Modelling of Poverty Cases in West Java Using Mixed Geographically and Temporally Weighted Regression with Cluster

  • Winda Nurpadilah Departement of Statistics, Faculty of Mathematics and Natural Science, IPB University, Bogor, West Java, 16680, Indonesia
  • I Made Sumertajaya Departement of Statistics, Faculty of Mathematics and Natural Science, IPB University, Bogor, West Java, 16680, Indonesia
  • Muhammad Nur Aidi Departement of Statistics, Faculty of Mathematics and Natural Science, IPB University, Bogor, West Java, 16680, Indonesia
Keywords: Cluster, Global and Local, MGTWR, Poverty, West Java

Abstract

Geographically and temporally weighted regression (GTWR) is a method used when there is spatial and temporal diversity in an observation. GTWR model just consider the local influences of spatial-temporal independent variables on dependent variable. In some cases, the model is not only about local influences but there are the global influences of spatial-temporal variables too, so that mixed geographically and temporally weighted regression (MGTWR) model is more suitable to use. This study examines the effects of clustering on MGTWR modeling. The cluster approach is used to reduce the modeling area and make the objects in the same clusters are more similar to each other than objects in other clusters. This study aimed to determine the model to be used in West Java’s poverty cases in 2012 to 2018. The result showed that the GRDP, the percentage of literacy, the percentage of expenditure per capita on food, and health index are global variables. Whereas the variable expected years of schooling and households buying rice for poor (raskin) are local variables. Furthermore, based on Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and  was showed that MGTWR with cluster (MGTWRC) better than MGTWR when it used in West Java’s poverty cases.

References

. AN. Dewi. “Penggerombolan dan identifikasi trend kabupaten di Indonesia berdasarkan data dan informasi kemiskinan tahun 2002-2009” thesis. IPB University, Indonesia, 2011

. A.S. Fotheringham, C. Brunsdon, M. Charlton. Geographically Weighted Regression: The Analysis of Spatially Varying Relationship. England: Jhon Wiley & Sons Ltd. 2002.

. B. Huang, B. Wu, M. Barry. “Geographically and temporally weighted regression for modeling spasio-temporal variation in house prices”. International Journal of Geographical Information Science, vol. 24(3), pp. 383–401, 2010.

. Badan Pusat Statistika. “Statistik Indonesia 2018”. Jakarta: BPS. 2018.

. Badan Pusat Statistika Jawa Barat. “Provinsi Jawa Barat Dalam Angka”. Bandung: BPS. 2019.

. Badan Pusat Statistika Jawa Barat. “Kemiskinan Kabupaten/Kota Di Jawa Barat”. Bandung: BPS. 2019.

. H. Yasin, Purhadi. “Mixed geographically weighted regression model (case study: the percentage of poor households in Mojokerto 2008)”. European Journal of Scientific Research, vol. 69(2), pp. 188-196, 2012.

. L. Anselin, A. Getis. “Spatial statistical analysis and geographic information systems”. The Annals of Regional Science, vol. 26(1), pp. 19-33, 1992.

. M Dhiyaa’ulhaq. “Analisis penyebaran kemiskinan dan pengaruh industri mikro dan kecil terhadap kemiskinan di Daerah Istimewa Yogyakarta” thesis. IPB University, Indonesia, 2017.

. Nuramaliyah, A. Saefuddin, M.N. Aidi. "The Best Global and Local Variables of the Mixed Geographically and Temporally Weighted Regression Model. Indonesian Journal of Statistics and Its Applications, vol. 3(3), pp. 320-330, 2019.

. W. Andrytiarandy. “Analisis regresi terboboti fuzzy cluster geografis pada prevalensi malaria di Indonesia” thesis. IPB University, Indonesia, 2017.

Published
2021-01-05
Section
Articles