of the toxic mode of

action of silver nano-particles using stress-specific bioluminescent bacteria. Small 4:746-750

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103. (9pp). doi: 10.1088/0957-4484/18/22/225103

Nichols R.L., Raad I.I. (1999). Management of bacterial complications in critically ill patients: surgical

wound and catheter-related infections. Diagn Micr Infect Di. 33:121-130

Kalyon B.D., Olgun U. Antibacterial efficacy of triclosan – incorporated polymers. Am. J. Infect. Control 29 (2001) 124-125

Tang H.Q., Feng H.J., Zheng J.H., Zhao J. A study on antibacterial of Ag+ implanted pyrolytic carbon.

Surf. Coat. Tech 201 (2007) 5633-5636

Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2, 8–43

Donaldson, K., Tran, C.L., 2002. Inflammation caused by particles and fibers. Inhal. Toxicol. 14, 5–27

Donaldson, K., Stone, V., Tran, C.L., Kreyling, W., Borm, P.J.A., 2004. Nanotoxicology. Occup. Environ. Med. 61, 727–728.

Chen X., Schluesener H.J.: Nanosilver: A nanoproduct in medical application. Toxicology Letters 176

(2008) 1–12

Aesculap Chifa Ltd Poland Products.

Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014 Jan;10(1):439-49.

Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FMIn vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013 Feb;7(1):30-6

Hui Qin, Chen Zhu, Zhiquan An, Yao Jiang, Yaochao Zhao, Jiaxin Wang, Xin Liu, Bing Hui, Xianlong Zhang, and Yang Wang Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine. 2014; 9: 2469–2478.

Downloads

Published

2016-04-04

How to Cite

Swieczko-Zurek, B., Inkielewicz-Stepniak, I., & Siwicka, K. (2016). The Influence of Biological Environment on the Silver-Coated Implants. International Journal of Sciences: Basic and Applied Research (IJSBAR), 26(1), 341–355. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5337

Issue

Section

Articles