Assessment of B. subtilis Toxicity in Wistar Rats through the Intraperitoneal Route


  • Babatunde Kelly Adekunle Ajasin University, Akungba-Akoko Ondo State, 342111, Nigeria
  • Tolulope Oyedeji University of Medical Sciences, Ondo State, 351104, Nigeria
  • Funmi Olatujoye Wesley University Ondo, 351110, Ondo State, Nigeria
  • Olorunjuwon Bello University of Medical Sciences, Ondo State, 351104, Nigeria


Entomopathogens, Zonocerus variegatus, Bacillus subtilis


The effect of exposing wistar rats to insecticidal strains of B. subtilis was evaluated in this study to determine the safety of the strain as a biocontrol agent. Z. variegatus were collected from the university agricultural fields with the aid of an insect sweep net, brought to the lab, allowed to acclimatize and watched for the onset of diseased symptoms. The entomopathogenic bacteria was isolated from diseased Zonocerus variegatus and entomopathogenicity was confirmed through reinfection of healthy batch. Diseased Zonocerus variegatus were removed for microbial analysis and B. subtilis was fingered as the main entomopathogen. The microbe was cultured in liquid media, allowed to sporulate, centrifuged and washed with saline buffer. The optimal dose of the bacteria was prepared and introduced into the experimental animals through the intraperitoneal route. Animals were watched for five days before the tissues and organs were taken for hematological and histopathological analysis. Histopathological analysis showed benign effect of the microbe on the experimental animals – a further testimony to the assertion that most entomopathogenic microbes are non-lethal to other non-target animals within the environment thus making B. subtilis a potential candidate for the preparation of microbial pesticides.


U. Azizoglu, G. S. Jouzani, N. Yilmaz, E. Baz & D. Ozkok (2020). Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment 734 (2020) 139169

K. O. Ademolu & A. B. Idowu, (2011). Occurrence and Distribution of Microflora in the Gut Regions of the Variegated Grasshopper. Journal of Entomology, 50(4), pp.409–415.

S. A. Balogun & O. E. Fagade (2004). Entomopathogenic fungi in population of Zonocerus variegatus ( l ) in Ibadan , Southwest , Nigeria. African Journal Biotechnology, 3(8):382-386

E. Oerke (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43.

O. K. Dourou-Kpindou, I. Godonou, A. Houssou, C. J. Lomer & P. A. Shah (1995). Control of Zonocerus variegatus by ultra-low volume application of an oil-formulation of Metarhizium flavoviride conidia. Biocontrol Science Technology, 5: 131 – 139.

M. B. Thomas, S. Blandford & J. Lomer (1997). Reduction of feeding by the variegated grasshoppers. Zonocerus variegates following infection by the fungal pathogen Metarhizium flavoviride. Biocontrol Science and Technology. 7: 327 – 334.

R. O. Drummond & W. J. Gladney (1969). Further evaluation of animal systemic insecticides. Journal of Medical Entomology, 6(4):934-6.

D. Sørensen, J. Ottesen & A. Hansen. (2004). Consequences of enhancing environmental complexity for laboratory rodents — a review with emphasis on the rat. Animal Welfare.;13(2):193-204. doi:10.1017/S0962728600026932

R. I. Vázquez-Padrón, L. Moreno-Fierros, L. Neri-Bazán, G. A. de la Riva & R. López-Revilla (1999). Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sci.;64(21):1897-912. doi: 10.1016/s0024-3205(99)00136-8. PMID: 10353588.

B. M. Mbembo, C. L. Inkoto, J. J. O. Amogu, C. M. Ashande & N. N. Kutshi, 2021. Mini-review on the Phyto-chemistry, Pharmacology and Toxicology of Cola nitida (Vent.) Schott & Endl. (Malvaceae): A medically interesting bio-resource of multiple purposes in Africa. Discovery Phytomedicine. Vol. 8, Iss. 4,:160-166. DOI:10.15562/phytomedicine.2021.182

O. A. Ibitoye, O. O. Olaniyi, C. O. Ogidi, & B. J. Akinyele (2021). Lactic acid bacteria bio-detoxified aflatoxins contaminated cereals, ameliorate toxicological effects and improve haemato-histological parameters in albino rats. Toxin Reviews, 40(4), 985–996.

A. Bravo (2007). Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology, 7(3), 197-208.

A. Hussain (2018). Microbial interactions within the plant rhizosphere. In: Microbial Inoculants in Sustainable Agricultural Productivity (pp. 35-67). Springer, Singapore.

R. Goldsby, Z. Wang & D. Ratner (2000). Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3? to 5? exonuclease activity. Journal of Immunological Methods, 233(1-2): 167-177

M. D. W. Ward, S. L. Madison, D. M. Sailstad, S. H. Gavett, & M. J. K. Selgrade (2000). Allergen-triggered airway hyperresponsiveness and lung pathology in mice sensitized with the biopesticide Metarhizium anisopliae. Toxicology, 143:141-154.

M. D. W. Ward, D. M. Sailstad & M. J. K. Selgrade (1998). Allergic responses to the biopesticide Metarhizium anisopliae in mice. The Journal of Toxicological Sciences, 45:195-203.

C. Instanes, M. D. Ward & G. Hetland (2006). The fungal biopesticide Metarhizium anisopliae has an adjuvant effect on the allergic responses to ovalbumin in mice. Toxicology Letters, 161:219-225.

D. Burgner, G. Eagles, M., Burgess, P. Procopis, M. Rogers, D. Muir, R. Pritchard, A. Hocking and M. Priest (1998). Disseminated invasive infection due to Metarrhizium anisopliae in an immunocompromised child. Journal of Clinical Microbiology 36:1146-1150.

D. Najgebauer-Lejko (2018). Bacillus subtilis strains: Exploring functional diversity for effective biocontrol. In: International Journal of Environmental Research and Public Health, 15(5), 1038.

P. Li (2017). Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Toxins, 9(11), 363.

M. Fan, C. Guo & N. Li (1990). Application of Metarhizium anisopliae against forest pests. Proceedings of the 5th International Colloquium on Invertebrate Pathology and Microbial Control, Adelaide, Australia. p 172.




How to Cite

Babatunde Kelly, Tolulope Oyedeji, Funmi Olatujoye, & Olorunjuwon Bello. (2024). Assessment of B. subtilis Toxicity in Wistar Rats through the Intraperitoneal Route. International Journal of Sciences: Basic and Applied Research (IJSBAR), 73(1), 90–101. Retrieved from