Detection of Candidatus Phytoplasma Asteris’ (16srI) Associated with Bitter Gourd Leaf and Floral Malformations in Malaysia

Authors

  • Tennakoon Mudiyanselage Nadika Darshanie Tennakoon Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia
  • Khairulmazmi Ahmad Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia
  • Kong Lih Ling Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Malaysia
  • Ganesan Vadamalai Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia

Keywords:

phytoplasma, bitter gourd, molecular identification, Malaysia

Abstract

Bitter gourd vines (Momordica charantia) exhibiting symptoms of leaf and floral malformations including reduced leaf and flower size and shortened internodes were observed in farmer’s fields in Selangor, Malaysia. The causal agent was detected by nested and semi nested Polymerase Chain Reaction (PCR) using phytoplasma universal primers based on 16SrRNA and SecA gene sequences. Sequence analysis of 1.2 kb and 480 bp amplicons of the 16SrRNA and SecA gene respectively confirmed the presence of phytoplasma DNA associated with Candidatus phytoplasma asteris (Group16SrI) in the symptomatic bitter gourd samples. Phylogenetic analysis of the 16SrDNA and SecA sequences placed the bitter gourd phytoplasma in the 16SrI phytoplasma group.  This is the first report of phytoplasma infection in bitter gourd in Malaysia.

References

J. K. Grover and S. P. Yadav, “Pharmacological actions and potential uses of Momordica charantia: A review,” J. Ethnopharmacol., vol. 93, no. 1, pp. 123–132, 2004, doi: 10.1016/j.jep.2004.03.035.

. S. Zhang, M. Lamberts, G. Mcavoy, and F. W. Fusarium, “Diseases of Bitter Melon in South Florida 1 Target Leaf Spot ( Corynespora,” pp. 1–3, 2015.

. N. K. K. Win, Y. H. Kim, and H. Y. Jung, “Bitter gourd little leaf disease associated to ‘Candidatus Phytoplasma asteris,’” Trop. Plant Pathol., vol. 39, no. 1, pp. 82–88, 2014, doi: 10.1590/S1982-56762014000100010.

. I. Lee, R. E. Davis, and D. E, “Phytopathogenic Mollicutes,” Annu. Rev. Microbiol., vol. 54, pp. 221–255, 2000.

. M. D. &Jennifer Hodgetts, Ed., phytoplasma Methods and Protocols. London, 2013.

. C. D. Smart et al., “Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region,” Appl. Environ. Microbiol., vol. 62, no. 8, pp. 2988–2993, 1996, doi: 10.1128/aem.62.8.2988-2993.1996.

. N. A. Harrison, M. Womack, and M. L. Carpio, “Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas,” Plant Dis., vol. 86, no. 6, pp. 676–681, 2002, doi: 10.1094/PDIS.2002.86.6.676.

. N. Nejat, K. Sijam, S. Nor, A. Abdullah, G. Vadamalai, and M. Dickinson, “Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia,” vol. 9, no. 15, pp. 2305–2315, 2010.

. N. Nejat, K. Sijam, S. N. A. Abdullah, G. Vadamalai, and M. Dickinson, “First report of a 16SrXIV , ‘ Candidatus Phytoplasma cynodontis ’ group phytoplasma associated with coconut yellow decline in Malaysia First report of ‘ Candidatus Liberibacter asiaticus ’ associated with Huanglongbing in Cuba,” no. August 2008, p. 3059, 2009, doi: 10.1111/j.1365-3059.2008.01923.x.

. N. Nejat, G. Vadamalai, R. E. Davis, N. A. Harrison, K. Sijam, and M. Dickinson, “‘ Candidatus Phytoplasma malaysianum ’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle ( Catharanthus roseus ),” pp. 540–548, 2013, doi: 10.1099/ijs.0.041467-0.

. Y. P. Zhang, J. K. Uyemoto, and B. C. Kirkpatrick, “A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay,” J. Virol. Methods, vol. 71, no. 1, pp. 45–50, 1998, doi: 10.1016/S0166-0934(97)00190-0.

. S. Deng and C. Hiruki, “Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes,” J. Microbiol. Methods, vol. 14, no. 1, pp. 53–61, 1991, doi: 10.1016/0167-7012(91)90007-D.

. D. E. Gundersen and I.-M. Lee, “Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs,” Phytopathol. Mediterr., vol. 35, no. 3, pp. 144–151, 1996.

. J. Hodgetts, N. Boonham, R. Mumford, N. Harrison, and M. Dickinson, “Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma,’” Int. J. Syst. Evol. Microbiol., vol. 58, no. 8, pp. 1826–1837, 2008, doi: 10.1099/ijs.0.65668-0.

. P. G. Weintraub and L. Beanland, “Insect Vectors of Phytoplasmas,” Annu. Rev. Entomol., vol. 51, no. 1, pp. 91–111, 2006, doi: 10.1146/annurev.ento.51.110104.151039.

. V. Venkataravanappa, L.R.C. Narasimha Reddy, S. Polam, S.K Subbanna, R. Manem Krishna “Detection and characterization of ‘Candidatus Phytoplasma asteris’ associated with littleleaf disease of bitter gourd from India by 16S rRNA phylogenetic and RFLP (in vitro and virtual) analysis” vol. 69, no. 4, pp. 707–714, 2017.

. R. Jomantiene, R.E. Davis, I.-M. Lee, Y. Zhao, K. Bottner-parker, D. Valiunas, and R. Petkauskaite. "Onion is host for two phytoplasma lineages, subgroups 16SrI-a and 16SrI-(b/l)l, in Lithuania: a HinfI site revealed a SNP marking divergent branches of evolution." journal of plant pathology 92, no. 2 (2010): 461-70. Accessed may 30, 2020.

. B. Duduk et al., “Phytoplasmas in carrots: Disease and potential vectors in Serbia,” Bull. Insectology, vol. 61, no. 2, pp. 327–331, 2008.

. E. Vellios and F. Lioliopoulou, “Detection and characterization of phytoplasmas infecting tomato plants in Greece,” Bull. Insectology, vol. 60, no. 2, pp. 157–158, 2007.

. P. Jones, Y. Arocha, O. Antesana, E. Montellano, and P. Franco, “‘Brotes grandes’ (big bud) of potato: A new disease associated with a 16SrI-B subgroup phytoplasma in Bolivia,” Plant Pathol., vol. 54, no. 2, p. 234, 2005, doi: 10.1111/j.1365-3059.2005.01137.x.

. I. M. Lee, K. D. Bottner-Parker, Y. Zhao, R. E. Davis, and M. C. Black, “Aster yellows group (16SrI), subgroups 16SrI-A and 16SrI-B, phytoplasmas associated with lettuce yellows in Texas,” New Dis. Reports, vol. 29, p. 5, 2014, doi: 10.5197/j.2044-0588.2014.029.005.

. J. Kumar, S. Gunapati, S. P. Singh, A. Lalit, N. C. Sharma, and R. Tuli, “ First report of a ’ Candidatus Phytoplasma asteris’ (16SrI group) associated with little leaf disease of Solanum melongena (brinjal) in India ,” New Dis. Reports, vol. 26, no. December, p. 21, 2012, doi: 10.5197/j.2044-0588.2012.026.021.

. M.S. Avis, G.M.Ribeiro, A.N.S. Souza, and C. M. Carvalho, “First Report of a 16SrIII-B Phytoplasma Associated with Momordica charantia Witches’-Broom in Brazil,” Plant Dis., vol. 1314, no. 101, p. 7, 2017.

. M. E. Santos-Cervantes, J. A. Chávez-Medina, J. Acosta-Pardini, G. L. Flores-Zamora, J. Méndez-Lozano, and N. E. Leyva-López, “Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico,” Plant Dis., vol. 94, no. 4, pp. 388–395, 2010, doi: 10.1094/PDIS-94-4-0388.

Downloads

Published

2020-06-06

How to Cite

Tennakoon, T. M. N. D. ., Ahmad, K. ., Ling, K. L. ., & Vadamalai, G. . (2020). Detection of Candidatus Phytoplasma Asteris’ (16srI) Associated with Bitter Gourd Leaf and Floral Malformations in Malaysia. International Journal of Sciences: Basic and Applied Research (IJSBAR), 52(1), 154–163. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/11264

Issue

Section

Articles