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Abstract 

Rainfall is one of climate elements with diverse intensity. In extreme circumtances it is necessary to study 

extreme rainfall to minimize impacts that may occur. Statistical downscaling is a method that can be used to 

predict rainfall, which is utilizing Global Circurlation Model (GCM) output data. The characteristics of GCM 

output data is curse of dimensionality which causes multicollinearity. Kernel trick is one method that can be 

used to overcome this problem by transforming GCM output data into a high-dimensional feature space. The 

transformation results are modeled with kernel quantile regression. This paper presents the use of kernel 

quantile regression to predict extreme rainfall, compared to kernel quantile regression with principal 

components. The result showed that based on the RMSEP values and the correlations, both models gave 

relatively similiar prediction. 

Keywords: curse of dimensionality; kernel trick; quantile regression; rainfall; statistical downscaling. 

1. Introduction  

Predicting rainfall in certain area can use Statistical Downscaling (SD) which utilizes output data from the 

General Circulation Model (GCM).  

------------------------------------------------------------------------ 
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SD modeled the functional relationship between global scale GCM output data as predictors with local scale 

rainfall data as the response. GCM output data is curse of dimensionality which causes multicollinearity. The 

suitable model in SD leads to the use of data driven models as well as nonparametric models which do not 

require strict assumptions [1].Various SD models were developed for estimating rainfall including extreme 

rainfall such as using quantile regression models. This models can detect extreme conditions, both extreme dry 

at Q(0.5), and extreme wet at Q(0.75), Q(0.90) and Q(0.95) [2]. The curse of dimensionality can be overcome 

by reducing dimension using principal component analysis (PCA) [3], by using regularization such as elastic-net 

[4] and lasso [5]. Spline quantile regression with PCA can also detect extreme rainfall [6]. Besides these 

methods, the kernel SVM using PCA and Radial Basis Function (RBF) can predict the monthly rainfall in the 

dry season at Q(0.03), Q(0.18), Q(0.28), and Q(0.45) [7]. In this research, the monthly rainfall is predicted using 

quantile regression. Curse of dimensionality in GCM output data is solved by kernel trick.GCM output data is 

transformed into features high dimensional spaces with the Gaussian RBF kernel function. The implementation 

of kernel function with regularization in the features space is carried out to regulate the error components and 

regularization components to obtain the optimal lambda. The optimal lambda in kernel quantile regression is 

used to predict extreme rainfall. The kernel trick method with PCA is compared to the kernel trick without PCA. 

2. Materials and Methods 

2.1.  Kernel Methods 

Kernel method maps the data from an input space to high-dimensional feature space [8]. The application of 

high-dimensional data is difficult to understand in computation, so mapping is carried out implicitly. Implicit 

mapping 𝜙𝜙  means that it is only needed to know the kernel function used, without knowing the nonlinear 

mapping function. The algorithm which works in kernel is known as kernel trick, expressed in the form of 

multiplication of two vectors product dot products in the feature space, which is denoted as 〈∙,∙〉ℋ.  

𝑘𝑘�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 〈𝜙𝜙(𝐱𝐱𝐢𝐢), 𝜙𝜙�𝐱𝐱𝐣𝐣�〉ℋ 

= 𝜙𝜙(𝐱𝐱𝐢𝐢)𝑇𝑇𝜙𝜙�𝐱𝐱𝐣𝐣�   (1) 

where 𝐱𝐱𝑖𝑖 and 𝐱𝐱𝑗𝑗 are the data in the input space and 𝜙𝜙 is nonlinear mapping from the input space to the feature 

space shown in Figure 1.  

 

(a) Input Space     (b) Feature Space 

Figure 1: Illustration of kernel method mapping 
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The Kernel function has several types, such as Kernel Gaussian RBF [9] 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = exp �− 1
2𝜎𝜎2

‖𝐱𝐱 − 𝐱𝐱′‖2�  (2) 

The advantage of using kernel tricks is to transform high-dimensional data so that it can solve various model 

problems. One of the problems is caused by curse of dimensionality which makes the parameter estimation 

process difficult [10]. 

Some disadvantages of using kernel tricks are (1) Mapping (𝜙𝜙) is carried out implicitly so that it loses the nature 

of its features, such as transformation and dimension. (2) Determining the suitable kernel type and kernel 

parameters in data does not have standard provisions, so it needs to be tested several times. (3) The greater the 

dimension to the feature space will increase the computation and storage costs. 

2.2. Kernel Quantile Regression  

Quantil regression is a statistical technique to model the quantile of conditional distribution in the response 

variable with explanatory variables [11]. The quantile regression (τ) uses the loss function as a solution of 

minimization 

𝑙𝑙𝜏𝜏(𝜉𝜉) = �
𝜏𝜏𝜏𝜏               jika 𝜉𝜉 ≥ 0
(𝜏𝜏 − 1)𝜉𝜉   jika 𝜉𝜉 < 0   (3) 

where 𝑙𝑙𝜏𝜏 is a loss function in the quantile of 𝜏𝜏 ∈ (0,1) . Based on 𝑙𝑙𝜏𝜏  quantile regression is defined with 

optimization, it is 

min𝑓𝑓∈ℋ
1
𝑛𝑛
∑ 𝑙𝑙𝜏𝜏𝑛𝑛
𝑖𝑖=1 �𝑦𝑦𝑖𝑖 − 𝑓𝑓0(𝑥𝑥𝑖𝑖)�             (4) 

to minimize the risk in equation (4) can be added with regularization 

min𝑓𝑓∈ℋ
1
𝑛𝑛
∑ ρ𝜏𝜏𝑛𝑛
𝑖𝑖=1 �𝑦𝑦𝑖𝑖 − 𝑓𝑓0(𝑥𝑥𝑖𝑖)� + 𝜆𝜆𝜆𝜆(𝑓𝑓𝑘𝑘)  (5) 

where 𝐽𝐽(∙) penalty of the regression function to prevent overfitting, and 𝜆𝜆 is the parameter which controls 𝐽𝐽(∙). 

The parameter regularization of 𝜆𝜆 controls between the regularization components and error components. 

The dual optimization problem in equation (5) can be solved by connecting it to the feature space written in the 

form of : 

𝑓𝑓𝑘𝑘(𝑥𝑥) = 〈ϕ(𝑥𝑥),𝑤𝑤〉  (6) 

Based on equation (6), the equation (5) will be the following form 

minimize min𝑤𝑤,𝑏𝑏,𝜉𝜉(∗) 𝐶𝐶 ∑ 𝜏𝜏𝜉𝜉𝑖𝑖 − (1 − 𝜏𝜏)𝜉𝜉𝑖𝑖
∗𝑚𝑚

𝑖𝑖=1 + 1
2
‖𝑤𝑤‖2 
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subject to  �
𝑦𝑦𝑖𝑖 − 〈𝜙𝜙(𝑥𝑥𝑖𝑖),𝑤𝑤〉 ≤ 𝜉𝜉𝑖𝑖
〈𝜙𝜙(𝑥𝑥𝑖𝑖),𝑤𝑤〉 − 𝑦𝑦𝑖𝑖 ≤ 𝜉𝜉𝑖𝑖

∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖
∗ ≥ 0

 

where 𝜉𝜉𝑖𝑖is the upper limit of error and 𝜉𝜉𝑖𝑖
∗is the lower limit of error from training data.Then, this dual problem is 

calculated by using Lagrange Multipliers, so that the solution is obtained as follows: 

𝑤𝑤 =  ∑ 𝛼𝛼𝑖𝑖ϕ(𝑥𝑥𝑖𝑖)𝑛𝑛
i=1  or 𝑓𝑓(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)𝑛𝑛

𝑖𝑖=1  

where 𝐾𝐾(𝑥𝑥𝑖𝑖 ,∙) is kernel function of 𝑖𝑖𝑡𝑡ℎ  from the training data, and 𝛼𝛼 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛)𝑇𝑇  with the assumption of 

kernel function coefficient vector. 

3. Research Methods 

3.1. Data 

Response data in this research is monthly rainfall data from years 1981 to 2013 in Indramayu District. These 

data are in ZOM 79 including Krangkeng, Sukadana, Karangkendal, and Gegesik stations. GCM output data are 

from CMIP5 (multi-model ensemble Phase 5 Couple Model Intercomparisson Project) in the website 

http://pcmdi-cmip.llnl.gov/cmip5. Data are located at 1.25° LS - 18.75° LS and 101.25° BT - 118.75° BT, 

consisting of 8×8 grid [1]. The GCM data is used as explanatory variables, so there are 64 explanatory variables. 

3.2. Methods 

The methods in this reseacrh consist of the following steps : 

1. Rainfall data exploration as preliminary information to observe the diversity of observational data. 

2. Determining the time-lag of GCM data based on rainfall data using Cross Correlation Function (CCF) 

[12].  

3. Reducing dimension of GCM-lag data using PCA. The number of principal components based on the 

95% cumulative proportion and the eigen values are greater than 1.  

4. Dividing the data into training data and testing data. Based on training data four models are then 

developed to predict one year rainfall. The models are as follows :  

a. Model 1 (M1) uses training data from 1981-2009 and testing data in 2010 

b. Model 2 (M2) uses training data from 1981-2010 and testing data in 2011 

c. Model 3 (M3) uses training data from 1981-2011 and testing  data in 2012 

d. Model 4 (M4) uses training data from 1981-2012 and testing data in 2013 

5. Developing models uses R programs in the package “kernlab”. The steps are as the following:  

a. Computation Kernel Gaussian RBF using function kernel “rbfdot” [13]. The value of 𝜎𝜎 is estimed 

based on 10-fold cross validation in the training data.  

http://pcmdi-cmip.llnl.gov/cmip5
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b. Applying the regularization to obtain the optimal value of λ with try-and-error method as many as 40 

experiments. It is started from 𝜆𝜆 =0.1 to 𝜆𝜆=20 with increment of 0.5. The optimal 𝜆𝜆 is based on the 

minimum error value almost close to zero and not negative [14].  

c. Developing kernel quantile regression based on the optimal λ for each Q(0.75), Q(0.90) and Q(0.95). 

The first model uses GCM-lag predictors without PCA and the second model uses GCM-lag predictors 

with PCA. 

6. Measuring the model goodness of fit based on the correlation and Root Mean Square Error of 

Prediction (RMSEP) with the formula of �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1 , where the value of 𝑛𝑛 is the number of 

observations, 𝑦𝑦𝑖𝑖is the actual data and  𝑦𝑦𝚤𝚤� is the estimated value. 

7. Testing  the consistency of the four models (M1, M2, M3 and M4). 

4. Results and Discussions 

4.1. Data Exploration 

Monthly rainfall in Indramayu District in from 1981 to 2013 has the average rainfall of 127.19 mm and the 

standard deviation 107.47 mm  showed that the rainfall data was quite diverse. The rainfall type in Indaramyu 

District is the Monsoon rainfall pattern like "U" letter shown in Figure 2. This pattern shows the clear 

differences between the rainy season and dry season periods in ZOM 79. 

 

Figure 2: Rainfall pattern of ZOM 79 region in Indramayu District in 1981-2013 

4.2. Kernel Quantile Regression 

4.2.1. Kernel Quantile Regression using GCM-lag Predictors 

The kernel quantile regression using GCM-lag predictors with regularization carried out by try-and-error 

method to determine the optimal lambda. The optimal lambda prevents overfitting, so that the model becomes 
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more accurate and more stable. The selected optimal lambda based on error changes close to zero and not 

negative. The lambda values of Q(0.75), Q(0.90) and Q(0.95) are different as presented in Table 1. This optimal 

lambdas are used to predict rainfall in 2013. The predicted rainfall are close to the actual rainfall shown in 

Figure 3. 

Table 1: Optimal Lambda Values using GCM-lag Predictors 

Quantile Lambda Error Error Change 

0.75 10.0 0.103 0.00 

0.90 3.0 0.075 0.00 

0.95 2.0 0.058 0.00 

 

 

Figure 3: Prediction of kernel quantile regression model without PCA for rainfall in 2013 

4.2.2. Kernel Quantile Regression using PC predictors of GCM-lag 

In previous studies, the quantile regression used PCA to solve curse of dimensionality in GCM data [3] and [6]. 

The number of principal components (PC) as predictors in the models are usually as many as four PCs of GCM-

lag data. They are 1PC, 2PC, 3PC and 4PC. The selection of PCs are based on the total cumulative proportion of 

95% and the feature eigen values are more than 1 shown in Table 2.  

Table 2: Eigen value and Cumulative Proportion 

PCs Eigen 

Values  

Diversity 

Proportion  

Cumulative 

Proportion 

1PC 54.04 0.840 0.84 

2PC 2.95 0.040 0.89 

3PC 2.17 0.030 0.92 

4PC 1.31 0.020 0.94 

5PC 0.8 0.010 0.96 

⋮ ⋮ ⋮ ⋮ 
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Kernel quantile regression is developed with four PCs as explanatory variables and rainfall as response variable. 

The process of optimal lambda determination in this model is the same as the process in kernel quantile 

regression using GCM-lag predictors. Table 3 shows the optimal lambda values for each quantil. This optimal 

lambdas are used to predict rainfall in 2013. The predicted rainfall are also close to the actual rainfall shown in 

Figure 4. 

Table 3: Optimal Lambda Value With PCA 

Quantile Lambda Error Error Change 

0.75 3.5 0.185 0.002 

0.90 2.0 0.110 0.000 

0.95 4.5 0.061 0.000 

 

Figure 4: Prediction of kernel quantile regression model withPCA for rainfall in 2013 

4.2.3. Goodness of Fit Test 

The goodness of fit of the two models are tested based on RMSEP and correlation between actual predicted 

rainfall (show in Table 4). Based on Table 4 both the model using GCM-lag predictors and the model using PC 

predictors of GCM-lag give relatively similar RMSEP and correlation value. The first model is better than 

second model because the first model does not need to dimension reduction, so the computation is simpler and 

faster. 

Table 4: RMSEP and Correlation using GCM-lag and using PC of GCM-lag 

Quantile GCM-lag PC of GCM-lag 
RMSEP Correlation RMSEP Correlation 

0.75 93.23 0.63 83.93 0.69 
0.90 106.68 0.69 96.71 0.71 
0.95 121.09 0.73 123.64 0.74 

4.3. Consistency 
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The consistency of the model is necessary to know the prediction stability in different times [1]. Four rainfall 

models are validated based on the optimal lambda value by calculating RMSEP and the correlation in each 

quantile. Table 5 shows that the RMSEP of Q(0.75) on averages is lower than that of Q(0.90) and lower than 

that of Q(0.95). While, Table 6 shows that the average of correlation is about 0.7 and the standard deviation is 

about 0.13.  

The rainfall predictions using both models are relative the same, so that both models are consistent in rainfall 

estimation. 

Table 5: RMSEP of Kernel Quantile Regression using GCM-lag and using PC of GCM-lag 

Model 

RMSEP 

GCM-lag PC of GCM-lag 

Q(0.75) Q(0.90) Q(0.95) Q(0.75) Q(0.90) Q(0.95) 

M1 (Year of 2010) 81.76 89.42 99.42 82.19 91.34 100.41 
M2 (Year of 2011) 87.79 128.89 147.8 104.53 128.44 156.77 
M3 (Year of 2012) 79.71 128.63 162.98 104.8 148.5 169.05 
M4 (Year of 2013) 83.93 96.71 123.64 93.23 106.62 121.1 

Average 83.3 110.91 133.46 96.18 118.72 136.83 
Standard Deviation 3.46 20.82 27.88 10.78 25.02 31.67 

Table 6: Correlation of Kernel Quantile Regression using GCM-lag and using PC of GCM-lag 

Model 

Correlation 

GCM-lag PC of GCM-lag 

Q(0.75) Q(0.90) Q(0.95) Q(0.75) Q(0.90) Q(0.95) 

M1 (Year of  2010) 0.66 0.63 0.67 0.6 0.63 0.57 
M2 (Year of 2011) 0.53 0.65 0.7 0.66 0.7 0.72 
M3 (Year of 2012) 0.85 0.91 0.92 0.89 0.93 0.91 
M4 (Year of 2013) 0.69 0.71 0.74 0.63 0.69 0.74 
Average 0.68 0.72 0.76 0.7 0.74 0.73 
Standard Deviation 0.13 0.13 0.11 0.13 0.13 0.14 

5. Conclusions 

Statistical Downscaling model using kernel quantile regression with GCM-lag predictors and the model with 

principal component predictors of GCM-lag predicted a relative similar extreme rainfall and consistent. The 

kernel quantile regression model using CGM-lag predictors was simpler and faster computation because the 

model did not need dimension reduction process. 
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