Biomass Phytoplanktonic in Sem-enclosed Bay of Diégo-Suarez, Madagascar Using Sentinel-2 MSI Satellite: Application to Ocean Color Observations
Keywords:
Diégo-Suarez Bay, Chlorophyll-a, MCI sentinel-2, remote sensing, C2X-NetAbstract
The use of remote sensing to monitor coastal waters and their current state is of high importance, as fresh waters are the habitat of many species of flora and fauna, and are also important for anthropogenic activities. Water quality can be monitored by many parameters, including dissolved suspended matter, phytoplankton, water colour (FU), and dissolved oxygen, while the concentration of Chlorophyll-a (Chl-a) is a representative indicator for proxy phytoplankton and monitoring water quality. The detection of phytoplankton in water layers, through Chl-a indicators, is an effective method for displaying eutrophication.Numerous scientists and studies have shown that remote sensing data and techniques are capable of monitoring the temporal and spatial distribution and variation of this phenomenon. This study aimed to investigate the monitoring of waters quality in Diégo-Suarez Bay, in Antsiranana, Madagascar with the application of Chl-a detection algorithm (C2RCC-C2X-Net), by using Sentinel-2 satellite imagery data for the seasons summer (February 14), winter (June 16) and inter-season time (22 October) 2023. The maximum chlorophyll index (MCI) algorithms have been applied to top of atmosphere (TOA) reflectance data, to detect Chl-a and monitor the trophic range of the water. Both algorithms were correlated and resulted in Pearson’s r values up to 0.82. Finally, the Chl-a concentration was estimated by applying an empirical equation that correlates the MCI and Chl-a concentration developed within previous studies. Those results were further analyzed and interpreted with spatial statistical methods, to understand the spatial distribution pattern of the quality and proxy of biomass phytoplanktonic in our study area. Our results demonstrated that the highest Chl-a concentration was located in the South-west southeast of the Diégo-Suarez Bay during the study period. Sentinel-2 data can be a useful tool for lake managers, in order to estimate the spatial distribution of the Chl-a concentration and identify areas prone to eutrophication, as well as the coastal zones.
References
I.-A. Rahn, K. Kangro, A. Jaanus, et K. Alikas, « Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea », Applied Sciences, vol. 13, no 18, p. 10211, sept. 2023, doi: 10.3390/app131810211.
V. Theenathayalan et al., « Regional Satellite Algorithms to Estimate Chlorophyll-a and Total Suspended Matter Concentrations in Vembanad Lake », Remote Sensing, vol. 14, no 24, p. 6404, déc. 2022, doi: 10.3390/rs14246404.
M. W. Lomas et al., « Phytoplankton optical fingerprint libraries for development of phytoplankton ocean color satellite products », Sci Data, vol. 11, no 1, p. 168, févr. 2024, doi: 10.1038/s41597-024-03001-z.
Y. Cheng et S. Zhang, « The Research on the Variation of Chlorophyll-a in Bohai Sea Based on MODIS Data », in ESMA 2020, 2021. doi: 10.1088/1755-1315/714/2/022029.
F. Barraza-Moraga, H. Alcayaga, A. Pizarro, J. Félez-Bernal, et R. Urrutia, « Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images », Remote Sensing, vol. 14, no 22, Art. no 22, janv. 2022, doi: 10.3390/rs14225647.
A. Bracher et al., « Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development », Front. Mar. Sci., vol. 4, mars 2017, doi: 10.3389/fmars.2017.00055.
G. Wang et J. Moisan, « Remote Sensing of Phytoplankton Pigments », in Plankton Communities, L. Pereira et A. Marta Gonçalves, Éd., IntechOpen, 2022. doi: 10.5772/intechopen.95381.
A. Cuartero, J. Cáceres-Merino, et J. A. Torrecilla-Pinero, « An application of C2-Net atmospheric corrections for chlorophyll-a estimation in small reservoirs », Remote Sensing Applications: Society and Environment, vol. 32, p. 101021, nov. 2023, doi: 10.1016/j.rsase.2023.101021.
G. Kulk et al., « Effect of Reduced Anthropogenic Activities on Water Quality in Lake Vembanad, India », Remote Sensing, vol. 13, no 9, p. 1631, avr. 2021, doi: 10.3390/rs13091631.
C. Brockmann et al., « Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters », août 2016. Consulté le: 5 août 2024. [En ligne]. Disponible sur: https://www.semanticscholar.org/paper/Evolution-of-the-C2RCC-Neural-Network-for-Sentinel-Brockmann-Doerffer/cc23d61fc8d72bef80218b6402ef437378793c8e
C. Brockmann et al., « Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters », août 2016. Consulté le: 5 août 2024. [En ligne]. Disponible sur: https://www.semanticscholar.org/paper/Evolution-of-the-C2RCC-Neural-Network-for-Sentinel-Brockmann-Doerffer/cc23d61fc8d72bef80218b6402ef437378793c8e
A. Ansper et K. Alikas, « Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes », Remote Sensing, vol. 11, no 1, p. 64, déc. 2018, doi: 10.3390/rs11010064.
Š. Tereza, RUS Webinar_ Freshwater Quality Monitoring with Sentinel-2 -, (2020).
R. Brewin et al., « A Printable Device for Measuring Clarity and Colour in Lake and Nearshore Waters », Sensors, vol. 19, no 4, p. 936, févr. 2019, doi: 10.3390/s19040936.
N. Menon et al., « Citizen Science Tools Reveal Changes in Estuarine Water Quality Following Demolition of Buildings », Remote Sensing, vol. 13, no 9, Art. no 9, janv. 2021, doi: 10.3390/rs13091683.
E. Coria-Monter, M. A. Monreal-Gómez, D. A. Salas de León, et E. Durán-Campos, « Water masses and chlorophyll-a distribution in a semi-enclosed bay of the southern Gulf of California, Mexico, after the “Godzilla El Niño” », Arab J Geosci, vol. 12, no 15, p. 473, août 2019, doi: 10.1007/s12517-019-4636-1.
J. D. H. Strickland et T. R. Parsons, A manual of sea water analysis, vol. 1. in Bulletin?; no. 125, no. W. E. RICKER N. M. CARTER, vol. 1. Ottawa: Fisheries Research Board of Canada, 1965.
J. D. H. Strickland et T. R. Parsons, « A Practical Handbook of Seawater Analysis, 2nd edition. », 1972, doi: 10.25607/OBP-1791.
S. A. Azad et V. J. Jinau, « Spatial Distribution of Dissolved Inorganic Nutrients and Phytoplankton around Kota Kinabalu Wetland, Sabah, Malaysia », ABC, vol. 10, no 04, p. 113?126, 2020, doi: 10.4236/abc.2020.104009.
S. F. Mahatsiaro et al., « Estimation of Chlorophyll-a concentration in Diégo-Suarez bay using Aqua-MODIS sensor », in The Trevor Platt Science Symposium and training, 7-11 August 2023, Plymouth, United Kingdom, Plymouth, UK, 2023.
A. Landy Soambola et al., « Biological and oceanographic analyzes of intoxication by marine animal consumption (Imac) precursors in diego suarez bay and northern-east of madagascar », p. 96?103, 2018. [En ligne]. Disponible sur: https://www.researchgate.net/publication/330543968
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Sciences: Basic and Applied Research (IJSBAR)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who submit papers with this journal agree to the following terms.