# Sensitivity Analysis of the SVEIR Model on the Spread of Covid-19 Disease in Indonesia

## Authors

• Sisca Sri Dewi Saragih Graduate School, IPB University, IPB Campus Dramaga, Bogor 16680 , Indonesia
• Jaharuddin Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, IPB Campus Dramaga , Bogor 16680, Indonesia
• Endar H. Nugrahani Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, IPB Campus Dramaga , Bogor 16680, Indonesia

## Keywords:

Covid-19, stability, sensitivity analysis

## Abstract

The spread of Covid-19 is a serious global health problem, as well as in Indonesia. Mathematical modelling is one way to see how the spread of the Covid-19 disease is developing. Model used in this article is SVEIR models. In this article, we discuss the stability of the disease-free fixed point using the Routh Hurwitz criteria, while the stability of the endemic fixed point is examined using the Castillo-Chaves and Song theorems. It is confirmed that the disease-free fixed point is locally asymptotically stable if the basic reproduction number is less than one. In addition, the local asymptotically stable endemic fixed point if the basic reproduction number is more than one. Sensitivity analysis is performed to determine the parameters of the model that are most sensitive to the system. The results of numerical simulations show that the biggest influence on dynamics of spread of the disease is the contact rate of the spread of the disease.

## References

D. E. Nugraheny, “UPDATE 16 Januari: Tambah 14.224, Kini Ada 896.642 Kasus Covid-19 di Indonesia,” nasional.kompas.com, 2021. www.elsevier.com/locate/chaos

S. Chauhan, “Comprehensive review of coronavirus disease 2019 (COVID-19),” Biomedical Journal, vol. 43, no. 4. pp. 334–340, 2020. doi: 10.1016/j.bj.2020.05.023.

World Health Organization, “WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19,” World Health Organization, no. March. p. 4, 2020. Accessed: Oct. 31, 2022. [Online]. Available: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-21-december-2020

Kemenkes, “Situasi Terkini Perkembangan Coronavirus Disease (Covid-19),” Kemenkes, no. agustus. pp. 1–4, 2021. Accessed: Jan. 16, 2021. [Online]. Available: https://infeksiemerging.kemkes.go.id/situasi-infeksi-emerging/situasi-terkini-perkembangan-coronavirus-disease-covid-19-16-januari-2021

D. E. Nugraheny, “UPDATE 16 Januari: Tambah 14.224, Kini Ada 896.642 Kasus Covid-19 di Indonesia,” nasional.kompas.com, 2021. https://nasional.kompas.com/read/2021/01/16/15380351/update-16-januari-tambah-14224-kini-ada-896642-kasus-covid-19-di-indonesia (accessed Jan. 18, 2021).

A. Van Maanen, C. U. Saint-luc, and X. Xu, “Modelling Plant Disease Epidemics Modelling Plant Disease Epidemics,” Eur. J. Plant Pathol., no. September 2003, 2017, doi: 10.1023/A.

Y. Okabe and A. Shudo, “A mathematical model of epidemics-a tutorial for students,” Mathematics, vol. 8, no. 7, 2020, doi: 10.3390/math8071174.

M. Soleh and P. Siregar, “Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi,” Semin. Nas. Teknol. Inf. Komun. dan Ind. 4, pp. 400–405, 2012.

M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, and J. M. Tchuenche, “A Mathematical Model of COVID-19 with Vaccination and Treatment,” Comput. Math. Methods Med., vol. 1, 2021, doi: 10.1155/2021/1250129.

N. R. Sasmita, M. Ikhwan, S. Suyanto, and V. Chongsuvivatwong, “Optimal Control on A Mathematical Model to Pattern The Progression of Coronavirus Disease 2019 (COVID-19) in Indonesia,” Glob. Heal. Res. Policy, vol. 5, no. 1, 2020, doi: 10.1186/s41256-020-00163-2.

B. Ivorra, M. R. Ferrández, M. Vela-pérez, and A. M. Ramos, “Mathematical Modeling of The Spread of The Coronavirus Disease 2019 (COVID-19) Taking into Account The Undetected Infections. The Case of China,” Commun Nonlinear Sci Numer Simulat, no. January, 2020, doi: 0.1016/j.cnsns.2020.105303.

N. M. Nasir, I. S. Joyosemito, B. Boerman, and I. Ismaniah, “Kebijakan Vaksinasi COVID-19: Pendekatan Pemodelan Matematika Dinamis pada Efektivitas dan Dampak Vaksin di Indonesia,” J. Pengabdi. Kpd. Masy. UBJ, vol. 4, no. 2, pp. 191–204, 2021, doi: 10.31599/jabdimas.v4i2.662.

P. Riyapan, S. E. Shuaib, and A. Intarasit, “A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand,” Comput. Math. Methods Med., vol. 2021, p. 11, 2021, doi: 10.1155/2021/6664483.

Resmawan, A. R. Nuha, and L. Yahya, “Analisis Dinamik Model Transmisi COVID-19 dengan Melibatkan Intervensi Karantina,” Jambura J. Math., vol. 3, no. 1, pp. 66–79, 2021, doi: 10.34312/jjom.v3i1.8699.

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2nd ed., vol. 69, no. 4. New York: Springer, 2011. doi: 10.2307/1941295.

Qifang et al., “Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts,” MedRxiv, vol. 1, no. march, 2020, doi: 10.1101/2020.03.03.20028423.

The World Bank, “Birth rate, Crude (per 1,000 people) - Indonesia, Greenland | Data,” World Bank Group, 2021. https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?end=2020&locations=ID-GL&start=1960 (accessed Jun. 19, 2021).

A. R. Nuha, N. Achmad, and N. ’Ain Supu, “Analisis Model Matematika Penyebaran Covid-19 dengan Intervensi Vaksinasi dan Pengobatan,” J. Mat. UNAND, vol. 10, no. 3, p. 406, 2021, doi: 10.25077/jmu.10.3.406-422.2021.

Kemenkes, “Analisis Data COVID-19 Indonesia (Update Per 30 Agustus 2020) - Berita Terkini | Covid19.go.id,” Portal COVID-19 Indonesia, 2021. https://covid19.go.id/p/berita/analisis-data-covid-19-indonesia-update-30-mei-2021 (accessed Jun. 17, 2021).

Resmawan, L. Yahya, R. S. Pakaya, and H. S. Panigoro, “Analisis Dinamik Model Penyebaran COVID-19 dengan Vaksinasi,” Jambura J. Math., vol. 3, no. 1, pp. 29–38, 2022.

2022-12-19

## How to Cite

Saragih, S. S. D., Jaharuddin, & Endar H. Nugrahani. (2022). Sensitivity Analysis of the SVEIR Model on the Spread of Covid-19 Disease in Indonesia. International Journal of Sciences: Basic and Applied Research (IJSBAR), 65(1), 342–352. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/14957

Articles