Antibacterial Activity of Rubus multibreatus Le’vl Plant Extracts Against Staphylococcus aureus

Authors

  • Bancy Nkonge Sichuan agricultural university, Chengdu, 211 Huimin Road, Wenjian District, 611130, China
  • ChangLiang He Sichuan agricultural university, Chengdu, 211 Huimin Road, Wenjian District, 611130, China

Keywords:

Bacterial inhibition, solvent extraction, flavonoids, true tannins, Gallic acid

Abstract

The genus Rubus is a family of shrubs and mostly edible berries such as rasp berries, blue berries, strawberries. Of the 2208 species, 331 are documented (3,) and about 139 native to China, and being a wild plant, it can grow anywhere except for Antarctica (1) and with a wide variety as well as fairly similar phyto-components(2). Rubus multibreatus is commonly known in China as Da wu pao, its leaves used in teas and to locally treat stomach upsets, haemorrhoids and rheumatism, (1). Over years, due to a variety of intraspecies, it has acquired different synonyms, which include; R.mallodes, R.andropoga, R.clinocephalus, R.pluribracteatus, R.terminalia and R.macroptera (4)

References

. Ling-Ti, L., & Boufford, D. E. (2003). 28. RUBUS Linnaeus, Sp. P1. 1: 492. 1753. Flora of China Vol. .9 Rosaceae, 11, 195–285. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=128837

. Abu Bakar, M. F., Ismail, N. A., Isha, A., & Mei Ling, A. L. (2016). Phytochemical Composition and Biological Activities of Selected Wild Berries (Rubus moluccanus L., R. fraxinifolius Poir., and R. alpestris Blume). Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/2482930

. Missouri Botanical Garden (2018).www.theplantlist.org/browse/A/Rosaceae/Rubus.

. Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H. Z. E., & Moga, M. (2014). Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules, 19(8), 10998–11029. https://doi.org/10.3390/molecules190810998

. Abdelkader, S. A., El-Mowafy, M., Abdelmegeed, E., & Hassan, R. (2018). Analysis of Hyaluronidase Expression by qPCR in Egyptian Clinical Isolates of <i>Staphylococcus aureus</i> and Its Correlation with Phenotypic Plate Assay. Advances in Microbiology, 08(07), 614–624. https://doi.org/10.4236/aim.2018.87041

. Oliveira, D. (2018). Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. https://doi.org/10.3390/toxins10060252

. Atshan,S. S.,Shamsudin,M. N.,Karunanidhi, A.,van Belkum, A., Lung, L. T., Sekawi, Z., Nathan, J.J., Ling, K. H., Seng, J. S., Ali, A. M., Abduljaleel, S.A., & Hamat, R. A. (2013). Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). Infection,genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 18, 106-112. https://doi.org/10.1016/j.meegid.2013.05.002

. Sahil Batra.(2018). Toxins and Pathogenesis of Staphylococcus aureus. https://paramedicsworld.com/staphylococcus-aureus/.

. Brady,R.A.,Leid,J.G.,Camper.A.K.,Costerton,J.W.,&Shirtliff,M.E (2006).Identification of Staphylococcus aureus proteins recognised by the antibody-mediated immune response to a biofilm infection.Infection and immunity,74(6),3415-3426. https://doi.org/10.1128/IAI.00392-06

. Ludwig, S., Jimenez-Bush, I., Brigham, E., Bose, S., Diette, G., McCormack, M. C., Matsui, E. C., & Davis, M. F. (2017). Analysis of home dust for Staphylococcus aureus and staphylococcal enterotoxin genes using quantitative PCR. Science of the Total Environment, 581-582, 750-755. https://doi.org/10.1016/j.scitotenv.2017.01.003

. Teodoro, G. R., Ellepola, K., Seneviratne, C. J., & Koga-Ito, C. Y. (2015). Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Frontiers in microbiology, 6, 1420. https://doi.org/10.3389/fmicb.2015.01420

. Aida, W. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging capacity, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity. In International Food Research Journal (Vol. 18, Issue 4).

. Cheng, V. J., Bekhit, A. E. D. A., McConnell, M., Mros, S., & Zhao, J. (2012). Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chemistry, 134(1), 474–482. https://doi.org/10.1016/J.FOODCHEM.2012.02.103

. Thavamoney, N., Sivanadian, L., Tee, L. H., Khoo, H. E., Prasad, K. N., & Kong, K. W. (2018). Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. Journal of Food Science and Technology, 55(7), 2523–2532. https://doi.org/10.1007/s13197-018-3170-6

. Owczarek, A., Olszewska, M. A., & Gudej, J. (2014). Quantitative determination of ellagic acid and gallic acid in Geum rivale L. And g. urbanum L. Acta Biologica Cracoviensia Series Botanica, 56(2), 74–78. https://doi.org/10.2478/abcsb-2014-0021

. Wielders, C. L. C., Fluit, A. C., Brisse, S., Verhoef, J., & Schmitz, F. J. (2002). mecA Gene Is Widely Disseminated in Staphylococcus aureus Population. JOURNAL OF CLINICAL MICROBIOLOGY, 40(11), 3970–3975. https://doi.org/10.1128/JCM.40.11.3970-3975.2002

. Kobayashi, N., wu, H., Kojima, K., Taniguchi, K., Urasawa, S., Uehara, N., Omizu, Y., Kishi, Y., Yagihashi, A., & Kurokawa, I. (1994). Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiology and Infection, 113(2), 259–266. https://doi.org/10.1017/S0950268800051682

. Alarcón, B., Vicedo, B., & Aznar, R. (2006). PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food. Journal of Applied Microbiology, 100(2), 352–364. https://doi.org/10.1111/j.1365-2672.2005.02768.x

. McClure, J. A., Conly, J. M., Lau, V., Elsayed, S., Louie, T., Hutchins, W., & Zhang, K. (2006). Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. Journal of Clinical Microbiology, 44(3), 1141–1144. https://doi.org/10.1128/JCM.44.3.1141-1144.2006

. Pichon, B., Hill, R., Laurent, F., Larsen, A. R., Skov, R. L., Holmes, M., Edwards, G. F., Teale, C., & Kearns, A. M. (2012). Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, panton-valentine leucocidin (PVL), mecA and homologue mecALGA251. Journal of Antimicrobial Chemotherapy, 67(10), 2338–2341. https://doi.org/10.1093/jac/dks221

. Xuewen, H., Ping, O., Zhongwei, Y., Zhongqiong, Y., Hualin, F., Juchun, L., Changliang, H., Gang, S., Zhixiang, Y., Xu, S., Yuanfeng, Z., Lixia, L., & Lizi, Y. (2018). Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. World Journal of Microbiology and Biotechnology, 34(5), 1–7. https://doi.org/10.1007/s11274-018-2446

. Wu, D., Zhou,S., Hu, S., & Liu, B. (2017).Inflammatory responses and histopathological changes in a mouse model of Staphylococcus aureus-induced bloodstream infections. Journal of infection in developing countries, 11(4),294305. https://doi.org/10.3855/jidc.7800

. Pichon, B., Hill, R., Laurent, F., Larsen, A. R., Skov, R. L., Holmes, M., Edwards, G. F., Teale, C., & Kearns, A. M. (2012). Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, panton-valentine leucocidin (PVL), mecA and homologue mecALGA251. Journal of Antimicrobial Chemotherapy, 67(10), 2338–2341.

. Evans et al (2007).CAB International 2020 . http://www.cabi.org/isc/datasheet/47995. (last accessed 04/13/20)

. Shibu, P. C., & Chandran, P. R. (2017). Phytochemical and antimicrobial analysis of leaf samples of different Rubus species. International Journal of ChemTech Research, 10(4), 359–368.

. Xu, C., Wang, Y., Rezeng, C., Zhang, L., Zhao, B., Wang, X., Wu, X., Li, Z., & Chen, J. (2018). Tissue metabolomics study to reveal the toxicity of a traditional Tibetan medicine ‘Renqing Changjue’’ in rats.’ RSC Advances, 8(66), 37652–37664.

. Lima, V. N., Oliveira-Tintino, C. D. M., Santos, E. S., Morais, L. P., Tintino, S. R., Freitas, T. S., Geraldo, Y. S., Pereira, R. L. S., Cruz, R. P., Menezes, I. R. A., & Coutinho, H. D. M. (2016). Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis, 99, 56–61. https://doi.org/10.1016/j.micpath.2016.08.004

. Gabrielyan, L., Badalyan, H., Gevorgyan, V., & Trchounian, A. (2020). Comparable antibacterial effects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70211-x

. Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine, 9(1). https://doi.org/10.3390/jcm9010109

. Wang, S., Yao, J., Zhou, B., Yang, J., Chaudry, M. T., Wang, M., Xiao, F., Li, Y., & Yin, W. (2018). Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 81(1), 68–78. https://doi.org/10.4315/0362-028X.JFP-17-214

. Yang, D., Wang, T., Long, M., & Li, P. (2020). Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. In Oxidative Medicine and Cellular Longevity (Vol. 2020). Hindawi Limited. https://doi.org/10.1155/2020/8825387

. Júnior, S. D. da C., Santos, J. V. de O., Campos, L. A. de A., Pereira, M. A., Magalhães, N. S. S., & Cavalcanti, I. M. F. (2018). Antibacterial and antibiofilm activities of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. International Journal of Environment, Agriculture and Biotechnology, 3(5), 1948–1958. https://doi.org/10.22161/ijeab/3.5.50

. Joel, S., Tatsimo, N., de Dieu Tamokou, J., Havyarimana, L., Csupor, D., Forgo, P., Hohmann, J., Kuiate, J.-R., & Tane, P. (2011). Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. http://www.biomedcentral.com/1756-0500/5/158

. Andrade, M., Benfeito, S., Soares, P., Magalhães e Silva, D., Loureiro, J., Borges, A., Borges, F., & Simões, M. (2015). Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Advances, 5(66), 53915–53925. https://doi.org/10.1039/c5ra05840f

. De, R., Sarkar, A., Ghosh, P., Ganguly, M., Karmakar, B. C., Saha, D. R., Halder, A., Chowdhury, A., & Mukhopadhyay, A. K. (2018). Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. Journal of Antimicrobial Chemotherapy, 73(6), 1595–1603. https://doi.org/10.1093/jac/dky079

. Luís, Â., Silva, F., Sousa, S., Duarte, A. P., & Domingues, F. (2014). Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69–79. https://doi.org/10.1080/08927014.2013.845878

. Sun, H.-Q., Lu, X.-M., & Gao, P.-J. (2011). THE EXPLORATION OF THE ANTIBACTERIAL MECHANISM OF FE 3+ AGAINST BACTERIA. Brazilian Journal of Microbiology, 42, 410–414.

. Bindu, I., Jayachandran, V. P., & Elcey, C. D. (2016). Evaluation of Antistaphylococcal Activity of Ellagic Acid Extracted from Punica granatum Fruit Peel on MRSA. International Journal of Current Microbiology and Applied Sciences, 5(2), 245–253. https://doi.org/10.20546/ijcmas.2016.502.027

. Loo, T. Y., Lj, J., Cheung, M. N., & Chow, L. W. (2010). Evaluation of Ellagic acid on the activities of oral bacteria with the use of adenosine triphosphate (ATP) bioluminescence assay. African Journal of Biotechnology, 9(25), 3938–3943. http://www.academicjournals.org/AJB

. Kȩpa, M., Miklasińska-Majdanik, M., Wojtyczka, R. D., Idzik, D., Korzeniowski, K., Smoleń-Dzirba, J., & Wasik, T. J. (2018). Antimicrobial potential of caffeic acid against staphylococcus aureus clinical strains. BioMed Research International, 2018. https://doi.org/10.1155/2018/7413504

. Park, M.-Y., & Kang, D.-H. (2021). Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. https://journals.asm.org/journal/aem

. Pinho, E., Soares, G., & Henriques, M. (2015). Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. Journal of Microencapsulation, 32(8), 804–810. https://doi.org/10.3109/02652048.2015.1094531

. Kho, W., Kim, M. K., Jung, M., Chong, Y. P., Kim, Y. S., Park, K. H., & Chong, Y. (2020). Strain-specific anti-biofilm and antibiotic-potentiating activity of 3′,4′-difluoroquercetin. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71025-7

. Chambers, S. A., Gaddy, J. A., & Townsend, S. D. (2020). Synthetic Ellagic Acid Glycosides Inhibit Early Stage Adhesion of Streptococcus agalactiae Biofilms as Observed by Scanning Electron Microscopy. Chemistry - A European Journal, 26(44), 9923–9928. https://doi.org/10.1002/chem.202000354

. Siriwong, S., Teethaisong, Y., Thumanu, K., Dunkhunthod, B., & Eumkeb, G. (2016). The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacology and Toxicology, 17(1), 1–14. https://doi.org/10.1186/s40360-016-0083-8

. Jaisinghani, R. N. (2017). Antibacterial properties of quercetin. Microbiology Research, 8(1). https://doi.org/10.4081/mr.2017.6877

. Ming, D., Wang, D., Cao, F., Xiang, H., Mu, D., Cao, J., … Wang, T. (2017). Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Frontiers in Microbiology, 8(NOV), 1–11. https://doi.org/10.3389/fmicb.2017.02263

. dos Santos, J. F. S., Tintino, S. R., de Freitas, T. S., Campina, F. F., Irwin, I. R., Siqueira-Júnior, J. P., … Cunha, F. A. B. (2018). In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comparative Immunology, Microbiology and Infectious Diseases, 57, 22–28. https://doi.org/10.1016/j.cimid.2018.03.001

. Khan, F., Bamunuarachchi, N. I., Tabassum, N., & Kim, Y. M. (2021). Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c07579

. Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102321

. Li, S., Pi, J., Zhu, H., Yang, L., Zhang, X., & Ding, W. (2021). Caffeic Acid in Tobacco Root Exudate Defends Tobacco Plants From Infection by Ralstonia solanacearum. Frontiers in Plant Science, 12(August), 1–14. https://doi.org/10.3389/fpls.2021.690586

. Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., … Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1), 1–27. https://doi.org/10.1186/s12951-020-0588-6

. Ito, A., Nishikawa, T., Matsumoto, S., Yoshizawa, H., Sato, T., Nakamura, R., Tsuji, M., & Yamano, Y. (2016). Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 60(12), 7396–7401. https://doi.org/10.1128/AAC.01405-16

. Naseem, Tayyaba & Farrukh, Muhammad Akhyar. (2015). Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia inermis and Gardenia jasminoides Leaves Extract. Journal of Chemistry. 2015. 1-7. 10.1155/2015/912342.

. Cheng Wei, Qin Wengjie, Chen Suhong, Ye Zuguang. (2009). Determination of Total Flavanoids in Leaves of DaWuPao. China Journal of Traditional Chinese Medicine Information. 2009,16(09)

. Liu Yao, Chen Rui, Cai Jin, Liu Jiani, Liu Lina, Huang Jing. (2016). TLC Identification Experiment of DaWuPao Development Medicinal Material. Journal of Guizhou Medical University 2016,41(12)

. Meng Xin, Liu Yao, Cai Jin, Chen Rui, Mao Zhengyi, Liu Jia Ni, Liu Lina, Huang Jing. (2017). Screening of the Analgesic Active Sites of the Leaves of DaWuBaoye. Journal of Guizhou Medical University 2017,42(02)

Downloads

Published

2022-03-19

How to Cite

Nkonge, B. ., & ChangLiang He. (2022). Antibacterial Activity of Rubus multibreatus Le’vl Plant Extracts Against Staphylococcus aureus. International Journal of Sciences: Basic and Applied Research (IJSBAR), 62(1), 107–126. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/13859

Issue

Section

Articles