Effects of Dexamethasone and Brain-Derived Neurotropic Factor in NT2 Cells

  • Saad Alharthi Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
  • Ruy Tchao Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
  • Shanaz M. Tejani-Butt Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
Keywords: Dexamethasone (DEX), Brain-Derived Neurotropic Factor (BDNF), Ntera-2 (NT2) Cells, Cytotoxicity


Stress is a major risk factor that can evoke neuropathological changes within the cortico-limbic system in neuropsychiatric, neurodegenerative, and metabolic disorders. Many of these disorders implicate the regulation of glucocorticoids (GCs) and neurotrophins, such as the brain-derived neurotropic factor (BDNF). GCs are steroidal hormones that have anti-inflammatory and immunosuppressive effects. They are widely used to treat allergy, inflammation and autoimmune diseases. GCs’ roles and functions in the central nervous system (CNS) is varied and not well understood at this time. BDNF is commonly known to play important roles in the survival, growth-promoting and synaptic plasticity of the CNS. However, it has also been reported that continuous exposure to BDNF results in widespread neuronal death. While several studies have shown functional interactions between BDNF and GCs in neural events, the relationship between these interactions has not been clearly defined. The goal of this study was to determine the effects of dexamethasone (DEX) and BDNF in Ntera-2 (NT2) cells. Our results show a decline in cell viability and proliferation in a time and dose dependent manner when NT2 cells were treated with DEX alone. Treatment with BDNF did not affect NT2 cell viability. Interestingly, when NT2 cells were treated with a combination of DEX and BDNF, there appeared to be greater loss of cell viability and cell proliferation compared to the treatment with DEX alone. This synergistic effect possibly occurred via the co-activation of the BDNF receptor p75 and glucocorticoid receptor common pathways that may be responsible for apoptosis and cellular death.  


]. Arango-Lievano, M., Peguet, C., Catteau, M., Parmentier, M. L., Wu, S., Chao, M. V., Ginsberg, S. D., & Jeanneteau, F. “Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology”. Scientific reports, 6, 37231. (2016). https://doi.org/10.1038/srep37231

. Fardet, L., Petersen, I., & Nazareth, I. “Suicidal Behavior and Severe Neuropsychiatric Disorders Following Glucocorticoid Therapy in Primary Care”. American Journal of Psychiatry, 169(5), 491–497. (2012). https://doi.org/10.1176/appi.ajp.2011.11071009

. Oitzl, M., Champagne, D., van Der Veen, R., & de Kloet, E.”Brain development under stress: Hypotheses of glucocorticoid actions revisited”. Neuroscience and Biobehavioral Reviews, 34(6), 853–866. (2010). https://doi.org/10.1016/j.neubiorev.2009.07.006

. Pariante, C. M. “Risk factors for development of depression and psychosis: Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids”. Annals of the New York Academy of Sciences, 1179, 144–152. (2009). https://doi.org/10.1111/j.1749-6632.2009.04978.x

. Anacker, C., Zunszain, P., Carvalho, L, & Pariante, C. “The glucocorticoid receptor: pivot of depression and of antidepressant treatment?”. Psychoneuroendocrinology, 36(3), 415–425. (2011). https://doi.org/10.1016/j.psyneuen.2010.03.007

. Freddy Jeanneteau, Michael J. Garabedian, & Moses V. Chao. “Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect”. Proceedings of the National Academy of Sciences, 105(12), 4862–4867. (2008). https://doi.org/10.1073/pnas.0709102105

. Lewis-Tuffin, L., & Cidlowski, J. “The Physiology of Human Glucocorticoid Receptor beta (hGRbeta) and Glucocorticoid Resistance”. Annals of the New York Academy of Sciences, 1069(1), 1–9. (2006). https://doi.org/10.1196/annals.1351.001

. Von Werne Baes, C., De Carvalho Tofoli, S., Martins, C., & Juruena, M. “Assessment of the hypothalamic–pituitary–adrenal axis activity: Glucocorticoid receptor and mineralocorticoid receptor function in depression with early life stress – a systematic review”. Acta Neuropsychiatrica, 24(1), 4-15. (2012). https://doi.org/10.1111/j.1601-5215.2011.00610.x

. Zhou, J., & Cidlowski, J. “The human glucocorticoid receptor: One gene, multiple proteins and diverse responses”. Steroids, 70(5-7), 407–417. (2005). https://doi.org/10.1016/j.steroids.2005.02.006

. Stellato, C. “Post-transcriptional and nongenomic effects of glucocorticoids”. Proceedings of the American Thoracic Society, 1(3), 255–263. (2004). https://doi.org/10.1513/pats.200402-015MS

. Oakley, R., & Cidlowski, J. “The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease”. The Journal of Allergy and Clinical Immunology, 132(5), 1033–1044. (2013). https://doi.org/10.1016/j.jaci.2013.09.007

. McEwen, B. “Stress and the Aging Hippocampus”. Frontiers in Neuroendocrinology, 20(1), 49–70. (1999). https://doi.org/10.1006/frne.1998.0173

. Dai, J., Buijs, R., & Swaab, D. “Glucocorticoid hormone (cortisol) affects axonal transport in human cortex neurons but shows resistance in Alzheimer’s disease”. British Journal of Pharmacology, 143(5), 606–610. (2004). https://doi.org/10.1038/sj.bjp.0705995

. Yehuda, R., & Seckl, J. “Minireview: Stress-Related Psychiatric Disorders with Low Cortisol Levels: A Metabolic Hypothesis”. Endocrinology, 152(12), 4496–4503. (2011). https://doi.org/10.1210/en.2011-1218

. Andero, R., Choi, D., & Ressler, K. “BDNF–TrkB Receptor Regulation of Distributed Adult Neural Plasticity, Memory Formation, and Psychiatric Disorders”. Progress in Molecular Biology and Translational Science, (pp.169-192). (2014). https://doi.org/10.1016/B978-0-12-420170-5.00006-4

. Kim, S., Won, S., Sohn, S., & Kwon, H. “Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase”. The Journal of Cell Biology, 159(5), 821–831. (2002). https://doi.org/10.1083/jcb.200112131

. Akil, H., Perraud, A., Mélin, C., Jauberteau, M., Mathonnet, M., & Mattson, M. “Fine-Tuning Roles of Endogenous Brain-Derived Neurotrophic Factor, TrkB and Sortilin in Colorectal Cancer Cell Survival (BDNF/TrkB and Sortilin Promote CRC Cell Survival)”. PLoS ONE, 6(9), e25097. (2011). https://doi.org/10.1371/journal.pone.0025097

. Roux, P., & Barker, P. “Neurotrophin signaling through the p75 neurotrophin receptor”. Progress in Neurobiology, 67(3), 203–233. (2002). https://doi.org/10.1016/S0301-0082(02)00016-3

. Mcallister, A. “BDNF”. Current Biology, 12(9), R310–R310. (2002). https://doi.org/10.1016/S0960-9822(02)00825-4

. Numakawa, T., Odaka, H., & Adachi, N. “Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis”. International journal of molecular sciences, 18(11), 2312. (2017). http://doi.org/10.3390/ijms18112312

. Herbert, J., & Lucassen, P. “Depression as a risk factor for Alzheimer’s disease: Genes, steroids, cytokines and neurogenesis – What do we need to know?”. Frontiers in Neuroendocrinology, 41, 153–171. (2016). https://doi.org/10.1016/j.yfrne.2015.12.001

. Lambert, W., Xu, C., Neubert, T., Chao, M., Garabedian, M., & Jeanneteau, F. “Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation”. Molecular and Cellular Biology, 33(18), 3700–3714. (2013). https://doi.org/10.1128/MCB.00150-13

. Arango-Lievano, M., Lambert, W., Bath, K., Garabedian, M., Chao, M., & Jeanneteau, F. “Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment”. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15737–15742. (2015). https://doi.org/10.1073/pnas.1509045112

. Haile, Y., Fu, W., Shi, B., Westaway, D., Baker, G., Jhamandas, J., & Giuliani, F. “Characterization of the NT2‐derived neuronal and astrocytic cell lines as alternative in vitro models for primary human neurons and astrocytes”. (2014). Journal of Neuroscience Research, 92(9), 1187–1198. https://doi.org/10.1002/jnr.23399

. Andrews, P.W., Damjanov, I., Simon, D., Banting, G., Carlin, C., Dracopoli, N.C. & Fogh, J. “Pluripotent human embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera‐2: differentiation in vivo and in vitro”. Lab Invest, 50, 147–162. (1984).

. CyQUANT® Cell Proliferation Assay Kit. Thermofisher Scientific. (2006). Retrieved from https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fmp07026.pdf&title=Q3lRVUFOVCBDZWxsIFByb2xpZmVyYXRpb24gQXNzYXkgS2l0

. BrdU Cell Proliferation ELISA Kit (Colorimetric). Abacam. (2018). Retrieved from https://www.abcam.com/ps/products/126/ab126556/documents/ab126556%20-%20BrdU%20Cell%20Proliferation%20ELISA%20Kit%20(colorimetric)%20v8c%20(website).pdf

. Crochemore, C., Michaelidis, T., Fischer, D., Loeffler, J., & Almeida, O. “Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation”. FASEB Journal, 16(8), 761–770. (2002). https://doi.org/10.1096/fj.01-0577com

. Tegenge, M., Roloff, F., & Bicker, G. “Rapid Differentiation of Human Embryonal Carcinoma Stem Cells (NT2) into Neurons for Neurite Outgrowth Analysis”. Cellular and Molecular Neurobiology, 31(4), 635–643. (2011). https://doi.org/10.1007/s10571-011-9659-4

. Fan, Z., Sehm, T., Rauh, M., Buchfelder, M., Eyupoglu, I. Y., & Savaskan, N. E. “Dexamethasone alleviates tumor-associated brain damage and angiogenesis”. PloS one, 9(4), e93264. (2014). https://doi.org/10.1371/journal.pone.0093264

. Schmidt, S., Rainer, J., Ploner, C., Presul, E., Riml, S., & Kofler, R. “Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance”. Cell Death and Differentiation, 11 Suppl 1, S45–55. (2004). https://doi.org/10.1038/sj.cdd.4401456

. Katychev, A., Wang, X., Duffy, A., & Dore-Duffy, P. “Glucocorticoid-Induced Apoptosis in CNS Microvascular Pericytes”. Developmental Neuroscience, 25, 436 - 446. (2003). http://doi.org/10.1159/000075669

. Gu, Y., Zeng, S., Qiu, P., Peng, D., & Yan, G. “Apoptosis of bovine trabecular meshwork cells induced by dexamethasone”. Chinese Journal of Ophthalmology. 38(5):302-304. (2002).

. Bourcier, T., Forgez, P., Borderie, V.M., Scheer, S., Rostène, W., & Laroche, L. “Regulation of human corneal epithelial cell proliferation and apoptosis by dexamethasone”. Investigative ophthalmology & visual science, 41 13, 4133-41. (2000).

. Hassan, A., Von Rosenstiel, P., Patchev, V., Holsboer, F., & Almeida, O. “Exacerbation of Apoptosis in the Dentate Gyrus of the Aged Rat by Dexamethasone and the Protective Role of Corticosterone”. Experimental Neurology, 140(1), 43–52. (1996). https://doi.org/10.1006/exnr.1996.0113

. Schmidt, M., Lügering, N., Lügering, A., Pauels, H., Schulze-Osthoff, K., Domschke, W., … Kucharzik, M. “Role of the CD95/CD95 ligand system in glucocorticoid-induced monocyte apoptosis”. Journal of Immunology, 166(2), 1344–1351. (2001). https://doi.org/10.4049/jimmunol.166.2.1344

. Liu, Q., & Gazitt, Y. “Potentiation of dexamethasone-, paclitaxel-, and Ad-p53-induced apoptosis by Bcl-2 antisense oligodeoxynucleotides in drug-resistant multiple myeloma cells”. Blood, 101(10), 4105–4114. (2003). https://doi.org/10.1182/blood-2002-10-3067

. Chauhan, D., Auclair, D., Robinson, E.K., Hideshima, T., Li, G., Podar, K., Gupta, D., Richardson, P., Schlossman, R.L., Krett, N.L., Chen, L.B., Munshi, N.C., & Anderson, K.C. “Identification of genes regulated by Dexamethasone in multiple myeloma cells using oligonucleotide arrays”. Oncogene, 21, 1346-1358. (2002). https://doi.org/10.1038/sj.onc.1205205

. Kawamura, A., Tamaki, N., & Kokunai, T. “Effect of Dexamethasone on Cell Proliferation of Neuroepithelial Tumor Cell Lines”. Neurologia medico-chirurgica. 38. 633-8; discussion 638. (1998). https://doi.org/10.2176/nmc.38.633.

. Cardenas-Aguayo, M., Kazim, S. F., Grundke-Iqbal, I., & Iqbal, K. “Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures”. PloS one, 8(1), e53596. (2013). https://doi.org/10.1371/journal.pone.0053596

. Hachem, L. D., Mothe, A. J., & Tator, C. H. “Effect of BDNF and Other Potential Survival Factors in Models of In Vitro Oxidative Stress on Adult Spinal Cord-Derived Neural Stem/Progenitor Cells”. BioResearch open access, 4(1), 146–159. (2015). https://doi.org/10.1089/biores.2014.0058

. Middlemas, D., Kihl, B., Zhou, J., & Zhu, X. “Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells”. The Journal of Biological Chemistry, 274(23), 16451–16460. (1999). https://doi.org/10.1074/jbc.274.23.16451

. Kawamura, K., Kawamura, N., Fukuda, J., Kumagai, J., Hsueh, A., & Tanaka, T. “Regulation of preimplantation embryo development by brain-derived neurotrophic factor”. Developmental Biology, 311(1), 147–158. (2007). https://doi.org/10.1016/j.ydbio.2007.08.026

. Gomes, C., Ferreira, R., George, J., Sanches, R., Rodrigues, D. I., Gonçalves, N., & Cunha, R. A. “Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia”. Journal of neuroinflammation, 10, 16. (2013). https://doi.org/10.1186/1742-2094-10-16

. Jaumotte, J., Wyrostek, S., & Zigmond, M. “Protection of cultured dopamine neurons from MPP+ requires a combination of neurotrophic factors”. European Journal of Neuroscience, 44(1), 1691–1699. (2016). https://doi.org/10.1111/ejn.13252

. Satoh, J., Yukitake, M., Kurohara, K., & Kuroda, Y. “Retinoic acid‐induced neuronal differentiation regulates expression of mRNAs for neurotrophins and neurotrophin receptors in a human embryonal carcinoma cell line NTera2”. Neuropathology, 17(2), 80–88. (1997). https://doi.org/10.1111/j.1440-1789.1997.tb00018.x

. Suri, D., & Vaidya, V. “Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity”. Neuroscience, 239, 196–213. (2013). https://doi.org/10.1016/j.neuroscience.2012.08.065

. Arango-Lievano, M., & Jeanneteau, F. “Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors”. Pharmacological Research, 113(Pt A), 1–17. (2016). https://doi.org/10.1016/j.phrs.2016.08.005

. Ridder, S., Chourbaji, S., Hellweg, R., Urani, A., Zacher, C., Schmid, W., Zink, M., Hörtnagl, H., Flor, H., Henn, F. A., Schütz, G., & Gass, P. “Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions”. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(26), 6243–6250. (2005). https://doi.org/10.1523/JNEUROSCI.0736-05.2005

. Chen, H., Lombès, M., & Le Menuet, D. “Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells”. Molecular brain, 10(1), 12. (2017). https://doi.org/10.1186/s13041-017-0295-x

. Kumamaru, E., Numakawa, T., Adachi, N., & Kunugi, H. “Glucocorticoid suppresses BDNF-stimulated MAPK/ERK pathway via inhibiting interaction of Shp2 with TrkB”. FEBS Letters, 585(20), 3224–3228. (2011). https://doi.org/10.1016/j.febslet.2011.09.010

. Feng, Y., & Tang, X. “Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1”. Chemico-Biological Interactions, 207(1), 26–31. (2014). https://doi.org/10.1016/j.cbi.2013.11.004

. Bamji, S. X., Majdan, M., Pozniak, C. D., Belliveau, D. J., Aloyz, R., Kohn, J., Causing, C. G., & Miller, F. D. “The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death”. The Journal of cell biology, 140(4), 911–923. (1998). https://doi.org/10.1083/jcb.140.4.911

. Huang, E., & Reichardt, L. “Neurotrophins: roles in neuronal development and function”. Annual Review of Neuroscience, 24, 677–736. (2001). https://doi.org/10.1146/annurev.neuro.24.1.677

. Friedman, W. J. “Neurotrophins induce death of hippocampal neurons via the p75 receptor”. The Journal of neuroscience: the official journal of the Society for Neuroscience, 20(17), 6340–6346. (2000). https://doi.org/10.1523/JNEUROSCI.20-17-06340.2000

. Carter, B., Kaltschmidt, C., Kaltschmidt, B., & Offenhauser, N. “Selective activation of NF-kappaB by nerve growth factor through the neurotrophin receptor p75”. Science, 272(5261), 542–545. (1996). https://doi.org/10.1126/science.272.5261.542

. Kenchappa, R., Tep, C., Korade, Z., Urra, S., Bronfman, F., Yoon, S., & Carter, B. “p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17”. The Journal of Biological Chemistry, 285(26), 20358–20368. (2010). https://doi.org/10.1074/jbc.M109.082834

. Hanna, A., Chan, E., Xu, J., Stone, J., & Brindley, D. “A novel pathway for tumor necrosis factor-alpha and ceramide signaling involving sequential activation of tyrosine kinase, p21(ras), and phosphatidylinositol 3-kinase”. The Journal of Biological Chemistry, 274(18), 12722–12729. (1999). https://doi.org/10.1074/jbc.274.18.12722

. Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., & Strauss, M. “NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition”. Molecular and cellular biology, 19(4), 2690–2698. (1999). https://doi.org/10.1128/mcb.19.4.2690

. Fürst, R., Zahler, S., & Vollmar, A. “Dexamethasone-Induced Expression of Endothelial Mitogen-Activated Protein Kinase Phosphatase-1 Involves Activation of the Transcription Factors Activator Protein-1 and 3′,5′-Cyclic Adenosine 5′-Monophosphate Response Element-Binding Protein and the Generation of Reactive Oxygen Species”. Endocrinology, 149(7), 3635–3642. (2008). https://doi.org/10.1210/en.2007-1524

. Dirks-Naylor, A., & Griffiths, C. “Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy”. Journal of Steroid Biochemistry and Molecular Biology, 117(1-3), 1–7. (2009). https://doi.org/10.1016/j.jsbmb.2009.05.014

. Machuca, C., Mendoza-Milla, C., Córdova, E., Mejía, S., Covarrubias, L., Ventura, J., & Zentella, A. “Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT”. BMC cell biology, 7, 9. (2006). https://doi.org/10.1186/1471-2121-7-9

. Liu, F., Bardhan, K., Yang, D., Thangaraju, M., Ganapathy, V., Waller, J. L., Liles, G. B., Lee, J. R., & Liu, K. “NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression”. The Journal of biological chemistry, 287(30), 25530–25540. (2012). https://doi.org/10.1074/jbc.M112.356279