Performance Enhancement Using NOMA-MIMO for 5G Networks
Keywords:
Multiple-input multiple-output (MIMO), Non-orthogonal multiple access (NOMA), spectrum efficiency (SE), Bit Error Rate (BER), Outage Probability (OP)Abstract
The integration of MIMO and NOMA technologies addresses key challenges in 5G and beyond, such as connectivity, latency, and dependability. However, resolving these issues, especially in MIMO-enabled 5G networks, required additional research. This involved optimizing parameters like bit error rate, downlink spectrum efficiency, average capacity rate, and uplink transmission outage probability. The model employed Quadrature Phase Shift Keying modulation on selected frequency channels, accommodating diverse user characteristics. Evaluation showed that MIMO-NOMA significantly improved bit error rate and transmitting power for the best user in download transmission. For uplink transmission, there was an increase in the average capacity rate and a decrease in outage probability for the best user. Closed-form formulas for various parameters in both downlink and uplink NOMA, with and without MIMO, were derived. Overall, adopting MIMO-NOMA led to a remarkable performance improvement for all users, even in challenging conditions like interference or fading channels.
References
Kalra, Bharti & Chauhan, D. (2014). A Comparative Study of Mobile Wireless Communication Network: 1G to 5G. International Journal of Computer Science and Information Technology Research. 2. 430-433.
Ahmad, Hasyimah & mohd ali, Darmawaty & Muhamad, Wan & Idris, Mohd. (2020). Performance analysis of NOMA in pedestrian and vehicular environments. Journal of Physics: Conference Series. 1502. 012003. 10.1088/1742-6596/1502/1/012003.
Wang, Chao & Wu, Yiqun & Chen, Yan & Bayesteh, Alireza. (2019). Comprehensive Study of NOMA Schemes. 1-5. 10.1109/ICCW.2019.8757082.
Vaezi, Mojtaba & Schober, Robert & Ding, Zhiguo & Poor, H. Vincent. (2019). Non-Orthogonal Multiple Access: Common Myths and Critical Questions. IEEE Wireless Communications. PP. 1-7. 10.1109/MWC.2019.1800598.
DaiL. et al.A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surv. Tutor (2018).
Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. S. (2018). Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues. IEEE Wireless Communications, 25(2), 40-47. [8352621]. https://doi.org/10.1109/MWC.2018.1700099
Ye, Yinghui & Li, Yongzhao & Wang, Dan & Lu, Guangyue. (2017). Power splitting protocol design for the cooperative NOMA with SWIPT. 10.1109/ICC.2017.7996751.
X. Zhang, Y. Qi, and M. Vaezi, “A rotation-based method for precoding in Gaussian MIMOME channels,” 2019. [Online]. Available: https://arxiv.org/abs/1908.00994
M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, 2019.
Mahmoud Aldababsa, Mesut Toka, Selahattin Gökçeli, Güne? Karabulut Kurt, O?uz Kucur, "A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond", Wireless Communications and Mobile
Computing, vol. 2018, pp.24, 2018.
Benjebbour, K. Saito, A. Li, Y. Kishiyama and T. Nakamura, "Nonorthogonal multiple access (NOMA): Concept, Performance Evaluation, and Experimental Trials," 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakech, pp.1-6, 2015.
BenishaM. et al. Evolution of mobile generation technology Int. J. Recent Technol. Eng. (IJRTE) ISSN
(2019)
Goyal, J., Singla, K., Singh, S. (2019). A Survey of Wireless Communication Technologies from 1G to 5G. In International Conference on Computer Networks and Inventive Communication Technologies (pp. 613-624). Springer, Cham.
Sodhro, A.H., Pirbhulal, S., Luo, Z., Muhammad, K., Zahid, N.Z., 2020. Toward 6G architecture for energy-efficient communication in IoT-enabled smart automation systems. IEEE Internet Things J. 8 (7), 5141–5148.
Abdel Hakeem, Shaimaa & Hussein, Hanan & Kim, Hyungwon. (2022). Vision and research directions of 6G technologies and applications. Journal of King Saud University - Computer and Information Sciences. 34. 10.1016/j.jksuci.2022.03.019.
Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain, and X. Shen, “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037-1071, Apr. 2022.
C. Chen, W. Cai, X. Cheng, L. Yang and Y. Jin, “Low complexity beamforming and user selection schemes for 5G MIMO-NOMA systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2708-2722, Dec. 2017.
Z. Ding, F. Adachi and H. V. Poor, “The application of MIMO to nonorthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 537-552, Jan. 2016.
S. Han, T. Xie, C.-L. I, L. Chai, Z. Liu, Y. Yuan, C. Cui, “Artificialintelligence- enabled air interface for 6G: Solutions challenges and standardization impacts,” IEEE Commun. Mag., vol. 58, no. 10, pp. 73-79, Oct. 2020.
H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize: Training deep neural networks for interference management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438- 5453, Oct. 2018.
Q. Hu, Y. Cai, Q. Shi, K. Xu, G. Yu and Z. Ding, “Iterative algorithm induced deep-unfolding neural networks: Precoding design for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp.1394-1410, Feb. 2021.
Y. Shen, Y. Shi, J. Zhang and K. B. Letaief, “Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 101-115, Jan. 2021.
F. Hutter, L. Kotthoff, and J. Vanschoren, “Automated machine learning: methods, systems, challenges.” Cham, Switzerland: Springer, 2019.
Asghar, Muhammad Zeeshan, Shafique Ahmed Memon, and Jyri Hämäläinen. 2022. "Evolution of Wireless Communication to 6G: Potential Applications and Research Directions" Sustainability 14, no. 10: 6356. https://doi.org/10.3390/su14106356
Akyildiz, Ian & Kak, Ahan & Nie, Shuai. (2020). 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.3010896.
Liu, Y., Yi, W., Ding, Z., Liu, X., Dobre, O.A., & Al-Dhahir, N. (2021). Application of NOMA in 6G Networks: Future Vision and Research Opportunities for Next Generation Multiple Access. ArXiv, abs/2103.02334.
A. Farahdiba and Iskandar, "Performance Comparison Between MIMO-NOMA 4x4 and MIMO-OMA 4x4," 2021 7th International Conference on Wireless and Telematics (ICWT), 2021, pp. 1-5, doi: 10.1109/ICWT52862.2021.9678462.
R. Mancharla and Y. Bulo, “A Comparative Analysis of the various Power Allocation Algorithm in NOMA-MIMO Network Using DNN and DLS Algorithm ”, EAI Endorsed Trans Mob Com Appl, vol. 7, no. 2, p. e3, Aug. 2022.
Shady A Deraz et al 2020 J. Phys.: Conf. Ser. 1447 012016. DOI 10.1088/1742-6596/1447/1/012016
Dr. Vijey Thayananthan. 2019. Analysis of Non-Orthogonal Multiple Access (NOMA) for Future Directions of 5G System. Basic Multiple Access (MA) and NOMA. https://www.slideserve.com/carneyr/dr-vijey-thayananthan-powerpoint-ppt-presentation
G. Niharika, Dr. Ch.Santhi Rani. 2017. NOMA in 5G Systems by using Mimo Technique. International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE). Vol 4, Issue 9. ISSN: 2394-6849.
J. Pérez-Romero, O. Sallent, R. Ferrús and R. Agustí, "Artificial Intelligence-based 5G network capacity planning and operation," 2015 International Symposium on Wireless Communication Systems (ISWCS), Brussels, 2015, pp. 246-250, doi: 10.1109/ISWCS.2015.7454338
Haidine, A., Salmam, F. Z. , Aqqal, A., & Dahbi, A. (2021). Artificial Intelligence and Machine Learning in 5G and beyond: A Survey and Perspectives. In (Ed.), Moving Broadband Mobile Communications Forward - Intelligent Technologies for 5G and Beyond. IntechOpen. https://doi.org/10.5772/intechopen.98517.
Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81.
Timotheou, S.; Krikidis, I. Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Lett. 2015, 22, 1647–1651.
Chen, Z.; Ding, Z.; Dai, X.; Zhang, R. An optimization perspective of the superiority of NOMA compared to conventional OMA. IEEE Trans. Signal Processing 2017, 65, 5191–5202.
Feng, D. Performance comparison on NOMA schemes in high speed scenario. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics Technology (ICET), Chengdu, China, 10–13 May 2019; pp. 112–116.
Bello, M.; Chorti, A.; Fijalkow, I.; Yu, W.; Musavian, L. Asymptotic performance analysis of NOMA uplink networks under statistical QoS delay constraints. IEEE Open J. Commun. Soc. 2020, 1, 1691–1706.
Maatouk, A.; Assaad, M.; Ephremides, A. Minimizing the age of information: NOMA or OMA? In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer CommunicationsWorkshops (INFOCOMWKSHPS), Paris, France, 29 April–2 May 2019; pp. 102–108.
Wei, Z.; Yang, L.; Ng, D.W.K.; Yuan, J.; Hanzo, L. On the performance gain of NOMA over OMA in uplink communication systems. IEEE Trans. Commun. 2019, 68, 536–568.
Ding, Z.; Zhao, Z.; Peng, M.; Poor, H.V. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans. Commun. 2017, 65, 3151–3163.
Hassan, M.; Singh, M.; Hamid, K. Survey on NOMA and Spectrum Sharing Techniques in 5G. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–4.
Makki, B.; Chitti, K.; Behravan, A.; Alouini, M.-S. A survey of NOMA: Current status and open research challenges. IEEE Open J. Commun. Soc. 2020, 1, 179–189.
Shahab, M.B.; Johnson, S.J.; Shirvanimoghaddam, M.; Chafii, M.; Basar, E.; Dohler, M. Index modulation aided uplink NOMA for massive machine type communications. IEEE Wirel. Commun. Lett. 2020, 9, 2159–2162.
Cejudo, E.C.; Zhu, H.; Alluhaibi, O. On the power allocation and constellation selection in downlink NOMA. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5.
Lei, L.; Yuan, D.; Ho, C.K.; Sun, S. Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Trans. Wirel. Commun. 2016, 15, 8580–8594.
Chandrasekhar, R.; Navya, R.; Kumari, P.K.; Kausal, K.; Bharathi, V.; Singh, P. Performance evaluation of MIMO-NOMA for the next generation wireless communications. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 631–636.
Saetan, W.; Thipchaksurat, S. Application of deep learning to energy-efficient power allocation scheme for 5G SC-NOMA system with imperfect SIC. In Proceedings of the 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, 10–13 July 2019; pp. 661–664.
Tweed, D.; Le-Ngoc, T. Dynamic resource allocation for uplink MIMO NOMA VWN with imperfect SIC. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.
Krishnamoorthy, A.; Huang, M.; Schober, R. Precoder design and power allocation for downlink MIMO-NOMA via simultaneous triangularization. In Proceedings of the 2021 IEEEWireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6.
Hua, Y.; Wang, N.; Zhao, K. Simultaneous unknown input and state estimation for the linear system with a rank-deficient distribution matrix. Math. Probl. Eng. 2021, 2021, 6693690.
Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation. Math. Probl. Eng. 2022, 2022, 9645892.
Rehman, B.U.; Babar, M.I.; Ahmad, A.W.; Alhumyani, H.; Abdel Azim, G.; Saeed, R.A.; Abdel Khalek, S. Joint power control and user grouping for uplink power domain non-orthogonal multiple access. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211057443.
Shieh, S.-L.; Lin, C.-H.; Huang, Y.-C.;Wang, C.-L. On gray labeling for downlink non-orthogonal multiple access without SIC. IEEE Commun. Lett. 2016, 20, 1721–1724.
Al Rabee, F.; Davaslioglu, K.; Gitlin, R. The optimum received power levels of uplink non-orthogonal multiple access (NOMA) signals. In Proceedings of the 2017 IEEE 18thWireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 24–25 April 2017; pp. 1–4.
Tweed, D.; Derakhshani, M.; Parsaeefard, S.; Le-Ngoc, T. Outage-constrained resource allocation in uplink NOMA for critical applications. IEEE Access 2017, 5, 27636–27648.
Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195.
Moriyama, M.; Kurosawa, A.; Matsuda, T.; Matsumura, T. A Study of Parallel Interference Cancellation Combined with Successive Interference Cancellation for UL-NOMA Systems. In Proceedings of the 2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 14–16 December 2021; pp. 1–6.
Hassan, M.B.; Ali, E.S.; Saeed, R.A. Ultra-Massive MIMO in THz Communications: Concepts, Challenges and Applications. In Next Generation Wireless Terahertz Communication Networks, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; Chapter 10, pp. 267–297.
Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S.; Han, Z.; Piran, M.J.; Suh, D.Y. A systematic review on NOMA variants for 5G and beyond. IEEE Access 2021, 9, 85573–85644.
Celik, A.; Al-Qahtani, F.S.; Radaydeh, R.M.; Alouini, M.-S. Cluster formation and joint power-bandwidth allocation for imperfect NOMA in DL-HetNets. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.
Zeng, J.; Lv, T.; Liu, R.P.; Su, X.; Peng, M.; Wang, C.; Mei, J. Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G. IEEE Access 2018, 6, 48268–48288.
Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.-S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742.
Alsaqour, R.; Ali, E.S.; Mokhtar, R.A.; Saeed, R.A.; Alhumyani, H.; Abdelhaq, M. Efficient Energy Mechanism in Heterogeneous WSNs for Underground Mining Monitoring Applications. IEEE Access 2022, 10, 72907–72924.
Aldababsa,M.; Göztepe, C.; Kurt,G.K.; Kucur,O. Bit error rate forNOMAnetwork. IEEE Commun. Lett. 2020, 24, 1188–1191.
Al-Abbasi, Z.Q.; Khamis, M.A. Spectral efficiency (SE) enhancement of NOMA system through iterative power assignment. Wirel. Netw. 2021, 27, 1309–1317. [CrossRef]
Li, S.; Wei, Z.; Yuan, W.; Yuan, J.; Bai, B.; Ng, D.W.K. On the achievable rates of uplink NOMA with asynchronized transmission. In Proceedings of the 2021 IEEEWireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7.
Choi, J. Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans. Commun. 2015, 63, 791–800.
Liu, F.; Petrova, M. Proportional fair scheduling for downlink single-carrier NOMA systems. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7.
Saeed, R.A.; Abbas, E.B. Performance evaluation of MIMO FSO communication with gamma-gamma turbulence channel using diversity techniques. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018; pp. 1–5.
Shen, D.; Wei, C.; Zhou, X.;Wang, L.; Xu, C. Photon Counting Based Iterative Quantum Non-Orthogonal Multiple Access with Spatial Coupling. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.
Mokhtar, R.A.; Saeed, R.A.; Alhumyani, H. Cooperative Fusion Architecture-based Distributed Spectrum Sensing Under Rayleigh Fading Channel. Wirel. Pers. Commun. 2022, 124, 839–865.
Lo, S.-H.; Chen, Y.-F. Subcarrier Allocation for Rate Maximization in Multiuser OFDMNOMA Systems on Downlink Beamforming. In Proceedings of the 2020 6th International Conference on Applied System Innovation (ICASI), Taitung, Taiwan, 5–8 November 2020; pp. 56–61.
Abdelrahman, Y.T.; Saeed, R.A.; El-Tahir, A. Multiple Physical Layer Pipes performance for DVB-T2. In Proceedings of the 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), Khartoum, Sudan, 16–18 January 2017; pp. 1–7.
Sedaghat, M.A.; Müller, R.R. On user pairing in uplink NOMA. IEEE Trans. Wirel. Commun. 2018, 17, 3474–3486.
Y. Saito et al., “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE Vehicular Technology Conference (VTC Spring), 2013, Dresden, Germany, pp. 1-5.
Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7244–7257, Nov. 2016.
S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647–1651, Oct. 2015.
Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438–4454, Jun. 2016.
B. Kim et al., “Non-orthogonal multiple access in a downlink multi-user beamforming system,” in Proc. IEEE Military Commun. Conf. (MILCOM), 2013, San Diego, USA, pp. 1278-1283.
M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster,” accepted with minor revisions in IEEE J. Sel. Areas Commun., Apr. 2017.
Q. Sun, S. Han, I. Chin-Lin, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405-408, Aug. 2015.
Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 629–633, May 2016.
W. Shin et al., “Coordinated beamforming for multi-cell MIMO-NOMA,” IEEE Commun. Lett., vol. 21, no. 1, pp. 84-87, Jan. 2017.
Z. Ding, P. Fan, and H. V. Poor, “Random beamforming in millimeter-wave NOMA networks,” IEEE Access, vol. PP, no. 99, pp. 1–1, Feb. 2017.
H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photon. Technol. Lett., vol. 28, no. 1, pp. 51-54, Jan. 2016.
Mukhtar, A.M.; Saeed, R.A.; Mokhtar, R.A.; Ali, E.S.; Alhumyani, H. Performance Evaluation of Downlink Coordinated Multipoint Joint Transmission under Heavy IoT Traffic Load. Wirel. Commun. Mob. Comput. 2022, 2022, 6837780.
Do, D.-T.; Nguyen, T.-L.; Ekin, S.; Kaleem, Z.; Voznak, M. Joint user grouping and decoding order in uplink/downlink MISO/SIMO-NOMA. IEEE Access 2020, 8, 143632–143643.
Do, D.-T.; Nguyen, T.-T.T.; Nguyen, T.N.; Li, X.; Voznak, M. Uplink and downlink NOMA transmission using full-duplex UAV. IEEE Access 2020, 8, 164347–164364.
Krishnamoorthy, A.; Schober, R. Uplink and downlink MIMO-NOMA with simultaneous triangularization. IEEE Trans. Wirel.Commun. 2021, 20, 3381–3396.
Elbamby, M.S.; Bennis, M.; Saad, W.; Debbah, M.; Latva-Aho, M. Resource optimization and power allocation in in-band full duplex-enabled non-orthogonal multiple access networks. IEEE J. Sel. Areas Commun. 2017, 35, 2860–2873.
Elfatih, N.M.; Hasan, M.K.; Kamal, Z.; Gupta, D.; Saeed, R.A.; Ali, E.S.; Hosain, M.S. Internet of vehicle’s resource management in 5G networks using AI technologies: Current status and trends. IET Commun. 2022, 16, 400–420.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Sciences: Basic and Applied Research (IJSBAR)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who submit papers with this journal agree to the following terms.