2D Molecular Dynamics Simulation of Solitons Interaction in Dusty Plasma

  • Fathi K. Sobh Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
  • Osama M. Yassin Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
  • F. F. El Akshar Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
Keywords: Dusty plasma, Molecular Dynamics (MD), One Component Plasma (OCP), Yukawa Potential, Solitons

Abstract

Molecular Dynamics (MD) method is used to simulate a dusty plasma system as a one component plasma (OCP).  The heavy dust particles are considered as discrete particles interacting with each other through the Yukawa potential. This assumption is justified by the screening effect due to the lighter plasma components (electrons and ions). Solitons excitation at different values of the Coulomb coupling parameter (Γ) is simulated. The formation of solitons in the system using electric field pulse in a narrow region is studied. Different scenarios of the interaction of solitons are studied for: A) Two solitons with the same amplitude and opposite directions.  B) Two solitons with different amplitudes and opposite directions.  C) Two solitons with different amplitudes and propagating in the same direction.

References

. Sanat Kumar Tiwari, Amita Das, Abhijit Sen, and Predhiman Kaw, Physics of Plasmas 22, 033706 (2015).

. P. G. Drazin, London Mathematical Society Lecture Note Series, Cambridge University Press, Oxford, pp. 1-62 (1983).

. H. Zhang, W. S. Duan, X. Qi, and L. Yang, Scientific Reports 6, 21214 (2016).

. N. N. Rao, “Dust-acoustic KdV solitons in weakly non-ideal dusty plasmas” Phys. Scr. 1998(T75), 179.

. D. Samsonov, A. V. Ivlev, R. A. Quinn, G. Morfill, and S. Zhdanov, “Dissipative longitudinal solitons in a two-dimensional strongly coupled complex (dusty) plasma” Phys. Rev. Lett. 88, 095004 (2002).

. P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw, Phys. Rev. Lett. 101, 065006 (2008).

. S. K. Sharma, A. Boruah, and H. Bailung, Phys. Rev. E 89, 013110 (2014).

. S. Plimpton, Journal of Computational Physics 117, 1 (1995).

. 2U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000).

. S. Nose, Molecular Physics 52, 255 (1984).

. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

. Sandeep Kumar, Sanat Kumar Tiwari, and Amita Das, Physics of Plasmas 24, 033711 (2017) .

. S. Jaiswal, P. Bandyopadhyay, and A. Sen, Physics of Plasmas 21, 053701 (2014)

. Jerry L. Bona, W. G. Pritchard, and L. Ridgway Scott, The Physics of Fluids 23, 438 (1980).

Published
2020-10-08
Section
Articles