Variability of Carotenoid Biosynthesis in Meiotic Offspring of Fusarium Temperatum Strains

Authors

  • Wojciech Wakulinski Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland (https://orcid.org/0000-0002-6441-4590)
  • Marcin Wit Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland (https://orcid.org/0000-0002-5219-2185)
  • Emilia Jablonska Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland (https://orcid.org/0000-0001-5250-0128)
  • Ewa Mirzwa-Mroz Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland (https://orcid.org/0000-0003-0537-0783)
  • Piotr Ochodzki Plant Breeding and Acclimatisation Institute, Radzików, Błonie 05-870, Poland
  • Roman Warzecha Plant Breeding and Acclimatisation Institute, Radzików, Błonie 05-870, Poland
  • Aleksandra Lewandowska Department of Plant Protection, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland

Keywords:

Fusarium temperatum, variability

Abstract

Fusarium temperatum is a new emerging species recognized as important and toxigenic pathogen of maize, prevalent in temperate region of northern hemisphere. The present study aimed to identify the variability of this species in terms of carotenoid biosynthesis under various light condition in relation to fungus mating type. Analysis of offspring subpopulation of 80 isolates obtained by crossing parental Fusarium temperatum strains indicated that light wavelength and fungal genotype significantly affected pigment yield. The highest levels of carotenoids were observed after incubation of isolates under blue light. Occurrence of the more extreme fungus phenotypes than either parent was stated in 20% to 42 % isolates depending on light condition.

It means that transgressive segregation can significantly change fungus population from generation to generation and drive the species evolution. No phenotypic differences in carotenoid biosynthesis were found between MAT1-1 and MAT1-2 F.temperatum strains.

References

Zhang C. 2018. Biosynthesis of Carotenoids and Apocarotenoids by Microorganisms and Their Industrial Potential. 10.5772/intechopen.79061.

Wang E., Dong C., Park R., Roberts T. Carotenoid pigments in rust fungi: Extraction, separation, quantification and characterization. Fungal biology reviews 32, 166 -180. 2018.

Kirti K., Amita S., Priti S., Kumar A.M., Jyoti S. Colorful world of microbes: carotenoids and their applications. Advances in Biology, 2014, 1-13. 2014.

Tian B., Sun Z., Xu Z., Shen S., Wang H. Hua Y. 2008. Carotenoid 39,49-desaturase is involved incarotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans Microbiology154, 3697-3706. 2008.

Gihan M., Elkhodary G., Beltagy D., Samak N., Abdulaziz K., Mona M. Assessment of antioxidant, antimicrobial and anticancer activities of carotenoid extracted from Erugosquilla massavensis and Procambarus clarkii exoskeletons. Journal of Cancer And Biomedical Research 1, 1, 49-58. 2017.

Zopf W. Die Pilze. Breslau, 500 pp. 1890.

Carlile M.J. A study of the factors influencing non-genetic variation in a strain of Fusarium oxysporum. J. Gen. Microbiol.14, 643-654. 1956.

Rau W., Zehender C. Die Carotinoide von Fusarium aquaeductuum Lagh. Arch. Mikrobiol. 32, 423-428. 1959.

Avalos J., Cerdá-Olmedo E. Carotenoid mutants of Gibberella fujikuroi. Curr. Genet. 25, 1837-1841. 1987.

Jin J.M., Lee J., Lee Y.W. Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol. Lett. 302, 197-202. 2010.

Ádám, A. L., García-Martínez, J., Szücs, E. P., Avalos, J., Hornok, L. 2011. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol lett. 318, 76-83. 2011.

Villani A., Proctor R.H., Kim H.-S., Brown D.W., Logrieco A.F., Amatulli M.T., Moretti A., Susca, A. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics. 20, 314. 2019.

Avalos, J., Pardo-Medina, J., Parra-Rivero, O., Ruger-Herreros, M., Rodríguez-Ortiz, R., Hornero-Méndez, D., & Limón, M. C. Carotenoid Biosynthesis in Fusarium. Journal of fungi (Basel, Switzerland), 3, 3, 39. 2017.

Gmoser R., Ferreira J.A., Lennartsson P.R., Taherzadeh M.J. Filamentous ascomycetes fungi as a source of natural pigments. Fungal biology and biotechnology 4, 1, 4. 2017.

Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol., 63, 351-361. 2004.

T. W. Goodwin, The Comparative Biochemistry of the Carotenoids, Chapman and Hall, London. 1952.

Rau W., Zehender C. Die Carotinoide von Fusarium aquaeductuum Lagh. Arch. Mikrobiol. 32, 423-428. 1959.

Jackson BE, Hart-Wells EA, Matsuda SP.Metabolic engineering to produce sesquiterpenes in yeast. Org Lett. 5, 10,1629-32. 2003.

Böhm J., Tim A. Dahlmann T., Gümüs H., Kück U. A MAT1–2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing Molecular Microbiology 95, 5, 859-874. 2015.

Chen Y., Xiao W., Wang Y. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15, 113. 2016.

Rico J., Pardo E, Orejas M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol. 76, 19. 6449-54. 2010.

Scauflaire J., Gourgue M., Munaut F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia. 103, 3, 586-597. 2011.

Leslie J.F. and Summerell B.A. The Fusarium Laboratory Manual. Blackwell Publishing Ames, IA p. 12-13. 2006.

Steenkamp, E.T., Wingfield B.D., Coutinho T.A., Zeller K.A., Wingfield M.J., Marasas W.F.O., Leslie, J.F. PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Applied Environmental Microbiology 66, 4378-4382. 2000.

Nelson, M.A., Morelli, G., Carattoli, A., Romano, N. andMacino, G. 1989. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol. Cell. Biol. 9, 1271-1276. 1989.

Cerdá-Olmedo E. 2001. Phycomyces and the biology of light and color, FEMS Microbiology Reviews, 25, 5, 503-512. 2001.

Silva F., Torres-Martínez S., Garre V. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Molecular Microbiology 61,4, 1023-1037. 2006.

Khanafari A., Tayari K., Emami M. 2008. Light Requirement for the Carotenoids Production by Mucor hiemalis, Iranian Journal of Basic Medical Sciences 11, 1, 25-32.and D.J. Ebbole ASM Press, Washington DC, 417- 441. 2008.

Corrochano L.M., Avalos J. light sensing. Cellular and Molecular Biology of Filamentous fungi. ASM Press Washington DC 788. 2010.

Casas-Flores S., Rios-Momberg M., Rosales-Saavedra T., Martínez-Hernández P., Olmedo-Monfil V., Herrera-Estrella A. Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryotic Cell 5, 3, 499-506. 2006.

Trzaska, W.J., Wrigley, H.E., Thwaite, J.E. 2017. Species-specific antifungal activity of blue light. Sci Rep 7, 4605. 2017.

Rieseberg, L., Archer, M. & Wayne, R. Transgressive segregation, adaptation and speciation. Heredity 83, 363-372. 1999.

Hiadlovská Z, Vošlajerová Bímová B, Mikula O, Piálek J, Macholán M. Transgressive segregation in a behavioural trait? Explorative strategies in two house mouse subspecies and their hybrids. Biol J Linn Soc. ,108, 225-235. 2013.

Kuczyñska A, Surma M, Adamski T. Methods to predict transgressive segregation in barley and other self-pollinated crops J.Appl.Genet. 48, 4, 321-328. 2007.

Stelkens R. B., Brockhurst M. A., Hurst G. D. D., Miller E. L., & Greig D. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. Journal of Evolutionary Biology, 7, 2507-2519. 2014.

Cumagun, C. J. R., R. L. Bowden, J. E. Jurgenson, J. F. Leslie, and T.Miedaner. Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94, 520-526. 2004.

Mark H. Lendenmann, Daniel Croll, Ethan L. Stewart and Bruce A. McDonald Quantitative Trait Locus Mapping of Melanization in the Plant Pathogenic Fungus Zymoseptoria tritici G3: Genes, Genomes, Genetics 12, 2519-2533. 2014.

Nielsen, K., Marra, R. E., Hagen, F., Boekhout, T., Mitchell, T. G., Cox, G. M., Heitman, J. Interaction between genetic background and the mating type locus in Cryptococcus neoformans virulence potential. Genetics. 171, 3 , 975-983. 2005.

Zhan, J., Torriani, S. F., McDonald, B. A. Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola. Fungal Genetics and Biology, 44, 5, 339-346. 2007.

Downloads

Published

2020-03-03

How to Cite

Wakulinski, W., Wit, M., Jablonska, E., Mirzwa-Mroz, E., Ochodzki, P., Warzecha, R., & Lewandowska, A. (2020). Variability of Carotenoid Biosynthesis in Meiotic Offspring of Fusarium Temperatum Strains. International Journal of Sciences: Basic and Applied Research (IJSBAR), 50(1), 156–166. Retrieved from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/10702

Issue

Section

Articles