A Review - Colorectal Cancer, Prevalence, along with Screening, Diagnosis, and Novel Therapies

Authors

  • Muhammad Atif Imran Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan.
  • Hira Shahid Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan.
  • Bisma Zaheen Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan.
  • Nimra Bashir Qureshi Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan.
  • Maila Attique Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan.

Keywords:

Colorectal Cancer, Apoptosis, Cancer Treatment, Medicinal Plants, ncRNA, microbiota, biomarkers, gene-expression profiling, agarose microbeads, metal-based drugs, probiotics, functional food, anti-inflammatories

Abstract

Colorectal cancer is considering a communal health problem and in the whole world, its number is third in all cancers that were diagnosed. It causes a significant burden in terms of sickness and death with the estimation of seven lakhs annual deaths. In many countries of the world western way of life is rapidly adopted that is a well-debated factor for colorectal cancer and in term of primary preventive measures, it could be besieged. Comparatively slow advancement of this cancer allows severe reduction of occurrence and death rate with the help of secondary prevention. These facts motivate primary care physicians to play a key role in health plans that improve prevention and rapid diagnosis. In ancient years, the targeted therapies with combinational treatment have proven to be very effective for specific colorectal cancer patients. These therapies are epidermal growth factor, receptor inhibitor, and growth factor. As the advancements in clinic and science have visible that give new treatment options for metastatic colorectal cancer, the five-year existence rate is still fourteen percent low. But in other subtypes of colorectal cancer, the results may not be successful and not highly explored. We can reduce side effects and make the treatment effect by using alternative therapies instead of traditional therapies such as anticancer drugs, probiotics, etc. Herein, some major topics related to CRC in recent literature have been reviewed, to acknowledge its malignancy, risk, and defensive factors, along with the screening methodologies. Moreover, we also debate over preventive as well as screening strategies to fight against CRC.

References

. M. M. Center, A. Jemal, R. A. Smith, and E. Ward, “Worldwide Variations in Colorectal Cancer,” CA. Cancer J. Clin., vol. 59, no. 6, pp. 366–378, Nov. 2009, doi: 10.3322/caac.20038.

. C. Bosetti et al., “Trends in cancer mortality in Mexico, 1981-2007,” Eur. J. Cancer Prev., vol. 20, no. 5, pp. 355–363, Sep. 2011, doi: 10.1097/CEJ.0b013e32834653c9.

. B. Stewart, C. P. Wild, and (Eds), “IARC Publications Website - World Cancer Report 2014.” 2014, Accessed: Mar. 22, 2021. [Online]. Available: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014.

. M. M. Center, A. Jemal, and E. Ward, “International trends in colorectal cancer incidence rates,” Cancer Epidemiol. Biomarkers Prev., vol. 18, no. 6, pp. 1688–1694, Jun. 2009, doi: 10.1158/1055-9965.EPI-09-0090.

. C. C. Murphy, L. C. Harlan, J. L. Lund, C. F. Lynch, and A. M. Geiger, “Patterns of Colorectal Cancer Care in the United States: 1990-2010,” J. Natl. Cancer Inst., vol. 107, no. 10, p. 198, Oct. 2015, doi: 10.1093/jnci/djv198.

. B. F. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, “IARC Publications Website - GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 v1.0,” 2012. Accessed: Mar. 22, 2021. [Online]. Available: https://publications.iarc.fr/Databases/Iarc-Cancerbases/GLOBOCAN-2012-Estimated-Cancer-Incidence-Mortality-And-Prevalence-Worldwide-In-2012-V1.0-2012.

. C. Fitzmaurice et al., “Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study Global Burden ,” JAMA Oncology, vol. 3, no. 4. American Medical Association, pp. 524–548, Apr. 01, 2017, doi: 10.1001/jamaoncol.2016.5688.

. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” CA. Cancer J. Clin., vol. 65, no. 2, pp. 87–108, Mar. 2015, doi: 10.3322/caac.21262.

. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA. Cancer J. Clin., vol. 61, no. 2, pp. 69–90, Mar. 2011, doi: 10.3322/caac.20107.

. H. Wang et al., “Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015,” Lancet, vol. 388, no. 10053, pp. 1459–1544, Oct. 2016, doi: 10.1016/S0140-6736(16)31012-1.

. O. Kronborg, “Population Screening for Colorectal Cancer, the Goals and Means,” Ann. Med., vol. 23, no. 4, pp. 373–379, Jan. 1991, doi: 10.3109/07853899109148076.

. D. M. Davis, J. E. Marcet, J. C. Frattini, A. D. Prather, J. J. L. Mateka, and V. N. Nfonsam, “Is it time to lower the recommended screening age for colorectal cancer?,” J. Am. Coll. Surg., vol. 213, no. 3, pp. 352–361, Sep. 2011, doi: 10.1016/j.jamcollsurg.2011.04.033.

. M. M. Center, A. Jemal, R. A. Smith, and E. Ward, “Worldwide variations in colorectal cancer,” Diseases of the Colon and Rectum, vol. 53, no. 7. Wiley-Blackwell, p. 1099, Jul. 01, 2010, doi: 10.1007/DCR.0b013e3181d60a51.

. A. Hadjipetrou, D. Anyfantakis, C. G. Galanakis, M. Kastanakis, and S. Kastanakis, “Colorectal cancer, screening and primary care: A mini literature review,” World Journal of Gastroenterology, vol. 23, no. 33. Baishideng Publishing Group Co., Limited, pp. 6049–6058, Sep. 07, 2017, doi: 10.3748/wjg.v23.i33.6049.

. H. Yamagishi, H. Kuroda, Y. Imai, and H. Hiraishi, “Molecular pathogenesis of sporadic colorectal cancers,” Chinese Journal of Cancer, vol. 35, no. 1. Landes Bioscience, p. 4, Jan. 06, 2016, doi: 10.1186/s40880-015-0066-y.

. A. I. Robles et al., “Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers,” Gastroenterology, vol. 150, no. 4, pp. 931–943, Apr. 2016, doi: 10.1053/j.gastro.2015.12.036.

. M. J. Schell et al., “A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC,” Nat. Commun., vol. 7, no. 1, pp. 1–12, Jun. 2016, doi: 10.1038/ncomms11743.

. A. kumar Pandurangan, T. Divya, K. Kumar, V. Dineshbabu, B. Velavan, and G. Sudhandiran, “Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review,” World Journal of Gastrointestinal Oncology, vol. 10, no. 9. Baishideng Publishing Group Co, pp. 244–259, Sep. 01, 2018, doi: 10.4251/wjgo.v10.i9.244.

. E. R. Fearon, “Molecular genetics of colorectal cancer,” Annu. Rev. Pathol. Mech. Dis., vol. 6, no. 1, pp. 479–507, Feb. 2011, doi: 10.1146/annurev-pathol-011110-130235.

. E. M. Stoffel and F. Kastrinos, “Familial colorectal cancer, beyond lynch syndrome,” Clin. Gastroenterol. Hepatol., vol. 12, no. 7, pp. 1059–1068, Jul. 2014, doi: 10.1016/j.cgh.2013.08.015.

. R. A. Kerber, D. W. Neklason, W. S. Samowitz, and R. W. Burt, “Frequency of familial colon cancer and hereditary nonpolyposis colorectal cancer (Lynch Syndrome) in a large population database,” Fam. Cancer, vol. 4, no. 3, pp. 239–244, Sep. 2005, doi: 10.1007/s10689-005-0657-x.

. S. I. Grivennikov et al., “Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth,” Nature, vol. 491, no. 7423, pp. 254–258, Nov. 2012, doi: 10.1038/nature11465.

. K. Wang et al., “Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis,” Immunity, vol. 41, no. 6, pp. 1052–1063, Dec. 2014, doi: 10.1016/j.immuni.2014.11.009.

. O. Dmitrieva-Posocco et al., “Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer,” Immunity, vol. 50, no. 1, pp. 166-180.e7, Jan. 2019, doi: 10.1016/j.immuni.2018.11.015.

. F. R. Greten and S. I. Grivennikov, “Inflammation and Cancer: Triggers, Mechanisms, and Consequences,” Immunity, vol. 51, no. 1. Cell Press, pp. 27–41, Jul. 16, 2019, doi: 10.1016/j.immuni.2019.06.025.

. P. K. Ziegler et al., “Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis,” Cell, vol. 174, no. 1, pp. 88-101.e16, Jun. 2018, doi: 10.1016/j.cell.2018.05.028.

. R. S. Goldszmid, A. Dzutsev, S. Viaud, L. Zitvogel, N. P. Restifo, and G. Trinchieri, “Microbiota modulation of myeloid cells in cancer therapy,” Cancer Immunol. Res., vol. 3, no. 2, pp. 103–109, Feb. 2015, doi: 10.1158/2326-6066.CIR-14-0225.

. Y. Zhen, C. Luo, and H. Zhang, “Early detection of ulcerative colitis-associated colorectal cancer,” Gastroenterology Report, vol. 6, no. 2. Oxford University Press, pp. 83–92, May 01, 2018, doi: 10.1093/gastro/goy010.

. J. Terzić, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and Colon Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101-2114.e5, May 2010, doi: 10.1053/j.gastro.2010.01.058.

. B. Khor, A. Gardet, and R. J. Xavier, “Genetics and pathogenesis of inflammatory bowel disease,” Nature, vol. 474, no. 7351. Nature Publishing Group, pp. 307–317, Jun. 16, 2011, doi: 10.1038/nature10209.

. H. Shaked et al., “Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 35, pp. 14007–14012, Aug. 2012, doi: 10.1073/pnas.1211509109.

. C. P. Wild and B. . Stewart, “World Cancer Report 2014,” 2014. Accessed: Mar. 22, 2021. [Online]. Available: https://www.who.int/cancer/publications/WRC_2014/en/.

. H. Brody, “Colorectal cancer,” Nature, vol. 521, no. 7551. Nature Publishing Group, p. S1, May 14, 2015, doi: 10.1038/521S1a.

. D. Cunningham et al., “Colorectal cancer,” The Lancet, vol. 375, no. 9719. Elsevier, pp. 1030–1047, Mar. 20, 2010, doi: 10.1016/S0140-6736(10)60353-4.

. E. R. Fearon and B. Vogelstein, “A genetic model for colorectal tumorigenesis,” Cell, vol. 61, no. 5. Elsevier, pp. 759–767, Jun. 01, 1990, doi: 10.1016/0092-8674(90)90186-I.

. H. T. Lynch and A. de la Chapelle, “Hereditary Colorectal Cancer,” N. Engl. J. Med., vol. 348, no. 10, pp. 919–932, Mar. 2003, doi: 10.1056/NEJMra012242.

. A. Umar et al., “Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability,” J. Natl. Cancer Inst., vol. 96, no. 4, pp. 261–268, Feb. 2004, doi: 10.1093/jnci/djh034.

. W. M. Grady and J. M. Carethers, “Genomic and Epigenetic Instability in Colorectal Cancer Pathogenesis,” Gastroenterology, vol. 135, no. 4. W.B. Saunders, pp. 1079–1099, Oct. 01, 2008, doi: 10.1053/j.gastro.2008.07.076.

. M. S. Pino and D. C. Chung, “The Chromosomal Instability Pathway in Colon Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2059–2072, May 2010, doi: 10.1053/j.gastro.2009.12.065.

. C. R. Boland and A. Goel, “Microsatellite Instability in Colorectal Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2073-2087.e3, May 2010, doi: 10.1053/j.gastro.2009.12.064.

. A. Umar et al., “Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability,” J. Natl. Cancer Inst., vol. 96, no. 4, pp. 261–268, Feb. 2004, doi: 10.1093/jnci/djh034.

. V. V. Lao and W. M. Grady, “Epigenetics and colorectal cancer,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 12. Nature Publishing Group, pp. 686–700, Nov. 18, 2011, doi: 10.1038/nrgastro.2011.173.

. D. J. Weisenberger et al., “CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer,” Nat. Genet., vol. 38, no. 7, pp. 787–793, Jul. 2006, doi: 10.1038/ng1834.

. A. T. Chan and E. L. Giovannucci, “Primary Prevention of Colorectal Cancer,” Gastroenterology, vol. 138, no. 6, 2010, doi: 10.1053/j.gastro.2010.01.057.

. E. A. Platz, W. C. Willett, G. A. Colditz, E. B. Rimm, D. Spiegelman, and E. Giovannucci, “Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men,” Cancer Causes Control, vol. 11, no. 7, pp. 579–588, 2000, doi: 10.1023/A:1008999232442.

. M. H. Forouzanfar et al., “Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015,” Lancet, vol. 388, no. 10053, pp. 1659–1724, Oct. 2016, doi: 10.1016/S0140-6736(16)31679-8.

. J. A. Wilschut, E. W. Steyerberg, M. E. Van Leerdam, I. Lansdorp-Vogelaar, J. D. F. Habbema, and M. Van Ballegooijen, “How much colonoscopy screening should be recommended to individuals with various degrees of family history of colorectal cancer?,” Cancer, vol. 117, no. 18, pp. 4166–4174, Sep. 2011, doi: 10.1002/cncr.26009.

. K. W. Jasperson, T. M. Tuohy, D. W. Neklason, and R. W. Burt, “Hereditary and Familial Colon Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2044–2058, 2010, doi: 10.1053/j.gastro.2010.01.054.

. M. Gala and D. C. Chung, “Hereditary colon cancer syndromes,” Semin. Oncol., vol. 38, no. 4, pp. 490–499, 2011, doi: 10.1053/j.seminoncol.2011.05.003.

. K. Zhang, J. Civan, S. Mukherjee, F. Patel, and H. Yang, “Genetic variations in colorectal cancer risk and clinical outcome,” World J. Gastroenterol., vol. 20, no. 15, pp. 4167–4177, Apr. 2014, doi: 10.3748/wjg.v20.i15.4167.

. R. W. Burt, J. A. DiSario, and L. Cannon-Albright, “Genetics of colon cancer: Impact of inheritance on colon cancer risk,” Annual Review of Medicine, vol. 46. Annu Rev Med, pp. 371–379, 1995, doi: 10.1146/annurev.med.46.1.371.

. S. A. Bingham et al., “Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study,” Lancet, vol. 361, no. 9368, pp. 1496–1501, May 2003, doi: 10.1016/S0140-6736(03)13174-1.

. Y. Park et al., “Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies,” J. Am. Med. Assoc., vol. 294, no. 22, pp. 2849–2857, Dec. 2005, doi: 10.1001/jama.294.22.2849.

. A. Koushik et al., “Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies,” J. Natl. Cancer Inst., vol. 99, no. 19, pp. 1471–1483, Oct. 2007, doi: 10.1093/jnci/djm155.

. N. J. Ollberding, L. R. Wilkens, B. E. Henderson, L. N. Kolonel, and L. Le Marchand, “Meat consumption, heterocyclic amines and colorectal cancer risk: The Multiethnic Cohort Study,” Int. J. Cancer, vol. 131, no. 7, Oct. 2012, doi: 10.1002/ijc.27546.

. D. J. Robertson et al., “Fat, fiber, meat and the risk of colorectal adenomas,” Am. J. Gastroenterol., vol. 100, no. 12, pp. 2789–2795, Dec. 2005, doi: 10.1111/j.1572-0241.2005.00336.x.

. T. Norat et al., “Meat, fish, and colorectal cancer risk: The European prospective investigation into cancer and nutrition,” J. Natl. Cancer Inst., vol. 97, no. 12, pp. 906–916, Jun. 2005, doi: 10.1093/jnci/dji164.

. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” Lancet, vol. 371, no. 9612, pp. 569–578, 2008, doi: 10.1016/S0140-6736(08)60269-X.

. T. Boyle, T. Keegel, F. Bull, J. Heyworth, and L. Fritschi, “Physical activity and risks of proximal and distal colon cancers: A systematic review and meta-analysis,” Journal of the National Cancer Institute, vol. 104, no. 20. J Natl Cancer Inst, pp. 1548–1561, Oct. 17, 2012, doi: 10.1093/jnci/djs354.

. K. Y. Wolin, Y. Yan, G. A. Colditz, and I. M. Lee, “Physical activity and colon cancer prevention: A meta-analysis,” Br. J. Cancer, vol. 100, no. 4, pp. 611–616, Feb. 2009, doi: 10.1038/sj.bjc.6604917.

. T. Mizoue et al., “Alcohol drinking and colorectal cancer in Japanese: a pooled analysis of results from five cohort studies.,” Am. J. Epidemiol., vol. 167, no. 12, pp. 1397–1406, 2008, doi: 10.1093/aje/kwn073.

. J. A. Abrams, M. B. Terry, and A. I. Neugut, “Cigarette Smoking and the Colorectal Adenoma-Carcinoma Sequence,” Gastroenterology, vol. 134, no. 2. W.B. Saunders, pp. 617–619, 2008, doi: 10.1053/j.gastro.2007.12.015.

. P. M. Rothwell et al., “Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials,” Lancet, vol. 376, no. 9754, pp. 1741–1750, 2010, doi: 10.1016/S0140-6736(10)61543-7.

. J. A. Baron et al., “A Randomized Trial of Rofecoxib for the Chemoprevention of Colorectal Adenomas,” Gastroenterology, vol. 131, no. 6, pp. 1674–1682, 2006, doi: 10.1053/j.gastro.2006.08.079.

. J. Burn et al., “Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: An analysis from the CAPP2 randomised controlled trial,” Lancet, vol. 378, no. 9809, pp. 2081–2087, 2011, doi: 10.1016/S0140-6736(11)61049-0.

. G. P. Young and S. Cole, “New stool screening tests for colorectal cancer,” Digestion, vol. 76, no. 1. Digestion, pp. 26–33, Oct. 2007, doi: 10.1159/000108391.

. D. H. Greegor, “Detection of Silent Colon Cancer in Routine Examination,” CA. Cancer J. Clin., vol. 19, no. 6, pp. 330–337, Nov. 1969, doi: 10.3322/canjclin.19.6.330.

. D. H. Greegor, “Diagnosis of Large-Bowel Cancer in the Asymptomatic Patient,” JAMA J. Am. Med. Assoc., vol. 201, no. 12, pp. 943–945, 1967, doi: 10.1001/jama.1967.03130120051012.

. M. Pignone, M. K. Campbell, C. Carr, and C. Phillips, “Meta-analysis of dietary restriction during fecal occult blood testing.,” Eff. Clin. Pract., vol. 4, no. 4, pp. 150–156, 2001, Accessed: Mar. 24, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11525101/.

. R. M. Jaffe, B. Kasten, D. S. Young, and J. D. MacLowry, “False negative stool occult blood test caused by ingestion of ascorbic acid (vitamin C),” Ann. Intern. Med., vol. 83, no. 6, pp. 824–826, 1975, doi: 10.7326/0003-4819-83-6-824.

. L. Rabeneck et al., “Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening,” Can. J. Gastroenterol., vol. 26, no. 3, pp. 131–147, 2012, doi: 10.1155/2012/486328.

. J. E. Allison et al., “Screening for colorectal neoplasms with new fecal occult blood tests: Update on performance characteristics,” J. Natl. Cancer Inst., vol. 99, no. 19, pp. 1462–1470, Oct. 2007, doi: 10.1093/jnci/djm150.

. J. H. Scholefield, S. M. Moss, C. M. Mangham, D. K. Whynes, and J. D. Hardcastle, “Nottingham trial of faecal occult blood testing for colorectal cancer: A 20-year follow-up,” Gut, vol. 61, no. 7, pp. 1036–1040, Jul. 2012, doi: 10.1136/gutjnl-2011-300774.

. G. Spinzi and G. Minoli, “A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy.,” Gastrointest. Endosc., vol. 54, no. 3, pp. 417–418, Sep. 2001, doi: 10.1056/nejm200006153422401.

. C. L. Canon, “Is There Still a Role for Double-Contrast Barium Enema Examination?,” Clin. Gastroenterol. Hepatol., vol. 6, no. 4, pp. 389–392, Apr. 2008, doi: 10.1016/j.cgh.2007.12.051.

. D. J. Vining, “Virtual endoscopy: is it reality?,” Radiology, vol. 200, no. 1. pp. 30–31, Jul. 01, 1996, doi: 10.1148/radiology.200.1.8657938.

. C. L. Kay and H. A. Evangelou, “A review of the technical and clinical aspects of virtual endoscopy,” Endoscopy, vol. 28, no. 9. Georg Thieme Verlag, pp. 768–775, Nov. 17, 1996, doi: 10.1055/s-2007-1005603.

. M. C. De Haan, R. E. Van Gelder, A. Graser, S. Bipat, and J. Stoker, “Diagnostic value of CT-colonography as compared to colonoscopy in an asymptomatic screening population: A meta-analysis,” Eur. Radiol., vol. 21, no. 8, pp. 1747–1763, Aug. 2011, doi: 10.1007/s00330-011-2104-8.

. J. E. Martín-López, C. Beltrán-Calvo, R. Rodríguez-López, and T. Molina-López, “Comparison of the accuracy of CT colonography and colonoscopy in the diagnosis of colorectal cancer,” Colorectal Disease, vol. 16, no. 3. Colorectal Dis, Mar. 2014, doi: 10.1111/codi.12506.

. M. E. Zalis et al., “Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults, A prospective evaluation,” Ann. Intern. Med., vol. 156, no. 10, pp. 692–702, 2012, doi: 10.7326/0003-4819-156-10-201205150-00005.

. N. Schoofs, J. Devière, and A. Van Gossum, “PillCam colon capsule endoscopy compared with colonoscopy for colorectal tumor diagnosis: A prospective pilot study,” Endoscopy, vol. 38, no. 10, pp. 971–977, Oct. 2006, doi: 10.1055/s-2006-944835.

. T. Rokkas, K. Papaxoinis, K. Triantafyllou, and S. D. Ladas, “A meta-analysis evaluating the accuracy of colon capsule endoscopy in detecting colon polyps,” Gastrointest. Endosc., vol. 71, no. 4, pp. 792–798, Apr. 2010, doi: 10.1016/j.gie.2009.10.050.

. R. Eliakim et al., “Prospective multicenter performance evaluation of the second-generation colon capsule compared with colonoscopy,” Endoscopy, vol. 41, no. 12, pp. 1026–1031, 2009, doi: 10.1055/s-0029-1215360.

. C. Spada et al., “Colon capsule endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline,” Endoscopy, vol. 44, no. 5. Endoscopy, pp. 527–536, 2012, doi: 10.1055/s-0031-1291717.

. W. G. Kwack and Y. J. Lim, “Current status and research into overcoming limitations of capsule endoscopy,” Clinical Endoscopy, vol. 49, no. 1. Korean Society of Gastrointestinal Endoscopy, pp. 8–15, Jan. 01, 2016, doi: 10.5946/ce.2016.49.1.8.

. R. H. Fletcher, “Rationale for combining different screening strategies,” Gastrointestinal Endoscopy Clinics of North America, vol. 12, no. 1. W.B. Saunders, pp. 53–63, Jan. 2002, doi: 10.1016/S1052-5157(03)00057-6.

. H. Brenner, C. Stock, and M. Hoffmeister, “Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: Systematic review and meta-analysis of randomised controlled trials and observational studies,” BMJ, vol. 348, Apr. 2014, doi: 10.1136/bmj.g2467.

. B. J. Elmunzer, R. A. Hayward, P. S. Schoenfeld, S. D. Saini, A. Deshpande, and A. K. Waljee, “Effect of Flexible Sigmoidoscopy-Based Screening on Incidence and Mortality of Colorectal Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials,” PLoS Med., vol. 9, no. 12, Dec. 2012, doi: 10.1371/journal.pmed.1001352.

. S. H. Lee, Y. K. Park, D. J. Lee, and K. M. Kim, “Colonoscopy procedural skills and training for new beginners,” World Journal of Gastroenterology, vol. 20, no. 45. WJG Press, pp. 16984–16995, Dec. 07, 2014, doi: 10.3748/wjg.v20.i45.16984.

. I. Aubin-Auger, A. Mercier, J. P. Lebeau, L. Baumann, L. Peremans, and P. Van royen, “Obstacles to colorectal screening in general practice: A qualitative study of GPs and patients,” Fam. Pract., vol. 28, no. 6, pp. 670–676, Dec. 2011, doi: 10.1093/fampra/cmr020.

. C. Lionis and E. Petelos, “Early detection of colorectal cancer: Barriers to screening in the primary care setting,” Family Practice, vol. 28, no. 6. Fam Pract, pp. 589–591, Dec. 2011, doi: 10.1093/fampra/cmr110.

. D. J. Holden, D. E. Jonas, D. S. Porterfield, D. Reuland, and R. Harris, “Systematic review: Enhancing the use and quality of colorectal cancer screening,” in Annals of Internal Medicine, May 2010, vol. 152, no. 10, pp. 668–676, doi: 10.7326/0003-4819-152-10-201005180-00239.

. M. L. Brown and A. L. Potosky, “The presidential effect: The public health response to media coverage about ronald reagan’s colon cancer episode,” Public Opin. Q., vol. 54, no. 3, pp. 317–329, Sep. 1990, doi: 10.1086/269209.

. S. M. Noar, J. F. Willoughby, J. G. Myrick, and J. Brown, “Public Figure Announcements About Cancer and Opportunities for Cancer Communication: A Review and Research Agenda,” Health Commun., vol. 29, no. 5, pp. 445–461, May 2014, doi: 10.1080/10410236.2013.764781.

. C. Twine, L. Barthelmes, and C. A. Gateley, “Kylie Minogue’s breast cancer: Effects on referrals to a rapid access breast clinic in the UK,” Breast, vol. 15, no. 5, pp. 667–669, Oct. 2006, doi: 10.1016/j.breast.2006.03.006.

. B. Kelly et al., “Cancer information scanning and seeking in the general population,” J. Health Commun., vol. 15, no. 7, pp. 734–753, Oct. 2010, doi: 10.1080/10810730.2010.514029.

. J. M. E. Walsh, S. F. Posner, and E. J. Perez-Stable, “Colon cancer screening in the ambulatory setting,” Prev. Med. (Baltim)., vol. 35, no. 3, pp. 209–218, 2002, doi: 10.1006/pmed.2002.1059.

. M. Jakovljevic et al., “Do health reforms impact cost consciousness of health care professionals? Results from a Nation-wide survey in the Balkans,” Balkan Med. J., vol. 33, no. 1, pp. 8–17, Feb. 2016, doi: 10.5152/balkanmedj.2015.15869.

. C. G. Willett, D. T. Chang, B. G. Czito, J. Meyer, and J. Wo, “Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5),” International Journal of Radiation Oncology Biology Physics, vol. 86, no. 1. Elsevier Inc., p. 2, May 01, 2013, doi: 10.1016/j.ijrobp.2012.12.006.

. M. Brocardo and B. R. Henderson, “APC shuttling to the membrane, nucleus and beyond,” Trends in Cell Biology, vol. 18, no. 12. Elsevier, pp. 587–596, Dec. 01, 2008, doi: 10.1016/j.tcb.2008.09.002.

. D. O. Herzig and V. L. Tsikitis, “Molecular markers for colon diagnosis, prognosis and targeted therapy,” J. Surg. Oncol., vol. 111, no. 1, pp. 96–102, Jan. 2015, doi: 10.1002/jso.23806.

. S. Rennoll and G. Yochum, “Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer.,” World J. Biol. Chem., vol. 6, no. 4, pp. 290–300, Nov. 2015, doi: 10.4331/wjbc.v6.i4.290.

. C. W. Toon et al., “Immunohistochemistry for Myc Predicts Survival in Colorectal Cancer,” PLoS One, vol. 9, no. 2, p. e87456, Feb. 2014, doi: 10.1371/journal.pone.0087456.

. J. Chen et al., “BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients,” BMC Cancer, vol. 14, no. 1, p. 802, Nov. 2014, doi: 10.1186/1471-2407-14-802.

. W. Li et al., “Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages,” BMC Cancer, vol. 15, no. 1, p. 340, May 2015, doi: 10.1186/s12885-015-1345-3.

. S. Ogino et al., “CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer,” Gut, vol. 58, no. 1, pp. 90–96, Jan. 2009, doi: 10.1136/gut.2008.155473.

. J. Goldstein et al., “Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H),” Ann. Oncol., vol. 25, no. 5, pp. 1032–1038, May 2014, doi: 10.1093/annonc/mdu100.

. S. Kadowaki et al., “Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer,” World J. Gastroenterol., vol. 21, no. 4, pp. 1275–1283, Jan. 2015, doi: 10.3748/wjg.v21.i4.1275.

. R. Yaeger et al., “Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients,” Clin. Cancer Res., vol. 21, no. 6, pp. 1313–1320, Mar. 2015, doi: 10.1158/1078-0432.CCR-14-2779.

. M. Morkel, P. Riemer, H. Bläker, and C. Sers, “Similar but different: Distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance,” Oncotarget, vol. 6, no. 25, pp. 20785–20800, Jul. 2015, doi: 10.18632/oncotarget.4750.

. C. Rosty et al., “PIK3CA Activating Mutation in Colorectal Carcinoma: Associations with Molecular Features and Survival,” PLoS One, vol. 8, no. 6, p. e65479, Jun. 2013, doi: 10.1371/journal.pone.0065479.

. X. Liao et al., “Prognostic role of PIK3CA mutation in colorectal cancer: Cohort study and literature review,” Clin. Cancer Res., vol. 18, no. 8, pp. 2257–2268, Apr. 2012, doi: 10.1158/1078-0432.CCR-11-2410.

. C. E. Atreya et al., “PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival,” Cancer Med., vol. 2, no. 4, pp. 496–506, Aug. 2013, doi: 10.1002/cam4.97.

. J. S. Mattick and I. V. Makunin, “Non-coding RNA.,” Human molecular genetics, vol. 15 Spec No, no. suppl_1. Oxford Academic, pp. R17–R29, Apr. 15, 2006, doi: 10.1093/hmg/ddl046.

. K. V. Morris and J. S. Mattick, “The rise of regulatory RNA,” Nature Reviews Genetics, vol. 15, no. 6. Nature Publishing Group, pp. 423–437, Apr. 29, 2014, doi: 10.1038/nrg3722.

. L. Nie et al., “Long non-coding RNAs: Versatile master regulators of gene expression and crucial players in cancer,” American Journal of Translational Research, vol. 4, no. 2. pp. 127–150, 2012, Accessed: Apr. 01, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/22611467/.

. M. J. Hamilton, M. D. Young, S. Sauer, and E. Martinez, “The interplay of long non-coding RNAs and MYC in cancer,” AIMS Biophysics, vol. 2, no. 4. American Institute of Mathematical Sciences, pp. 794–809, 2015, doi: 10.3934/biophy.2015.4.794.

. E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, no. 1. BioMed Central, pp. 1–17, Apr. 13, 2011, doi: 10.1186/1476-4598-10-38.

. Y. Fellig et al., “H19 expression in hepatic metastases from a range of human carcinomas,” J. Clin. Pathol., vol. 58, no. 10, pp. 1064–1068, Oct. 2005, doi: 10.1136/jcp.2004.023648.

. W. P. Tsang et al., “Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer,” Carcinogenesis, vol. 31, no. 3, pp. 350–358, Mar. 2010, doi: 10.1093/carcin/bgp181.

. P. Ohana et al., “Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases,” J. Gene Med., vol. 7, no. 3, pp. 366–374, Mar. 2005, doi: 10.1002/jgm.670.

. P. Schorderet and D. Duboule, “Structural and functional differences in the long non-coding RNA hotair in mouse and human,” PLoS Genet., vol. 7, no. 5, p. e1002071, May 2011, doi: 10.1371/journal.pgen.1002071.

. R. A. Gupta et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, Apr. 2010, doi: 10.1038/nature08975.

. C. Xu, M. Yang, J. Tian, X. Wang, and Z. Li, “MALAT-1: A long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis,” Int. J. Oncol., vol. 39, no. 1, pp. 169–175, Jul. 2011, doi: 10.3892/ijo.2011.1007.

. X. Zhang et al., “A Pituitary-Derived MEG3 Isoform Functions as a Growth Suppressor in Tumor Cells,” J. Clin. Endocrinol. Metab., vol. 88, no. 11, pp. 5119–5126, Nov. 2003, doi: 10.1210/jc.2003-030222.

. F. Yang et al., “Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma,” J. Cancer Res. Clin. Oncol., vol. 139, no. 3, pp. 437–445, Mar. 2013, doi: 10.1007/s00432-012-1324-x.

. T. Kim et al., “Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 11, pp. 4173–4178, Mar. 2014, doi: 10.1073/pnas.1400350111.

. H. Ling et al., “CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer,” Genome Res., vol. 23, no. 9, pp. 1446–1461, Sep. 2013, doi: 10.1101/gr.152942.112.

. L. D. Graham et al., “Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas.,” Genes Cancer, vol. 2, no. 8, pp. 829–40, Aug. 2011, doi: 10.1177/1947601911431081.

. L. Pibouin et al., “Cloning of the mRNA of overexpression in colon carcinoma-1: A sequence overexpressed in a subset of colon carcinomas,” Cancer Genet. Cytogenet., vol. 133, no. 1, pp. 55–60, Feb. 2002, doi: 10.1016/S0165-4608(01)00634-3.

. L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi, “A coding-independent function of gene and pseudogene mRNAs regulates tumour biology,” Nature, vol. 465, no. 7301, pp. 1033–1038, Jun. 2010, doi: 10.1038/nature09144.

. Y. J. Han, S. F. Ma, G. Yourek, Y. Park, and J. G. N. Garcia, “A transcribed pseudogene of MYLK promotes cell proliferation,” FASEB J., vol. 25, no. 7, pp. 2305–2312, Jul. 2011, doi: 10.1096/fj.10-177808.

. I. Panagopoulos, E. Möller, A. Collin, and F. Mertens, “The POU5F1P1 pseudogene encodes a putative protein similar to POU5F1 isoform 1,” Oncol. Rep., vol. 20, no. 5, pp. 1029–1033, Nov. 2008, doi: 10.3892/or_00000105.

. F. Wang, X. Li, X. Xie, L. Zhao, and W. Chen, “UCA1 , a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion,” FEBS Lett., vol. 582, no. 13, pp. 1919–1927, Jun. 2008, doi: 10.1016/j.febslet.2008.05.012.

. S. Chung et al., “Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility,” Cancer Sci., vol. 102, no. 1, pp. 245–252, Jan. 2011, doi: 10.1111/j.1349-7006.2010.01737.x.

. L. Li et al., “Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer,” J. Exp. Clin. Cancer Res., vol. 32, no. 1, p. 104, Dec. 2013, doi: 10.1186/1756-9966-32-104.

. F. Yang et al., “Repression of the Long Noncoding RNA-LET by Histone Deacetylase 3 Contributes to Hypoxia-Mediated Metastasis,” Mol. Cell, vol. 49, no. 6, pp. 1083–1096, Mar. 2013, doi: 10.1016/j.molcel.2013.01.010.

. P. Qi et al., “Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients,” Mol. Carcinog., vol. 54, no. 9, pp. 742–750, Sep. 2015, doi: 10.1002/mc.22137.

. Y. Takahashi et al., “Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers,” Br. J. Cancer, vol. 110, no. 1, pp. 164–171, Nov. 2014, doi: 10.1038/bjc.2013.698.

. Y. Y. Tseng et al., “PVT1 dependence in cancer with MYC copy-number increase,” Nature, vol. 512, no. 1, pp. 82–86, Jun. 2014, doi: 10.1038/nature13311.

. F. E. Ahmed et al., “Diagnostic MicroRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle,” Cancer Genomics and Proteomics, vol. 10, no. 3, pp. 93–113, 2013.

. X. Yang et al., “The expression and clinical significance of microRNAs in colorectal cancer detecting,” Tumor Biol., vol. 36, no. 4, pp. 2675–2684, Apr. 2015, doi: 10.1007/s13277-014-2890-0.

. L. K. Ursell, J. L. Metcalf, L. W. Parfrey, and R. Knight, “Defining the human microbiome,” Nutr. Rev., vol. 70, no. SUPPL. 1, pp. S38–S44, Aug. 2012, doi: 10.1111/j.1753-4887.2012.00493.x.

. E. Scarpellini, G. Ianiro, F. Attili, C. Bassanelli, A. De Santis, and A. Gasbarrini, “The human gut microbiota and virome: Potential therapeutic implications,” Dig. Liver Dis., vol. 47, no. 12, pp. 1007–1012, Dec. 2015, doi: 10.1016/j.dld.2015.07.008.

. J. C. Stearns et al., “Bacterial biogeography of the human digestive tract,” Sci. Rep., vol. 1, no. 1, pp. 1–9, Nov. 2011, doi: 10.1038/srep00170.

. M. Rajilić-Stojanović, H. Smidt, and W. M. De Vos, “Diversity of the human gastrointestinal tract microbiota revisited,” Environmental Microbiology, vol. 9, no. 9. John Wiley & Sons, Ltd, pp. 2125–2136, Sep. 01, 2007, doi: 10.1111/j.1462-2920.2007.01369.x.

. S. Matamoros, C. Gras-Leguen, F. Le Vacon, G. Potel, and M. F. De La Cochetiere, “Development of intestinal microbiota in infants and its impact on health,” Trends in Microbiology, vol. 21, no. 4. Elsevier, pp. 167–173, Apr. 01, 2013, doi: 10.1016/j.tim.2012.12.001.

. R. E. Ley et al., “Evolution of mammals and their gut microbes,” Science (80-. )., vol. 320, no. 5883, pp. 1647–1651, Jun. 2008, doi: 10.1126/science.1155725.

. E. R. Davenport, O. Mizrahi-Man, K. Michelini, L. B. Barreiro, C. Ober, and Y. Gilad, “Seasonal variation in human gut microbiome composition,” PLoS One, vol. 9, no. 3, p. e90731, Mar. 2014, doi: 10.1371/journal.pone.0090731.

. S. A. Sankar, J. C. Lagier, P. Pontarotti, D. Raoult, and P. E. Fournier, “The human gut microbiome, a taxonomic conundrum,” Systematic and Applied Microbiology, vol. 38, no. 4. Elsevier GmbH, pp. 276–286, Jun. 01, 2015, doi: 10.1016/j.syapm.2015.03.004.

. M. J. Cox, W. O. C. M. Cookson, and M. F. Moffatt, “Sequencing the human microbiome in health and disease,” Hum. Mol. Genet., vol. 22, no. R1, pp. R88–R94, Oct. 2013, doi: 10.1093/hmg/ddt398.

. D. R. Garza and B. E. Dutilh, “From cultured to uncultured genome sequences: Metagenomics and modeling microbial ecosystems,” Cellular and Molecular Life Sciences, vol. 72, no. 22. Birkhauser Verlag AG, pp. 4287–4308, Nov. 01, 2015, doi: 10.1007/s00018-015-2004-1.

. M. B. Geuking, Y. Köller, S. Rupp, and K. D. McCoy, “The interplay between the gut microbiota and the immune system,” Gut Microbes, vol. 5, no. 3. Landes Bioscience, pp. 411–418, May 12, 2014, doi: 10.4161/gmic.29330.

. H. Chung and D. L. Kasper, “Microbiota-stimulated immune mechanisms to maintain gut homeostasis,” Current Opinion in Immunology, vol. 22, no. 4. Elsevier Current Trends, pp. 455–460, Aug. 01, 2010, doi: 10.1016/j.coi.2010.06.008.

. S. Krishnan, N. Alden, and K. Lee, “Pathways and functions of gut microbiota metabolism impacting host physiology,” Current Opinion in Biotechnology, vol. 36. Elsevier Ltd, pp. 137–145, Dec. 01, 2015, doi: 10.1016/j.copbio.2015.08.015.

. Y. G. Kim, K. G. S. Udayanga, N. Totsuka, J. B. Weinberg, G. Núñez, and A. Shibuya, “Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2,” Cell Host Microbe, vol. 15, no. 1, pp. 95–102, Jan. 2014, doi: 10.1016/j.chom.2013.12.010.

. J. Zimmer et al., “A vegan or vegetarian diet substantially alters the human colonic faecal microbiota,” Eur. J. Clin. Nutr., vol. 66, no. 1, pp. 53–60, Jan. 2012, doi: 10.1038/ejcn.2011.141.

. L. A. David et al., “Diet rapidly and reproducibly alters the human gut microbiome,” Nature, vol. 505, no. 7484, pp. 559–563, Dec. 2014, doi: 10.1038/nature12820.

. R. J. Hung et al., “Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer,” J. Natl. Cancer Inst., vol. 107, no. 11, p. djv246, Nov. 2015, doi: 10.1093/jnci/djv246.

. E. Z. P. Chai, K. S. Siveen, M. K. Shanmugam, F. Arfuso, and G. Sethi, “Analysis of the intricate relationship between chronic inflammation and cancer,” Biochemical Journal, vol. 468, no. 1. Portland Press Ltd, pp. 1–15, May 15, 2015, doi: 10.1042/BJ20141337.

. G. Tomasello et al., “Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes,” World J. Gastroenterol., vol. 20, no. 48, pp. 18121–18130, Dec. 2014, doi: 10.3748/wjg.v20.i48.18121.

. B. M. Ryan et al., “An analysis of genetic factors related to risk of inflammatory bowel disease and colon cancer,” Cancer Epidemiol., vol. 38, no. 5, pp. 583–590, Oct. 2014, doi: 10.1016/j.canep.2014.07.003.

. H. Nagao-Kitamoto, S. Kitamoto, P. Kuffa, and N. Kamada, “Pathogenic role of the gut microbiota in gastrointestinal diseases,” Intestinal Research, vol. 14, no. 2. Korean Association for the Study of Intestinal Diseases, pp. 127–138, 2016, doi: 10.5217/ir.2016.14.2.127.

. J. M. Peloquin and D. D. Nguyen, “The microbiota and inflammatory bowel disease: Insights from animal models,” Anaerobe, vol. 24, pp. 102–106, Dec. 2013, doi: 10.1016/j.anaerobe.2013.04.006.

. N. Wu et al., “Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients,” Microb. Ecol., vol. 66, no. 2, pp. 462–470, Aug. 2013, doi: 10.1007/s00248-013-0245-9.

. T. Wang et al., “Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers,” ISME J., vol. 6, no. 2, pp. 320–329, Feb. 2012, doi: 10.1038/ismej.2011.109.

. I. Sobhani et al., “Microbial dysbiosis and colon carcinogenesis: Could colon cancer be considered a bacteria-related disease?,” Therapeutic Advances in Gastroenterology, vol. 6, no. 3. SAGE PublicationsSage UK: London, England, pp. 215–229, May 11, 2013, doi: 10.1177/1756283X12473674.

. R. F. Schwabe and C. Jobin, “The microbiome and cancer,” Nature Reviews Cancer, vol. 13, no. 11. Nature Publishing Group, pp. 800–812, Oct. 17, 2013, doi: 10.1038/nrc3610.

. Juan Jose Sebastian Domingo and Clara Sanchez, “REED - Revista Española de Enfermedades Digestivas,” ENFERMEDADES Dig., vol. 110, no. 1, pp. 51–56, 2018, Accessed: Apr. 02, 2021. [Online]. Available: https://www.reed.es/ArticuloFicha.aspx?id=642&hst=0&idR=30&tp=1&AspxAutoDetectCookieSupport=1.

. M. Candela et al., “Inflammation and colorectal cancer, when microbiota-host mutualism breaks,” World J. Gastroenterol., vol. 20, no. 4, pp. 908–922, 2014, doi: 10.3748/wjg.v20.i4.908.

. J. P. Zackular et al., “The gut microbiome modulates colon tumorigenesis,” MBio, vol. 4, no. 6, pp. 692–705, Nov. 2013, doi: 10.1128/mBio.00692-13.

. P. A. Farazi, “Cancer trends and risk factors in Cyprus,” Ecancermedicalscience, vol. 8, no. 1, Jan. 2014, doi: 10.3332/ecancer.2014.389.

. S. Koifman and R. J. Koifman, “Environment and cancer in Brazil: An overview from a public health perspective,” in Mutation Research - Reviews in Mutation Research, Nov. 2003, vol. 544, no. 2–3, pp. 305–311, doi: 10.1016/j.mrrev.2003.07.005.

. N. F. Aykan, “Red meat and colorectal cancer,” Oncology Reviews, vol. 9, no. 1. Page Press Publications, pp. 38–44, Dec. 28, 2015, doi: 10.4081/oncol.2015.288.

. E. Kim, D. Coelho, and F. Blachier, “Review of the association between meat consumption and risk of colorectal cancer,” Nutrition Research, vol. 33, no. 12. Elsevier, pp. 983–994, Dec. 01, 2013, doi: 10.1016/j.nutres.2013.07.018.

. J. Ou et al., “Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans,” Am. J. Clin. Nutr., vol. 98, no. 1, pp. 111–120, Jul. 2013, doi: 10.3945/ajcn.112.056689.

. Q. Feng et al., “Gut microbiome development along the colorectal adenoma-carcinoma sequence,” Nat. Commun., vol. 6, no. 1, pp. 1–13, Mar. 2015, doi: 10.1038/ncomms7528.

. S. J. D. O’Keefe et al., “Fat, fibre and cancer risk in African Americans and rural Africans,” Nat. Commun., vol. 6, no. 1, pp. 1–14, Apr. 2015, doi: 10.1038/ncomms7342.

. D. R. Donohoe et al., “A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner,” Cancer Discov., vol. 4, no. 12, pp. 1387–1397, Dec. 2014, doi: 10.1158/2159-8290.CD-14-0501.

. E. P. Diamandis, “Cancer biomarkers: Can we turn recent failures into success?,” Journal of the National Cancer Institute, vol. 102, no. 19. Oxford University Press, pp. 1462–1467, Oct. 06, 2010, doi: 10.1093/jnci/djq306.

. J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nature Reviews Cancer, vol. 5, no. 11. Nature Publishing Group, pp. 845–856, Nov. 20, 2005, doi: 10.1038/nrc1739.

. C. Coghlin and G. I. Murray, “Biomarkers of colorectal cancer: Recent advances and future challenges,” Proteomics - Clinical Applications, vol. 9, no. 1–2. Wiley-VCH Verlag, pp. 64–71, Feb. 01, 2015, doi: 10.1002/prca.201400082.

. F. Bertucci et al., “Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters,” Oncogene, vol. 23, no. 7, pp. 1377–1391, Feb. 2004, doi: 10.1038/sj.onc.1207262.

. M. A. Imran and H. Shahid, “A Review-Anti-Cancer Compounds from Medicinal Plants: Isolation, Identification, and Characterization,” Int. J. Biosci., vol. 17, no. December, pp. 442–468, 2020, doi: 10.12692/ijb/17.6.442-468.

. E. Van Cutsem, A. Cervantes, B. Nordlinger, D. Arnold, and The ESMO Guidelines Working Group, “Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Ann. Oncol., vol. 25, pp. iii1–iii9, Sep. 2014, doi: 10.1093/annonc/mdu260.

. E. van Cutsem, B. Nordlinger, and A. Cervantes, “Advanced colorectal cancer: ESMO clinical practice guidelines for treatment,” Ann. Oncol., vol. 21, no. SUPPL. 5, pp. 93–97, May 2010, doi: 10.1093/annonc/mdq222.

. J. W. Bacher et al., “Development of a fluorescent multiplex assay for detection of MSI-high tumors,” in Disease Markers, 2004, vol. 20, no. 4–5, pp. 237–250, doi: 10.1155/2004/136734.

. K. B. Geiersbach and W. S. Samowitz, “Microsatellite instability and colorectal cancer,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 10. Allen Press, pp. 1269–1277, Oct. 01, 2011, doi: 10.5858/arpa.2011-0035-RA.

. B. Iacopetta and T. Watanabe, “Predictive value of microsatellite instability for benefit from adjuvant fluorouracil chemotherapy in colorectal cancer [14],” Gut, vol. 55, no. 11. pp. 1671–1672, 2006, Accessed: Apr. 17, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/17047121/.

. D. Kislitsin, A. Lerner, G. Rennert, and Z. Lev, “K-ras mutations in sporadic colorectal tumors in Israel: Unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes,” Dig. Dis. Sci., vol. 47, no. 5, pp. 1073–1079, 2002, doi: 10.1023/A:1015090124153.

. W. De Roock et al., “Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis,” Lancet Oncol., vol. 11, no. 8, pp. 753–762, Aug. 2010, doi: 10.1016/S1470-2045(10)70130-3.

. G. Aprile, M. Macerelli, M. De, S. Pizzolitto, and G. Fasola, “The relevance of BRAF and extended RAS mutational analyses for metastatic colorectal cancer patients,” OA Mol. Oncol., vol. 1, no. 1, 2013, doi: 10.13172/2052-9635-1-1-1148.

. R. Wong and D. Cunningham, “Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with epidermal growth factor receptor antibodies,” Journal of Clinical Oncology, vol. 26, no. 35. American Society of Clinical Oncology, pp. 5668–5670, Dec. 10, 2008, doi: 10.1200/JCO.2008.19.5024.

. K. Fransén, M. Klintenäs, A. Österström, J. Dimberg, H. J. Monstein, and P. Söderkvist, “Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas,” Carcinogenesis, vol. 25, no. 4, pp. 527–533, Oct. 2004, doi: 10.1093/carcin/bgh049.

. J. M. D. Wheeler, A. Loukola, L. A. Aaltonen, N. J. McC Mortensen, and W. F. Bodmer, “The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI + sporadic colorectal cancers,” J. Med. Genet., vol. 37, no. 8, pp. 588–592, Aug. 2000, doi: 10.1136/jmg.37.8.588.

. N. Umetani et al., “Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: Direct quantitative PCR for ALU repeats,” Clin. Chem., vol. 52, no. 6, pp. 1062–1069, Jun. 2006, doi: 10.1373/clinchem.2006.068577.

. Y. Wang et al., “Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer,” J. Clin. Oncol., vol. 22, no. 9, pp. 1564–1571, May 2004, doi: 10.1200/JCO.2004.08.186.

. A. Barrier et al., “Stage II colon cancer prognosis prediction by tumor gene expression profiling,” J. Clin. Oncol., vol. 24, no. 29, pp. 4685–4691, Oct. 2006, doi: 10.1200/JCO.2005.05.0229.

. T. Takai et al., “Fecal cyclooxygenase 2 plus matrix metalloproteinase 7 mRNA assays as a marker for colorectal cancer screening,” Cancer Epidemiol. Biomarkers Prev., vol. 18, no. 6, pp. 1888–1893, Jun. 2009, doi: 10.1158/1055-9965.EPI-08-0937.

. S. Khambata-Ford et al., “Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab,” J. Clin. Oncol., vol. 25, no. 22, pp. 3230–3237, Aug. 2007, doi: 10.1200/JCO.2006.10.5437.

. B. Jacobs et al., “Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab,” J. Clin. Oncol., vol. 27, no. 30, pp. 5068–5074, Oct. 2009, doi: 10.1200/JCO.2008.21.3744.

. S. Hundt, U. Haug, and H. Brenner, “Blood markers for early detection of colorectal cancer: A systematic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 10. American Association for Cancer Research, pp. 1935–1953, Oct. 01, 2007, doi: 10.1158/1055-9965.EPI-06-0994.

. I. K. Quaye, “Haptoglobin, inflammation and disease,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 8. Oxford Academic, pp. 735–742, Aug. 01, 2008, doi: 10.1016/j.trstmh.2008.04.010.

. S. J. Cohen et al., “Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer,” Ann. Oncol., vol. 20, no. 7, pp. 1223–1229, Jul. 2009, doi: 10.1093/annonc/mdn786.

. J. Sastre et al., “Circulating tumor cells in colorectal cancer: Correlation with clinical and pathological variables,” Ann. Oncol., vol. 19, no. 5, pp. 935–938, May 2008, doi: 10.1093/annonc/mdm583.

. Y. H. Uen et al., “Persistent presence of postoperative circulating tumor cells is a poor prognostic factor for patients with stage I-III colorectal cancer after curative resection,” Ann. Surg. Oncol., vol. 15, no. 8, pp. 2120–2128, Aug. 2008, doi: 10.1245/s10434-008-9961-7.

. K. T. Yip, P. K. Das, D. Suria, C. R. Lim, G. H. Ng, and C. C. Liew, “A case-controlled validation study of a blood-based seven-gene biomarker panel for colorectal cancer in Malaysia,” J. Exp. Clin. Cancer Res., vol. 29, no. 1, p. 128, Sep. 2010, doi: 10.1186/1756-9966-29-128.

. K. W. Marshall et al., “A blood-based biomarker panel for stratifying current risk for colorectal cancer,” Int. J. Cancer, vol. 126, no. 5, pp. 1177–1186, Mar. 2010, doi: 10.1002/ijc.24910.

. G. Srivastava et al., “Prospective Multicenter Study of the Impact of Oncotype DX Colon Cancer Assay Results on Treatment Recommendations in Stage II Colon Cancer Patients,” Oncologist, vol. 19, no. 5, pp. 492–497, May 2014, doi: 10.1634/theoncologist.2013-0401.

. G. Yothers et al., “Validation of the 12-gene colon cancer Recurrence Score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin,” J. Clin. Oncol., vol. 31, no. 36, pp. 4512–4519, Dec. 2013, doi: 10.1200/JCO.2012.47.3116.

. R. Salazar et al., “Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer,” J. Clin. Oncol., vol. 29, no. 1, pp. 17–24, Jan. 2011, doi: 10.1200/JCO.2010.30.1077.

. M. Maak et al., “Independent validation of a prognostic genomic signature (ColoPrint) for patients with stage II colon cancer,” Ann. Surg., vol. 257, no. 6, pp. 1053–1058, Jun. 2013, doi: 10.1097/SLA.0b013e31827c1180.

. R. D. Kennedy et al., “Development and independent validation of a prognostic assay for stage ii colon cancer using formalin-fixed paraffin-embedded tissue,” J. Clin. Oncol., vol. 29, no. 35, pp. 4620–4626, Dec. 2011, doi: 10.1200/JCO.2011.35.4498.

. A. Sveen et al., “Anticipating the clinical use of prognostic gene expression-based tests for colon cancer stage II and III: Is godot finally arriving?,” Clinical Cancer Research, vol. 19, no. 24. American Association for Cancer Research, pp. 6669–6677, Dec. 15, 2013, doi: 10.1158/1078-0432.CCR-13-1769.

. P. F. Lenehan et al., “Generation and external validation of a tumor-derived 5-gene prognostic signature for recurrence of lymph node-negative, invasive colorectal carcinoma,” Cancer, vol. 118, no. 21, pp. 5234–5244, Nov. 2012, doi: 10.1002/cncr.27628.

. M. R. Carlson, “Previstagetrade; GCC colorectal cancer staging test: A new molecular test to identify lymph node metastases and provide more accurate information about the stage of patients with colorectal cancer,” Mol. Diagnosis Ther., vol. 13, no. 1, pp. 11–14, Aug. 2009, doi: 10.1007/bf03256309.

. A. Venook, “Critical Evaluation of Current Treatments in Metastatic Colorectal Cancer,” Oncologist, vol. 10, no. 4, pp. 250–261, Apr. 2005, doi: 10.1634/theoncologist.10-4-250.

. R. T. Prehn, “The Inhibition of Tumor Growth by Tumor Mass,” Cancer Res., vol. 51, no. 1, pp. 2–4, 1991, Accessed: Apr. 03, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/1988084/.

. L. M. Brown, A. M. Malkinson, D. E. Rannels, and S. R. Rannels, “Compensatory lung growth after partial pneumonectomy enhances lung tumorigenesis induced by 3-methylcholanthrene,” Cancer Res., vol. 59, no. 20, pp. 5089–5092, 1999, Accessed: Apr. 03, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/10537279/.

. B. H. Smith et al., “Hydrophilic agarose macrobead cultures select for outgrowth of carcinoma cell populations that can restrict tumor growth,” Cancer Res., vol. 71, no. 3, pp. 725–735, Feb. 2011, doi: 10.1158/0008-5472.CAN-10-2258.

. P. H. Rooney et al., “Colorectal cancer genomics: Evidence for multiple genotypes which influence survival,” Br. J. Cancer, vol. 85, no. 10, pp. 1492–1498, Nov. 2001, doi: 10.1054/bjoc.2001.2095.

. N. B. Janakiram and C. V. Rao, “The Role of Inflammation in Colon Cancer,” in Advances in experimental medicine and biology, vol. 816, Adv Exp Med Biol, 2014, pp. 25–52.

. N. Suh et al., “Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats,” Cancer Prev. Res., vol. 4, no. 11, pp. 1895–1902, Nov. 2011, doi: 10.1158/1940-6207.CAPR-11-0222.

. P. Ungprasert, W. Cheungpasitporn, C. S. Crowson, and E. L. Matteson, “Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: A systematic review and meta-analysis of observational studies,” Eur. J. Intern. Med., vol. 26, no. 4, pp. 285–291, May 2015, doi: 10.1016/j.ejim.2015.03.008.

. R. A. Gupta and R. N. DuBois, “Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2,” Nat. Rev. Cancer, vol. 1, no. 1, pp. 11–21, 2001, doi: 10.1038/35094017.

. P. Jüni, L. Nartey, S. Reichenbach, R. Sterchi, P. A. Dieppe, and P. M. Egger, “Risk of cardiovascular events and rofecoxib: Cumulative meta-analysis,” Lancet, vol. 364, no. 9450, pp. 2021–2029, Dec. 2004, doi: 10.1016/S0140-6736(04)17514-4.

. F. E. Silverstein et al., “Gastrointestinal toxicity with Celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and reumatoid arthritis: The CLASS study: A randomized controlled trial,” J. Am. Med. Assoc., vol. 284, no. 10, pp. 1247–1255, Sep. 2000, doi: 10.1001/jama.284.10.1247.

. S. A. Sgambati, “Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention: Commentary,” Diseases of the Colon and Rectum, vol. 48, no. 6. Massachusetts Medical Society, p. 1331, Mar. 17, 2005, doi: 10.1056/nejmoa050405.

. S. Lev-Ari et al., “Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells,” Clin. Cancer Res., vol. 11, no. 18, pp. 6738–6744, Sep. 2005, doi: 10.1158/1078-0432.CCR-05-0171.

. V. Pala et al., “Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort,” Int. J. Cancer, vol. 129, no. 11, pp. 2712–2719, Dec. 2011, doi: 10.1002/ijc.26193.

. C. C. Chen et al., “Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue,” Br. J. Nutr., vol. 107, no. 11, pp. 1623–1634, Jun. 2012, doi: 10.1017/S0007114511004934.

. S. S. Choi, Y. Kim, K. S. Han, S. You, S. Oh, and S. H. Kim, “Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro,” Lett. Appl. Microbiol., vol. 42, no. 5, pp. 452–458, May 2006, doi: 10.1111/j.1472-765X.2006.01913.x.

. B. N. P. Sah, T. Vasiljevic, S. McKechnie, and O. N. Donkor, “Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt,” Food Chem., vol. 156, pp. 264–270, Aug. 2014, doi: 10.1016/j.foodchem.2014.01.105.

. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1. Pergamon, pp. 44–84, Jan. 01, 2007, doi: 10.1016/j.biocel.2006.07.001.

. M. L. Circu and T. Y. Aw, “Reactive oxygen species, cellular redox systems, and apoptosis,” Free Radical Biology and Medicine, vol. 48, no. 6. Pergamon, pp. 749–762, Mar. 15, 2010, doi: 10.1016/j.freeradbiomed.2009.12.022.

. R. Guimarães, L. Barros, A. M. Carvalho, and I. C. F. R. Ferreira, “Studies on chemical constituents and bioactivity of rosa micrantha: An Alternative antioxidants source for food, pharmaceutical, or cosmetic applications,” J. Agric. Food Chem., vol. 58, no. 10, pp. 6277–6284, May 2010, doi: 10.1021/jf101394w.

. I. Ferreira, L. Barros, and R. Abreu, “Antioxidants in Wild Mushrooms,” Curr. Med. Chem., vol. 16, no. 12, pp. 1543–1560, Apr. 2009, doi: 10.2174/092986709787909587.

. P. Montero, M. M. Calvo, M. C. Gómez-Guillén, and J. Gómez-Estaca, “Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility,” LWT - Food Sci. Technol., vol. 70, pp. 229–236, Jul. 2016, doi: 10.1016/j.lwt.2016.02.040.

. M. Carocho et al., “Basil as functional and preserving ingredient in ‘serra da Estrela’ cheese,” Food Chem., vol. 207, pp. 51–59, Sep. 2016, doi: 10.1016/j.foodchem.2016.03.085.

. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products,” J. Agric. Food Chem., vol. 46, no. 10, pp. 4113–4117, 1998, doi: 10.1021/jf9801973.

. J. Shi, H. Nawaz, J. Pohorly, G. Mittal, Y. Kakuda, and Y. Jiang, “Extraction of polyphenolics from plant material for functional foods - Engineering and technology,” Food Rev. Int., vol. 21, no. 1, pp. 139–166, 2005, doi: 10.1081/FRI-200040606.

. U. Wenzel, S. Kuntz, M. D. Brendel, and H. Daniel, “Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells,” Cancer Res., vol. 60, no. 14, pp. 3823–3831, 2000, Accessed: Apr. 03, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/10919656/.

. F. Shahidi and P. Ambigaipalan, “Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review,” Journal of Functional Foods, vol. 18. Elsevier Ltd, pp. 820–897, Oct. 01, 2015, doi: 10.1016/j.jff.2015.06.018.

. S. Jiménez, S. Gascón, A. Luquin, M. Laguna, C. Ancin-Azpilicueta, and M. J. Rodríguez-Yoldi, “Rosa canina extracts have antiproliferative and antioxidant effects on caco-2 human colon cancer,” PLoS One, vol. 11, no. 7, p. e0159136, Jul. 2016, doi: 10.1371/journal.pone.0159136.

. A. C. Miller, R. M. Rashid, L. Falzon, E. M. Elamin, and S. Zehtabchi, “Silver sulfadiazine for the treatment of partial-thickness burns and venous stasis ulcers,” Journal of the American Academy of Dermatology, vol. 66, no. 5. Mosby Inc., pp. e159–e165, May 01, 2012, doi: 10.1016/j.jaad.2010.06.014.

. W. Zhao, L. Liu, Y. Wang, T. Mao, and J. Li, “Effects of a combination of puerarin, baicalin and berberine on the expression of proliferator‑activated receptor-γ and insulin receptor in a rat model of nonalcoholic fatty liver disease,” Exp. Ther. Med., vol. 11, no. 1, pp. 183–190, Jan. 2016, doi: 10.3892/etm.2015.2846.

. S. Dasari and P. Bernard Tchounwou, “Cisplatin in cancer therapy: Molecular mechanisms of action,” European Journal of Pharmacology, vol. 740. Elsevier, pp. 364–378, Oct. 05, 2014, doi: 10.1016/j.ejphar.2014.07.025.

. M. Frezza et al., “Novel Metals and Metal Complexes as Platforms for Cancer Therapy,” Curr. Pharm. Des., vol. 16, no. 16, pp. 1813–1825, Jun. 2010, doi: 10.2174/138161210791209009.

. K. Benjamin Garbutcheon-Singh et al., “Transition Metal Based Anticancer Drugs,” Curr. Top. Med. Chem., vol. 11, no. 5, pp. 521–542, Mar. 2011, doi: 10.2174/156802611794785226.

. N. Muhammad and Z. Guo, “Metal-based anticancer chemotherapeutic agents,” Current Opinion in Chemical Biology, vol. 19, no. 1. Elsevier Ltd, pp. 144–153, Apr. 01, 2014, doi: 10.1016/j.cbpa.2014.02.003.

. S. Komeda and A. Casini, “Next-Generation Anticancer Metallodrugs,” Curr. Top. Med. Chem., vol. 12, no. 3, pp. 219–235, Feb. 2012, doi: 10.2174/156802612799078964.

. N. J. Wheate, S. Walker, G. E. Craig, and R. Oun, “The status of platinum anticancer drugs in the clinic and in clinical trials,” Dalt. Trans., vol. 39, no. 35, pp. 8113–8127, Sep. 2010, doi: 10.1039/c0dt00292e.

. L. A. lbert. B. Peres and A. D. anta. da Cunha, “Acute nephrotoxicity of cisplatin: molecular mechanisms,” Jornal brasileiro de nefrologia : ʹorgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, vol. 35, no. 4. Sociedade Brasileira de Nefrologia, pp. 332–340, Oct. 01, 2013, doi: 10.5935/0101-2800.20130052.

. T. Karasawa and P. S. Steyger, “An integrated view of cisplatin-induced nephrotoxicity and ototoxicity,” Toxicology Letters, vol. 237, no. 3. Elsevier Ireland Ltd, pp. 219–227, Sep. 07, 2015, doi: 10.1016/j.toxlet.2015.06.012.

. M. S. Gonçalves, A. F. Silveira, A. R. Teixeira, and M. A. Hyppolito, “Mechanisms of cisplatin ototoxicity: Theoretical review,” Journal of Laryngology and Otology, vol. 127, no. 6. Cambridge University Press, pp. 536–541, Jun. 2013, doi: 10.1017/S0022215113000947.

. Z. H. Siddik, “Cisplatin: Mode of cytotoxic action and molecular basis of resistance,” Oncogene, vol. 22, no. 47 REV. ISS. 6. Nature Publishing Group, pp. 7265–7279, Oct. 20, 2003, doi: 10.1038/sj.onc.1206933.

. L. Amable, “Cisplatin resistance and opportunities for precision medicine,” Pharmacological Research, vol. 106. Academic Press, pp. 27–36, Apr. 01, 2016, doi: 10.1016/j.phrs.2016.01.001.

. D. Wang and S. J. Lippard, “Cellular processing of platinum anticancer drugs,” Nature Reviews Drug Discovery, vol. 4, no. 4. Nature Publishing Group, pp. 307–320, Apr. 24, 2005, doi: 10.1038/nrd1691.

. P. M. Hoff et al., “Literature review and practical aspects on the management of oxaliplatin-associated toxicity,” Clinical Colorectal Cancer, vol. 11, no. 2. Elsevier Inc., pp. 93–100, Jun. 01, 2012, doi: 10.1016/j.clcc.2011.10.004.

. A. de Gramont et al., “Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer,” J. Clin. Oncol., vol. 18, no. 16, pp. 2938–2947, 2000, doi: 10.1200/JCO.2000.18.16.2938.

. A. D. Lammer, M. E. Cook, and J. L. Sessler, “Synthesis and anti-cancer activities of a water soluble gold(III) porphyrin,” J. Porphyr. Phthalocyanines, vol. 19, no. 1–3, pp. 398–403, Jan. 2015, doi: 10.1142/S1088424615500236.

. C. T. Lum, A. S. T. Wong, M. C. M. Lin, C. M. Che, and R. W. Y. Sun, “A gold(iii) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells,” Chem. Commun., vol. 49, no. 39, pp. 4364–4366, Apr. 2013, doi: 10.1039/c2cc37366a.

. C. Hu, X. Li, W. Wang, R. Zhang, and L. Deng, “Metal-N-Heterocyclic Carbene Complexes as Anti-Tumor Agents,” Curr. Med. Chem., vol. 21, no. 10, pp. 1220–1230, Mar. 2014, doi: 10.2174/0929867321666131217161849.

. C. Marzano, V. Gandin, A. Folda, G. Scutari, A. Bindoli, and M. P. Rigobello, “Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells,” Free Radic. Biol. Med., vol. 42, no. 6, pp. 872–881, Mar. 2007, doi: 10.1016/j.freeradbiomed.2006.12.021.

. R. Galassi et al., “Synthesis and characterization of azolate gold(i) phosphane complexes as thioredoxin reductase inhibiting antitumor agents,” Dalt. Trans., vol. 41, no. 17, pp. 5307–5318, May 2012, doi: 10.1039/c2dt11781a.

. A. Garcia et al., “Novel antitumor adamantane-azole gold(I) complexes as potential inhibitors of thioredoxin reductase,” J. Biol. Inorg. Chem., vol. 21, no. 2, pp. 275–292, Apr. 2016, doi: 10.1007/s00775-016-1338-y.

. L. Ortego et al., “Strong inhibition of thioredoxin reductase by highly cytotoxic gold(I) complexes. DNA binding studies,” J. Inorg. Biochem., vol. 130, no. 1, pp. 32–37, Jan. 2014, doi: 10.1016/j.jinorgbio.2013.09.019.

. P. A. Tsuji et al., “The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways,” PLoS One, vol. 10, no. 4, p. e0124487, Apr. 2015, doi: 10.1371/journal.pone.0124487.

. D. F. D. Mahmood, A. Abderrazak, K. El Hadri, T. Simmet, and M. Rouis, “The thioredoxin system as a therapeutic target in human health and disease,” Antioxidants and Redox Signaling, vol. 19, no. 11. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA, pp. 1266–1303, Oct. 10, 2013, doi: 10.1089/ars.2012.4757.

. P. A. Konstantinopoulos and A. G. Papavassiliou, “The potential of proteasome inhibition in the treatment of colon cancer,” Expert Opinion on Investigational Drugs, vol. 15, no. 9. Taylor & Francis, pp. 1067–1075, Sep. 2006, doi: 10.1517/13543784.15.9.1067.

. N. Liu, H. Huang, Q. P. Dou, and J. Liu, “Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds,” Oncoscience, vol. 2, no. 5, pp. 457–466, 2015, doi: 10.18632/oncoscience.167.

. D. Buac, S. Schmitt, G. Ventro, F. Rani Kona, and Q. Ping Dou, “Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells,” Mini-Reviews Med. Chem., vol. 12, no. 12, pp. 1193–1201, Sep. 2012, doi: 10.2174/138955712802762040.

. X. Zhang et al., “Inhibition of tumor proteasome activity by gold-dithiocarbamato complexes via both redox-dependent and -independent processes,” J. Cell. Biochem., vol. 109, no. 1, pp. 162–172, Jan. 2010, doi: 10.1002/jcb.22394.

. E. García-Moreno, S. Gascón, E. Atrián-Blasco, M. J. Rodriguez-Yoldi, E. Cerrada, and M. Laguna, “Gold(I) complexes with alkylated PTA (1,3,5-triaza-7-phosphaadamantane) phosphanes as anticancer metallodrugs,” Eur. J. Med. Chem., vol. 79, pp. 164–172, May 2014, doi: 10.1016/j.ejmech.2014.04.001.

. E. Garcia-Moreno et al., “In Vivo Anticancer Activity, Toxicology and Histopathological Studies of the Thiolate Gold(I) Complex [Au(Spyrimidine)(PTA-CH2Ph)]Br,” Anticancer. Agents Med. Chem., vol. 15, no. 6, pp. 773–782, Jun. 2015, doi: 10.2174/1871520615666150129211440.

. E. García-Moreno et al., “In vitro and in vivo evaluation of organometallic gold(i) derivatives as anticancer agents,” Dalt. Trans., vol. 45, no. 6, pp. 2462–2475, Feb. 2016, doi: 10.1039/c5dt01802a.

. E. Atrián-Blasco, S. Gascón, M. J. Rodríguez-Yoldi, M. Laguna, and E. Cerrada, “Synthesis of Gold(I) Derivatives Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane as Selective Anticancer Metallodrugs,” Eur. J. Inorg. Chem., vol. 2016, no. 17, pp. 2791–2803, Jun. 2016, doi: 10.1002/ejic.201600177.

Downloads

Published

2021-05-30

How to Cite

Imran, M. A. ., Shahid, H., Zaheen, B. ., Qureshi, N. B. ., & Attique, M. . (2021). A Review - Colorectal Cancer, Prevalence, along with Screening, Diagnosis, and Novel Therapies. International Journal of Sciences: Basic and Applied Research (IJSBAR), 58(2), 63–113. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/12616

Issue

Section

Articles