Spatial Regression of the Gross County Product of Kenya on Induced Latent Variables
Keywords:
Gross county product, spatial dependence, thematic maps, Latent variablesAbstract
Because of a very shallow study carried out to measure regional economic progress in Kenya, we were prompted to investigate on the role of geographical analysis in economic development. The induction of the Gross County Product (GCP) in 2013 had brought about a new viewpoint of assessing the economic growth pattern of Kenya from a single value of the Gross Domestic Product (GDP) to a disaggregate measure that was inclusive of the contributive efforts from each county. Investigating the spatial dependence of this GCP on latent variables solved the error of model misspecification and proved the spill-over effect of the Kenyan economy at the county levels. The Local Indicator of Spatial Association (LISA) (Moran I test) revealed spatial clustering and the Lagrange Multiplier (LM) Test together with the spatial Hausman test suggested an error model fit. Meanwhile, the likelihood ratio test considered a restricted spatial model more suitable than the nested model. Not only was the economic pattern monitored but also a correct version of the 6 economic blocs of Kenya was developed by use of thematic maps where the counties were geographically classified according to the spatial implication.
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
https://doi.org/10.1109/TAC.1974.1100705
Anselin, L., & Arribas-Bel, D. (2013). Spatial fixed effects and spatial dependence in asingle cross?section. Papers in Regional Science, 92(1), 3-17.
https://doi.org/10.1111/j.1435-5957.2012.00480.x
Anselin, L., & Florax, R. J. G. M. (1995). Small sample properties of tests for spatial dependence in regression models: some further results. In L. Anselin, & R. J. G. M. Florax (Eds.), New directions in spatial econometrics (pp. 21-74). Springer.
https://doi.org/10.1007/978-3-642-79877-1_2
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16, 74-94.
https://doi.org/10.1177/009207038801600107
Bai, A., Hira, S., & Deshpande, P. S. (2015). An application of factor analysis in the evaluation of country economic rank. Procedia Computer Science, 54, 311-317.
https://www.sciencedirect.com/science/article/pii/S1877050915013605
Bai, C. E., Ma, H., & Pan, W. (2012). Spatial spillover and regional economic growth in China. China Economic Review, 23(4), 982-990.
https://www.sciencedirect.com/science/article/pii/S1043951X12000521
Balash, V., Balash, O., Faizliev, A., & Chistopolskaya, E. (2020). Economic growth patterns: Spatial econometric analysis for Russian regions. Information, 11(6), 289.
http://dx.doi.org/10.3390/info11060289
Burkey, M. L. (2018). Spatial econometrics and GIS YouTube playlist. Region 5(3), R13- R18.
https://doi.org/10.18335/region.v5i3.254
Cronbach, L.J.(1951).Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
https://doi.org/10.1007/BF02310555
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2000). Quantitative geography: perspectives on spatial data analysis. Sage.
https://doi.org/10.1111/j.1538-4632.2001.tb00453.x
George, D., & Mallery, P. (2003). SPSS for Windows Sep by Step: A Simple Guide and Reference, Boston, MA: Allyn & Bacon. Obtenido
https//www.Amaz.es/SPSS-Windows-Step-Simple-Reference/dp/0205375529
Karim, A., Faturohman, A., Suhartono, S., Prastyo, D. D., & Manfaat, B. (2017). Regression models for spatial data: An example from Gross Domestic Regional Bruto in Central Java. Jurnal ekonomi pembangunan: Kajian masalah ekonomi dan pembangunan, 18(2), 213-224.
https://doi.org/10.23917/jep.v18i2.4660
King, G. (1989). Unifying political methodology: The likelihood theory of statistical inference. Cambridge university press.
https://doi.org/10.3998/mpub.23784
LeSage, J. P., & Pace, R. K. (2009). Spatial econometric models. In Handbook of applied spatial analysis: Software tools, methods and applications (pp. 355-376). Springer Berlin Heidelberg.
https://doi.org/10.1201/9781420064254
McMillen, D. P. (2012). Perspectives on spatial econometrics: linear smoothing with structured models. Journal of Regional Science, 52(2), 192-209.
https://doi.org/10.1111/j.1467-9787.2011.00746.x
Moran, P.A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23.
https://doi.org/10.2307/2332142
Nunnally, J. C., & Bernstein, IH (1994). The assessment of reliability. Psychometric theory . 3 (1), 248-292.
https://doi.org/10.1177/014662169501900308
Okwi, P. O., Ndeng'e, G., Kristjanson, P., Arunga, M., Notenbaert, A., Omolo, A. & Owuor, J. (2007). Spatial determinants of poverty in rural Kenya. Proceedings of the National Academy of Sciences, 104(43), 16769-16774.
https://doi.org/10.1073/pnas.0611107104
Oud, J. H., & Folmer, H. (2008). A structural equation approach to models with spatial dependence. Geographical analysis, 40(2), 152-166.
https://doi.org/10.1111/j.1538-4632.2008.00717.x
Páez, A., Le Gallo, J., Buliung, R. N., & Dall’Erba, S. (2010). Progress in spatial analysis: introduction. In Progress in Spatial Analysis (pp. 1-13). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-03326-1_1
Ramirez, M.T., & Loboguerrero, A.M. (2002). Spatial dependence and economic growth: evidence from a panel of countries. Borradores de economia working paper, 206.
http://dx.doi.org/10.2139/ssrn.311320
Revelle, W. (2016). How to: Use the psych package for factor analysis and data reduction. Evanston, IL: Northwestern university, Department of psychology.
https://randilgarcia.github.io/smith-r-workshop/factor.pdf
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.
http://www.jstor.org/stable/2958889
Syed, A. A. S. G., & Shaikh, F. M. (2013). Effects of macroeconomic variables on gross domestic product (GDP) in Pakistan. Procedia economics and finance, 5, 703-711.
https://doi.org/10.1016/S2212-5671(13)00082-8
Szendi, D. (2016) Spatial beta convergence analysis of the real GDP per capita across Germany and Hungary. Doktornduszok Fóruma Szekciókiadván. ResearchGate.
https://orcid.org/0000-0003-0010-9949
Xiangyu, G., Zhou, Z., Zhou, Y., Ye, X., & Liu, S. (2018). A spatial panel data analysis of economic growth, urbanization, and NOx emissions in China. International journal of environmental research and public health, 15(4), 725.
https://doi.org/10.3390/ijerph15040725
Yoo, D. (2016, June). Mapping and economic development: Spatial information matters. In Journal of economic history (Vol. 76, No. 2, pp. 640-641). Cambridge university press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Sciences: Basic and Applied Research (IJSBAR)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who submit papers with this journal agree to the following terms.