Susceptibility Pattern Of Pseudomonas Aeruginosa Against Various Antibiotics

Authors

  • Hajira Bilal
  • Fariha Hasan
  • Samina Bilal

Keywords:

P. Aeruginosa, Antibiotics, Antibiotic Resistance, Nosocomial Infections, Docking

Abstract

P. aeruginosa, an increasingly prevalent opportunistic human pathogen, is the most common gram-negative bacterium responsible for the nosocomial and community acquired infections. The excessive use of antibiotics has not only led to treat the infections but also the emergence of antibiotic resistance. Multidrug resistant P. aeruginosa development is currently one of the greatest challenges. Total 100 clinical isolates of P. aeruginosa from inpatient and outpatient were studied. Uropathogenic P. aeruginosa infections were higher in females than males, ratio was found more among young and elderly debilitated patients. 99% of the clinical isolates were resistant to six commonly used antibiotics with the most resistant pattern being Ampicillin (100%), Amoxycillin (99%), Co-trimoxazole (99%), Tetracycline (99%), Cefazoline (99%) and Cefuroxime (100%). The invitro sensitivity pattern of 100 isolates of P. aeruginosa showed Imipenem (97%), Amikacin (79%), Tobramycin (70%), Ceftazidime (62%), Ciprofloxacin (73%), Cefoperazone (60%), Piperacillin (65%), Gentamycin (34%) and Cefotaxime (14%) sensitivity. ESBLs producing strains (33%) were also less in number but were much more resistant to ?-lactam and other antibiotics. Docking of both effective drugs against bacteria (Amikacin and Imipenem) with least resistance 21% and 3%, respectively, analyzed how these drugs interact with envelope protein to stop its growth.

References

National Research Council. Infectious Diseases of Mice and Rats. 1991; 7: 141-145

National Institutes of Health. Manual of Microbiologic Monitoring of Laboratory Animals. 1994; 151-154.

Percy, D.H.; Barthold, S.W. Pathology of Laboratory Rodents and Rabbits. 1993; 1: 37-38, 2: 85-86.

Botzenhart, K. and Doring, G. Ecology and epidemiology of Pseudomonas aeruginosa. IN: Campa, M., et al, eds. Pseudomonas aeruginosa as an Opportunistic Infection. New York: Plenum Press; 1993; 1-18

Neu, H. C. The role of Pseudomonas aeruginosa in infections. J. Antimicrob. Chem. 1983; 11: 1-13.

Hugbo, P. G. Olurinola, P. F. Resistance of pseudomonas aeruginosa to antimicrobial agents: Implications in medicine and pharmacy. Niger. J. Pharma. Sci. 1992; 4: 1-10.

Gessard, C. Sur les colorations bleue et verte des lignes a pansements. C. R. Acad. Sci. serie D. 1882; 94: 536-538.

Todar, K. Pseudomonas aeuroginosa. http://textbookofbacteriology.net/pseudomonas.html 2002

Krieg, N. Holt, J. Bergey's Manual of Systematic Bacteriology. Volume 1. Baltimore: Williams and Wilkins. 1984; 141-164.

Shumard, C. M., et al. Regulation of Toxin-A synthesis in Pseudomonas aeruginosa. IN: Campa, M., et al., eds. Pseudomonas aeruginosa as an Opportunistic Pathogen. New York: Plenum Press. 1993; 59-77

Costerton, J. W. Brown, M. R. W Sturgess, J. M. The cell envelope: its role in infection. IN: Doggett, R. G. ed. Pseudomonas aeruginosa. Clinical Manifestations of Infection and Current Therapy. New York: Academic Press. 1979; 20: 41-62.

Costerton, J. W. et al. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 1987; 41: 435-464.

Passador, L. Iglewski, B. H. Quorum sensing and virulence gene regulation in Pseudomonas aeruginosa. In: Roth JA, editor. Virulence mechanisms of bacterial pathogens. 2nd ed. Washington. American Society for Microbiology. 1995; 65-78.

Liu, P. V. Extracellular toxins of Pseudomonas aeruginosa. J Infect Dis. 1974; 130: 94-9.

Iglewski, B. H. Sadoff, J. Bjorn, M. J. Maxwell, E. S. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A. 1978; 75: 3211-5.

Nicas, T. I. Iglewski, B. H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can. J. Microbiol. 1985; 31: 387-92.

Woods, D. E. Iglewski, B. H. Toxins of Pseudomonas aeruginosa: new perspectives [review]. Rev Infect Dis. 1983; 5: 715-22.

Wick, M. J Hamood, A. N. Iglewski, B. H. Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A [review]. Mol Microbiol. 1990; 4: 527-35.

Harold, C.; Neu, M. D. Antibiotic Resistance, Its Impact on a Great Medical Center in the Last 30 Years. P&S Medical Review. 1993; 1.

Helfand, M. S. Bonomo, R. A. b-Lactamases: A survey of protein diversity. Curr Drug Targets Infect Disord. 2003; 3: 9-23.

Rupp, M. E.; Fey, P. D. Extended-spectrum b-lactamase (ESBL)-Producing enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment, and Drugs. 2003; 63: 353-365.

Duhovny D. Nussinov R. Wolfson HJ. Efficient Unbound Docking of Rigid Molecules. LNCS. 2002; 2452: 185-200.

Schneidman-Duhovny D. Inbar Y. Nussinov R. Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl. Acids. Res. 2005; 33: 363-367.

Andrusier N. Nussinov R. Wolfson HJ. FireDock: Fast Interaction Refinement in Molecular Docking. Proteins. 2007; 69: 139-159.

Mashiach E. Schneidman-Duhovny D. Andrusier N. Nussinov R. Wolfson HJ. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008; 36: 229-232.

Wallace C. A., Laskowski A. R., and Thornton M. J., LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Engineering Design and Selection, 1995; 8: 127-134

Bauer, A. W. Kirby, W. M. M. Sherris, J. C. Truck, M. Antibiotic susceptibility testing by standardized single disc method. Am J Clin Path. 1966; 45: 493-496.

Thalia I. Nicas and Robert E. W. Hancock. Outer Membrane Protein Hi of Pseudomonas aeruginosa: Involvement in Adaptive and Mutational Resistance to Ethylenediaminetetraacetate, Polymyxin B, and Gentamicin, Journal of Bacteriology. 872-878

Ergin, C. and Mutlu, G. Clinical distribution and antibiotic resistance of Pseudomonas Species. Eastern Journal of Medicine. 1999; 4: 65-69.

Olayinka, A. T. Onile, B.A. Olayinka, B.O. Prevalence of multi-drug resistant (mdr) pseudomonas aeruginosa isolates in surgical units of ahmadu bello university teaching hospital, zaria, nigeria: an indication for effective control measures. Annals of African Medicine. 2004; 3: 13-16.

Thornton G. F.;Andriole VT. Bacteriuria during indwelling catheter drainage. Effect of closed sterile drainage system. JAMA. 1970; 214: 339-342.

Garibaldi, R. A Burke, J. P. Dickman, M. L Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. New Engl J Med. 1974; 291: 215-219.

Tullu, M. S. Deshmukh, C. T. Baveja, S. M. Bacterial profile and antimicrobial susceptibility pattern in catheter related nosocomial infections. JPGM. 1998; 44: 7-13.

Fergie, J. E. Shama, S. J. Lott, L. Crawford, R. Patrick, C. C. P. P. aeruginosa bacteraemia in immunocompromised children: analysis of factors associated with a poor outcome. Clin Infect Dis. 1994; 18: 390-394.

Wunderink, R. G. Ventilator-associated pneumonia caused by pseudomonas infection (Review). Clinics in Chest Medicine. 1995; 16: 95-109.

Brewer, S. C. Wunderink, R. G. Jones, C. B. Leeper, K. V. J. Ventilator-associated pneumonia due to P. aeruginosa. 1996; 109: 1019-1029.

Cruse, P. J. E. A five-year prospective study of 23649 surgical wounds. Arch Surgery. 1973; 107: 206-7.

Oguntibeju, O. O. Nwobu, R. A. U. Occurrence of pseudomonas aeruginosa in postoperative wound infection. Pak. J. Med. Sci. 2004; 20: 187-191.

Emori, T. G. and Gaynes, R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993; 6: 428-442.

Livermore, D. M. Role of Beta-lactamase and impermeability in the resistance of Pseudomonas aeruginosa. Antibiot Chemother. 1989; 42: 257-263.

Livermore, D. M. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol. 1987; 6: 439 - 45.

Li, X. Z. Livermore, D. M. Nikaido, H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol and norfloxacin. Antimicrob Agents Chemother. 1994; 38: 1732-1741.

Shahid, M. Malik, A. Plasmid mediated amikacin resistance in clinical isolates of Pseudomonas aeruginosa. Ind. J. Med. Microbiol. 2004; 22: 182-184.

Wise, R. ?-Lactams. Cephalosporins. in Antibiotics and Chemotherapy, 7th edn, (O

Karmali, M. A. De-Grandis, S. Fleming, P. C. Antimicrobial susceptibility of campylobacter jejuni and campylobacter fetus subsp. Fetus to eight cephalosporin

Jones, R. N. Fuchs, P. C. Gavan, T. L. Geriach, E. H. Barry, A. L. Thornsberry, C. Cefuroxime, a new parental cephalosporin: collaborative in vitro susceptibility comparison with cephalosporin against 5877 clinical bacterial isolates. Antimicrobial Agent Chemotherapy. 1980; 12: 47-50.

Moore, A. C. et al. Surveillance for waterborne disease outbreaks - United States, 1991-1992. CDC-MMWR Surveillance Summary. 1993; 42: 1-22.

Neu, H. C. Changing mechanism of antibiotic resistance. Am. J. Med. 1984; 6: 11-23.

Al-Lawati, A. M. Crounch, N. D. Elhag, K. M. Antibiotic consumption and development of resistance among gram-negative bacilli in intensive care units in Oman. Annals of Saudi Medicine. 2000; 20: 324-327.

Gencer, S. Benzonana, N. Batirel, A. Ozer, S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa is a teaching hospital of Turkey. Annal. Clin. Microbiol. Antimicrob. 2002; 1: 2.

Nagoba, B. S Deshmukh, S. R. Gude, U. G Gomashe, A. V. Wadher, B. J. In vitro susceptibility of Pseudomonas aeruginosa to different antibiotics. Indian J Med Microbiol. 1997; 15: 185-186.

Veenu; Sikka, R. Arora, D. R. Isolation and susceptibility pattern of nonfermenting gram- negative bacilli from clinical samples. Indian J Med Microbiol. 1998; 17: 14-18.

Gales, A. C. Jones, R. N. Pfaller, M. A. Gordan, K. A. Sader, H. S. Two-year assessment of the pathogen frequency and antimicrobial resistance patterns among organisms isolated from skin and soft tissue infections in Latin American hospitals: results from the SENTRY antimicrobial surveillance program, 1997-98. International Journal of Infectious Diseases. 2000; 4: 75-84.

Slack, M. P.; Nichols, W. W. The penetration of antibiotics through sodium alginateand through the exopolysaccharide of a mucoid strain of P. aeuroginosa. 1981; 2: 502-3.

Bonfiglio, G. Laksai, Y. Franchino, L. Mechanisms of

Govan, J. R. W.; Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkolderia cepacia. Microbiol. Rev. 1996; 60: 539-74.

Rezaee, A. M. Behzadiyan-Nejad, Q. and Najjar-Pirayeh, S. Higher aminoglycoside resistance in mucoid P. aeruginosa than in non-mucoid strains. Arch Iranian Med. 2002; 5: 108-10.

Demko, C. A. and Thomassen, M. G. Effect of mucoid propertyon antibiotic susceptibility of P. aeruginosa. Curr Microbiol. 1980; 4: 69-73.

Gordon, C. A.; Hdges, N. A.; Marriott, C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived P. aeroginosa. J Antimicrob Chemother. 1988; 22: 667-74.

Downloads

Published

2015-10-15

How to Cite

Bilal, H., Hasan, F., & Bilal, S. (2015). Susceptibility Pattern Of Pseudomonas Aeruginosa Against Various Antibiotics. International Journal of Sciences: Basic and Applied Research (IJSBAR), 24(4), 23–45. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/4671

Issue

Section

Articles