Two Conditionalproofs of Riemann Hypothesis
Keywords:
Riemann Hypothesis, Analytic Continuity, Functional Equation, Hankel ContourAbstract
We consider the analytic continuity of the Riemann zeta function through the Hankel contour. We detect a sort of non accuracy in the functional equation with a significantly small error that we consider to conditionally prove Riemann Hypothesis in two ways.
References
Leonhard Euler. Variae observationes circa series infinitas. Commentarii academiae scientiarum Petropolitanae 9, 1744, pp. 160-188.
B. Riemann, Uber die Anzahl der Primzahlen unter eine gegebene Grosse 1859
Bombieri, Enrico (2000), The Riemann Hypothesis – official problem description (PDF), Clay Mathematics Institute, retrieved 2008-10-25
Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, eds. (2008), The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, doi:10.1007/978-0-387-72126-2, ISBN 978-0-387-72125-5
Harold M. Edwards. Riemann’s Zeta Function. 1974. Dover Publications.
Jekel, David. The Riemann Zeta Function." The University of Washington. n.p., 6 June 2013. Web.
Https: ==www: math: Washington: Edu= morrow=33613=papers=David: pdf
J. E. Littlewood The Riemann Hypothesis TheScientist Speculates, New York: Basic books, 1962
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers with this journal agree to the following terms.