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Abstract 

In this work the m-machine permutation flow-shop problem has been considered. The permutation flow-shop 

scheduling problem where a set of jobs have to be scheduled on a set of machines in the same order. We 

propose  heuristic algorithms for the flow-shop problem to minimizing the total tardiness. A new genetic and 

Tabu search algorithm which initialized by the solution of EDD, NEH and EN algorithm. Computational 

experiments are performed on benchmark instances and the results show the good performances of these 

methods. Finally, some future research directions are given. 
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1. Introduction 

We consider in this paper the permutation flow-shop scheduling problem, one of the most famous scheduling 

problems. We consider that there is a set J  = {J1, ..., Jn} of n jobs to schedule on a set M = {M1, ..., Mm} of m 

machines. A machine can process only one job at a time and we assume that the machines are immediately 

available. All the jobs have the same routing, they are processed in the same order, i.e. on machine M1 first and 

then on machine M2, M3, etc. Also we assume that the sequence of jobs on each machine is the same. We denote 

by pi,j the processing time of Jj on machine Mi and dj is the due date of Jj. Variable Cj denotes the completion 

time of job Jj and variable Tj its tardiness, dened by Tj = max(Cj - dj, 0), ∀j , 1 ≤ j ≤ n. 

------------------------------------------------------------------------ 
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The objective is to minimize the total tardiness denoted by ∑𝑇𝑇𝑗𝑗 =  ∑ 𝑇𝑇𝑗𝑗𝑛𝑛
𝑗𝑗=1 . The problem is classically denoted 

by 𝐹𝐹|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|∑𝑇𝑇𝑗𝑗 [1], where prmu indicates a “permutation flow-shop" (same sequence on each machine). This 

problem is known to be NP-hard in the ordinary sense when there is a single machine and NP-hard in the strong 

sense for m ≥ 2 [2, 3]. 

The literature contains a lot of papers dealing with this problem, some of them dealing with the particular case 

of two machines. In the case of two machines, some exact methods have been proposed such as branch-and-

bound algorithms [4–6]. In [7], instances with up to 24 jobs can be solved to optimality, which shows the diculty 

to solve this problem with only two machines. Some heuristic approaches have been proposed, such as greedy 

heuristics using priority rules or inspired by NEH algorithm [8], and a shifting bottleneck procedure [9]. Some 

metaheuristics have also been proposed in the literature, such as simulated annealing [10], tabu search 

algorithms [11–15], genetic algorithms [16], particle swarm optimization [17, 18]. Della Croce and his 

colleagues [19] and Ta and his colleagues [20], the authors propose a matheuristic method for this problem, etc. 

For the m-machine flow-shop scheduling problem, Onwubolu and Mutingi propose in [16] a genetic algorithm 

minimizing a combination of the total tardiness and the number of tardy jobs. In the survey of Vallada, Ruiz and 

Minella [21], a lot of algorithms are implemented and compared. A neighborhood search algorithm based on the 

permutation of blocks of consecutive jobs seems to be one of the most ecient methods. In [22], the authors 

propose three genetic algorithms including advanced techniques such as path relinking, local search, and a 

procedure to control the diversity of the population. Victor Ferrnadez-Viagas and his colleagues [23] propose 

several tie-breaking mahanisms for the NEH to solve the problem. We do not mention the wide literature 

concerning flow-shop problems with total completion time minimization (equivalent to the total tardiness if due 

dates are all equal to 0), but a lot of exact and approximate methods have also been proposed. The interested 

reader can  find a more complete state-of-the art survey on the m-machine flow-shop problem with total 

tardiness and makespan minimization in [21, 24]. 

In this paper, we propose several genetic and Tabu search algorithms which initialized by the solution of a EDD, 

NEH algorithm. The solutions of the Tabu search algorithm are compared to the solutions of the genetic 

algorithm. For the evaluation, 108 benchmark instances proposed in [21] have been used. The rest of the paper 

is organized as follows. In Section 2, the resolution methods are described. In Section 3 reports the settings of 

the methods and the computational results. A conclusion and some future research directions are proposed in 

Section 4. 

2. Resolution methods 

In this section, we propose several heuristics and metaheuristic algorithms. Two basic heuristic algorithms, EDD 

and NEH, that run in O(n log n) time. We present two metaheuristics developed for solving our problem. The 

first is a genetic algorithm, the second is a Tabu search. We give some basic notions on algorithms and then we 

describe our implementation. 

2.1. EDD algorithm 
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EDD (Earliest Due Date): jobs are sorted in the due date non decreasing order, i.e. d[1] ≤ d[2] ≤ ... ≤ d[n] where 

d[k] is the due date of the job in position k. The algorithm is described in Table 1 

Table 1: EDD algorithm 

Algorithm 1: EDD algorithm 

1: Input: S = a set of jobs, 

2: Sorted: the jobs by non decreasing order of dj , 

3: Output: A set of jobs sorted in non decreasing order of dj 

 

2.2. NEH algorithm 

In [8], the authors develop NEH heuristic for m-machine flow-shop scheduling problem with makespan 

minimization. We propose and apply the method for minimizing the total tardiness for the m-machine 

permutation flow shop scheduling problem. NEH algorithm is described in details for the problem below (see 

Table 2). 

Table 2: NEH algorithm 

Algorithm 2: NEH algorithm 
1: Input: S = jobs sorted in the decreasing order of Pj, 
2: where 𝑃𝑃𝑗𝑗 =  ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑚𝑚

𝑖𝑖=1 ,∀𝑗𝑗 = 1, … ,𝑛𝑛 
3: Consider the partial sequence with minimum total tardiness and minimum makespan in case of ties among 
{(S[1], S[2]), (S[2], S[1])} 
4: for k = 3 to n do 
5:     Test the insertion of S[k] at any possible position in S’ from 1 to k + 1 
6:     Keep the best insertion, i.e. the insertion with minimum ΣTj , and the insertion with minimum makespan   
        in case of ties. 
7: end for 

 

2.3. Genetic algorithm 

• Principles of a genetic algorithm 

Genetic algorithms (GA) have been originally proposed by Holland [25]. This is a general search technique 

where a population composed by individuals evolves following nature inspired mechanisms called “genetic 

operators”. The population is composed by individuals that are valuated by a fitness, which is often related to 

the objective function. 

Starting from an initial population, new solutions are generated by selecting some “parents” randomly, but with 
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a probability growing with fitness, and by applying genetic operators such as selection, crossover and mutation, 

which introduces random modifications. Some existing solutions are randomly selected for crossover, some 

solutions are selected for mutation, and a new population of the same size is obtained. The process is repeated 

until a given stopping criterion is reached, e.g. a time limit or when a sufficiently satisfactory solution has been 

found.  

Genetic algorithms have been largely used for solving scheduling problems. According to [26], the main steps 

of a genetic algorithm are: 

1. Generation of the initial population P0, 

2. Evaluation of the fitness of each individual, 

3. Selection of the individual couples in population Pk-1, 

4. Application of the crossover operator: with a probability ρc, two individuals of Pk-1 will be crossed to 

create two new individuals in a set Ck, 

5. Application of the mutation operator: with a probability ρm, each individual is modied by a mutation and 

inserted in a set Mk, 

6. Replace population Pk-1 by population Pk: Pk contains the PopSize best individuals of Pk-1 ∪ Mk ∪ Ck. 

7. Repeat the process at step 2 until a stopping condition is satisfied. 

A genetic algorithm is designed by several parameters of high importance. First of all, there are several ways for 

coding a solution. In our scheduling problem, solving the problem is equivalent to  finding a sequence of jobs, 

and it is generally convenient to consider that an individual is exactly this sequence. This is called in the 

litterature “direct encoding” because an individual corresponds to a solution without ambiguity. For more 

complicated scheduling problems such as job-shop or parallel machine problems, an individual may represent a 

list of jobs, but an algorithm has to be used to determine the corresponding solution. This is called in the 

literature “undirect encoding” because an individual does not correspond “immediately” to a solution.  

The other key points in a genetic algorithm are the crossover and the mutation operators. The literature contains 

a lot of definitions, strongly related to the coding definition. For classical scheduling problems, the most famous 

crossover operators are 1-point crossover up to k-point crossover. Mutation generally consists in changing 

arbitrarily an element of an individual. Fixing the probabilities ρc of crossover and ρm of mutation is not an easy 

task. It is generally done after some preliminary computational experiments on a subset of the data set. A survey 

of the applications of genetic algorithms to scheduling problems can be found in [27]. 

• Genetic operators 
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Coding: The crucial step in designing a Genetic algorithm is to de ne an encoding, i.e. a way to represent a 

solution. In the case of the m-machine permutation flow shop scheduling problem with n jobs indexed from 1 to 

n, an individual is represented by a permutation. 

Initial population: The initial population P0 contains PopSize individuals. One individual is obtained by 

sequencing the jobs according to a given rule. The other individuals are randomly generated. The way that the  

first individual is generated leads to different versions of the algorithm. If the first individual is given by EDD 

rule (see Table 1), the method is called in the following GAEDD. If the initial sequence is given by applying an 

adaptation of NEH algorithm [8] (described in Table 2), the method is called in the following GANEH. Finally, if 

one initial sequence is given by the best among EDD and NEH, the method is called GAEN. 

Fitness: The fitness of an individual S is the value of the objective function ΣTj (S) of the corresponding 

sequence. 

Crossover: Severla crossover operators are used: the one-point crossover (X1) [28] and the linear order 

crossover (LOX) [28], the Similar Job Order Crossover or (SJOX), the Similar Block Order Crossover or 

(SBOX) and the Similar Block 2-Point Order Crossover or (SB2OX) [29]. The operators are described the 

follow: 

- X1: One crossover point is randomly generated. Let A = A1 // A2 and B = B1 // B2 be the two parents. Two 

offsprings are calculated. Offspring 1 denoted by O1 contains the jobs of A1 in the order of A and the jobs of A2 

in the order of B. Offspring 2 denoted by O2 contains the jobs of B1in the order of B and the jobs of B2 in the 

order of A. 

 

 

 

 

Figure 1: Illustration of two crossover operators 

- LOX: Two different crossover points are randomly generated. Let A = A1 // A2 // A3 and B = B1 // B2 // B3 

be the two parents. Two offsprings are calculated. Offspring 1 denoted by O1 contains in the middle the jobs of 

A2 in the order of A. The jobs of A1 ∪ A3 in the order of B fill the first and the last part of A. Offspring 2 

denoted by O2 contains in the middle the jobs of B2 in the order of B. The jobs of B1 ∪ B3 in the order of A  fill 

the  first and the last part of B. The two crossover operators are illustrated in Figure 1 

In our genetic algorithm, the crossover operator is chosen randomly, with equal probability. 
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Mutation: We denote by S the current sequence. The mutation operators applied to S = S1/ S[i] / S2 / S[j] / S3 with 

S1, S2 and S3 three subsequences of S and S[i] and S[j] the jobs in positions i and j in S (i < j), two positions i and j 

(j > i) are randomly choosen. The mutation operators [30], [31] be created as follows (see Figure 2): 

- SWAP: A neighbor of S is created by interchanging the jobs in position i and j, leading to sequence S’ = S1 / 

S[j] / S2 / S[i] / S3. 

- EBSR (Extraction and Backward Shifted Re-insertion): A neighbor of S is created by extracting S[j] and re-

inserting S[j] backward just before S[i], leading to sequence S’ = S1 / S[j] / S[i] / S2 / S3. 

- EFSR (Extraction and Forward Shifted Re-insertion): A neighbor of S is created by extracting S[i] and re-

inserting it forward immediately after S[j], leading to a sequence S’ = S1 / S2 / S[j] / S[i] / S3. 

- Inversion: A neighbor of S is created by inserting S[j] / 𝑆𝑆2′  / S[i] between S1 and S3, where 𝑆𝑆2′  is the inverse of 

sequence S2. 

 

 

 

 

 

 

Figure 2: Illustration of mutation operators 

Selection and generational scheme: At iteration k, two parents are randomly selected in population Pk-1. The two 

crossover operators are applied on the two parents, generating four offsprings, inserted into population set Ck. 

The process is repeated until CrossSize offsprings have been generated. The mutation operator is applied on 

randomly selected individuals of population Pk-1. The new individuals constitute a population Mk of size 

MutSize. The PopSize best individuals of Pk-1 ∪ Ck ∪ Mk constitute population Pk. 

Stopping criterion: The process iterates until a given time limit has been reached. This time limit is denoted by 

TimeLimGA. 

A lot of parameters and operators have been tested for the genetic algorithms, it concerns: the generation on the 

initial population, the crossover operators, the mutation operators. 

2.4. Tabu search algorithm 

Tabu search (TS) has been initially proposed by Glover [32,33]. TS is a metaheuristic local search algorithm 

that begins with an initial solution and successively moves to the best solution in the neighborhood of the 

 

Inversion 

’ 
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current solution. The algorithm maintains a list of forbidden solutions, to prevent the algorithm from visiting 

solutions already examined (these solutions are called tabu). The elements of our TS algorithm are described 

below. 

• Initial solution 

The proposed tabu search algorithm starts from an initial solution. This initial solution is classically generated 

by using simple heuristic methods, such as EDD, SPT, NEH, etc. In this paper, we propose different initial 

solutions are considered. If the initial solution is given by EDD rule in Table 1, the method is denoted by TSEDD. 

If the initial sequence is given by applying an adaptation of NEH algorithm (see Table 2), the method is denoted 

by TSNEH. Finally, if the initial sequence is given by the best solution beetween EDD and NEH, the method is 

denoted by TSEN. 

• Neighborhood definition  

We denote by S the current sequence. We denote by N(S) the set of all neighbors of S which can be created by 

SWAP, EBSR, EFSR, Inversion operators (see Figure 2). 

• Moves and selecting the best neighbor  

The objective function is the total tardiness. The best neighbor in the candidate list is the non-tabu sequence 

which generates the smallest total tardiness. The move strategy which is applied to the list is the first-in-first-out 

(FIFO) strategy. Old attributes are deleted as new attributes are inserted. 

• Tabu list  

The size of the tabu list is a very important parameter, which can be either fixed or variable. In [32,33], the 

author provided some general methods of tabu list implementions.  

In [12] the authors generate a tabu list by storing attributes of the visited permutations, defined by certain pair of 

adjacent jobs. Our tabu list contains pairs of positions (i, j), corresponding to the neighborhood definition and 

the size of the tabu list is fixed. 

• Stopping condition  

The algorithm is stopped when the time limit has been reached. This time limit is denoted by TimeLimitTS. 

• Detailed algorithm 

The detailed TS algorithm is given in Table 3. FlagSwap, FlagNB with NB ∈ {EBSR, EFSR, Inversion} allow 

to make a selection of the neighbors. LimitSwap, LimitNB allow to limit the size of the neighborhood. Del(T) 

deletes the upper element of the Tabu list and Add(T, (k, j)) adds element (k, j) to the Tabu list. 
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Table 3: Tabu Search algorithm 

Algorithm 3: Tabu Search algorithm 
1: Initialization 
2: S0 = initial solution, S = current solution 
3: S’ = S0 // best solution of N(S) 
4: S* = S0 // best solution of N(S) and non-tabu 
5: f* = f(S0) // f* value of S* and f(S0) value of S0 
6: T = ∅; // T is the tabu list 
7: while (CPU ≤ TimeLimitTS) do 
8:      f(S’) = ∞, 
9:      for k = 0 to n - 1 do 
10:         for j = k + 1 to n do 
11:              if (FlagSwap = 1) and (j - k ≤ LimitSwap) then 
12:                   S = S’, f(S) = f(S’), SWAP(S, (k, j)), 
13:                   if ((k, j) ∉ T) then 
14:                        Calculate(f(S)), 
15:                        if (f(S) < f(S’)) then S’ = S, f(S’) = f(S), move = (k, j), end if 
16:                   end if 
17:              end if 
18:              if (j ≠ k + 1) and (FlagNB = 1) and (j - k ≤ LimitNB) then 
19:                  S = S’, f(S) = f(S’), NB(S, (k, j)), 
20:                  if ((k, j) ∉ T) then 
21:                       Calculate(f(S)), 
22:                       if (f(S) < f(S’)) then S’ = S, f(S’) = f(S), move = (k, j), end if 
23:                  end if 
24:              end if 
25:         end for 
40:    end for 
41:    if (f(S’) < f*) then S* = S’, f* = f(S), end if 
42:    if (SizeTabu ≥ TabuMax) then Del(T) end if 
43:    Add(T, (k, j)) 
44: end while 

 

3. Computational experiments 

The algorithms have been tested on a PC Intel coreTMi5 CPU 2.4GHz. 108 benchmark instances proposed in 

[34] have been used for the evaluation. Nine instances of these benchmark instances are used for each 

combination of n and m, with n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}. In these instances, the processing 

times are uniformly distributed between 1 and 99. The due dates are generated with an uniform distribution 

between P(1 - τ - ρ/2) and P(1 - τ - ρ/2) following the method of Potts and VanWassenhove [35] with P a lower 

bound of the makespan and  τ  and ρ two parameters called tardiness factor and due date range, which take the 

following values: τ ∈ {0.2, 0.4, 0.6}, ρ ∈ {0.2, 0.6, 1}. The  first instance (among five) of [34] for each tuple (n, 

m, τ, ρ) has been used for the tests, which gives the108 instances. In all tables, each line summarizes the results 

for 9 instances and of course, the methods may return solutions with the same quality, so the total per line of 

‘Best’ may exceed 9. 

3.1. Comparison of the genetic algorithms 
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The time limit of the GA is  fixed to TimeLimGA = (n(m/2) x 90)/1000 seconds (as dened in [21]). For the 

genetic algorithms, a lot of preliminary experiments have been conducted for the parameters settings. At the 

end, two parameters sets seem to lead to the best results, denoted case 1 and case 2. 

Table 4: The two case of parametres 

 

For the same instance, the genetic algorithm has been executed ten times and it returns quite always solutions 

with the same quality.  The average relative deviation between ten runs is less than 3%. 

∆G= 
GAx(G)- min�GAx(EDD), GAx(NEH), GAx(EN)�  

GAx(G)      (1) 

The several GA methods are compared in terms of quality.  In Table 5 and Table 6, column ‘Best’ for ‘GAx(G)’ 

with (x ∈  {1, 2}), (G ∈ EDD, NEH, EN) indicates the number of times the method GAx(G) outperforms the 

other methods, column Cpu(s) indicates the average computation time of GAx(G) per nine instances, column 

`∆G' indicates the average deviation between GAx(G) and the best method between GAx(EDD), GAx(NEH) and 

GAx(EN). 

Table 5: Comparison of genetic algorithms of case 1 

 

  case1 case2 

PopSize = |Pk| 150 150 

CrossSize = |Ck| 200 600 

MutSize = |Mk| 100 360 

 

n × m 
GA1(EDD) GA1(NEH) GA1(EN) 

Best Cpu(s) ∆GA1EDD Best Cpu(s) ∆GA1NEH Best Cpu(s) ∆GA1EH 

50 × 10 5 22.00 0.79% 5 22.00 2.78% 3 22.00 3.83% 

50 × 30 3 67.01 2.76% 3 67.00 2.70% 3 67.00 3.92% 

50 × 50 5 112.01 1.22% 0 112.01 2.62% 4 112.01 1.61% 

150 × 10 6 67.02 0.49% 5 67.02 4.35% 2 67.02 6.58% 

150 × 30 7 202.04 1.53% 2 202.02 3.46% 2 202.05 4.70% 

150 × 50 3 337.05 1.39% 2 337.03 5.81% 3 337.05 1.93% 

250 × 10 8 112.03 0.08% 3 112.04 4.60% 4 112.07 5.76% 

250 × 30 7 337.05 0.23% 2 337.05 7.09% 4 597.56 5.40% 

250 × 50 5 562.08 1.07% 3 562.06 5.21% 3 562.06 2.15% 

350 × 10 8 157.09 0.58% 2 157.03 17.13% 4 157.07 4.47% 

350 × 30 8 472.13 0.06% 1 472.06 15.83% 3 472.10 4.20% 

350 × 50 6 787.09 0.23% 1 787.11 6.22% 4 787.14 3.00% 

Sum/avg 71 269.55 0.87% 29 269.54 6.48% 39 291.26 3.96% 
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Table 6: Comparison of genetic algorithms of case 2 

 

 

 

 

 

 

 

 

 

Table 7: Comparison of best genetic algorithms of case 1 and case 2 

 

In Table 7, column ‘Best’ for ‘GAx(EDD)’ (x ∈  {1, 2}) indicates the number of times the method GAx(EDD) 

outperforms the other methods, column Cpu(s) indicates the average computation time of GAx(EDD) per nine 

instances, column ‘∆x’ indicates the average deviation between GAx(EDD) and the best method between 

n × m 
GA1(EDD) GA2(EDD) 

Best Cpu(s) ∆1EDD Best Cpu(s) ∆2EDD 

50 × 10 6 22,00  2,79%  5 22,03  2,79%  

50 × 30 3 67,01  1,48%  6 67,11  1,48%  

50 × 50 2 112,01 0,12%  7 112,04 0,12%  

150 × 10 6 67,02  1,29%  5 67,12  1,29%  

150 × 30 4 202,04 0,49%  6 202,09 0,49%  

150 × 50 2 337,05 0,07%  7 337,15 0,07%  

250 × 10 6 112,03 1,33%  6 112,19 1,33%  

250 × 30 6 337,05 1,86%  4 337,18 1,86%  

250 × 50 6 562,08 2,57%  4 562,26 2,57%  

350 × 10 9 157,09 9,90%  2 157,21 9,90%  

350 × 30 6 472,13 1,61%  5 472,24 1,61%  

350 × 50 6 787,09 2,04%  4 787,39 2,04%  

Sum/avg 62 269,67  1,39% 61 269,55 2,96% 

 

n × m 
GA2(EDD) GA2(NEH) GA2(EN) 

Best Cpu(s) ∆GA2EDD Best Cpu(s) ∆GA2NEH Best Cpu(s) ∆GA2EH 

50 × 10 7 22.03 0.23% 4 22.02 2.66% 4 22.03 2.66% 

50 × 30 5 67.11 1.71% 4 67.04 2.00% 4 67.05 2.00% 

50 × 50 6 112.04 0.67% 3 112.04 2.25% 3 112.05 2.25% 

150 × 10 7 67.12 0.59% 2 67.09 12.10% 2 67.16 6.67% 

150 × 30 8 202.09 0.16% 2 202.13 4.49% 3 202.14 3.78% 

150 × 50 6 337.15 0.49% 3 337.17 5.83% 3 337.14 2.59% 

250 × 10 8 112.19 0.15% 2 112.38 21.08% 3 112.32 7.47% 

250 × 30 7 337.18 9.95% 2 337.35 6.30% 2 337.21 16.18% 

250 × 50 6 562.26 0.23% 3 638.75 4.36% 3 562.36 2.68% 

350 × 10 8 157.21 0.78% 2 157.62 24.84% 2 157.35 14.29% 

350 × 30 8 472.24 0.23% 2 472.27 6.29% 1 472.45 17.59% 

350 × 50 7 787.39 0.70% 1 787.43 7.01% 1 787.76 5.47% 

Sum/avg 83 269.66 1.32% 30 276.10 8.27% 31 269.75 6.97% 
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GA1(EDD) and GA2(EDD). We can see that the genetic algorithm (GA1(EDD)) with the initial population given 

by EDD rule and the parameters of case 1 (see Table 4) leads to the best results. The average deviation between 

the solutions returned by this method and the best solutions is 1,39%. This value is around 2,96% for 

GA2(EDD). Algorithm GA1(EDD) has been used in the following for the comparisons with the Tabu search 

algorithms. 

∆x(EDD)= 
GAx(EDD)- min�GA1(EDD), GA2(EDD)�

GAx(EDD)    (2) 

3.2. Comparison of Tabu search algorithms 

For the Tabu search algorithms, a lot of preliminary experiments have conducted to the following parameters 

settings. The time limit of TS is TimeLimTS = (n(m/2) x 90)/1000 seconds. The TS methods have been executed 

with four Tabu list parameters λ ∈ {20, 40, 60, 120} and the initial solutions EDD, NEH or EN rule. The 

parameter (λ = 40) leads to the best results all three initial solutions.The three best TS methods are compared in 

terms of quality. In Table 8, column ‘Best’ for ‘TSλ(T)’ (with λ is a number element of Tabu list (λ = 40), T is 

an initial solution (T ∈ {EDD, EN, NEH}) which indicates the number of times the method TSλ(T) outperforms 

the other methods, column Cpu(s) indicates the average computation time of TSλ(T) per nine instances, column 

‘∆T’ indicates the average deviation between TSλ(T) and the best method between TS40(EDD), TS40(EN) and 

TS40(NEH). 

Table 8: Comparison of Tabu search algorithms 

 

We can alsosee from Table 8, that the Tabu search algorithm where the initial solution is given by EDD rule 

n × m 
TS40(EDD) TS40(NEH) TS40(EN) 

Best Cpu(s) ∆EDD Best Cpu(s) ∆NEH Best Cpu(s) ∆EH 

50 × 10 6 22,01  0,23%  4 22,00  0,72%  5 22,01  0,63%  

50 × 30 7 67,02  0,15%  2 67,03  1,93%  0 67,06  1,81%  

50 × 50 7 112,04 0,28%  1 112,06 1,14%  2 112,05 1,12%  

150 × 10 5 67,18  1,53%  6 67,02  0,88%  2 67,22  6,26%  

150 × 30 8 202,28 2,60%  1 202,62 5,74%  2 202,74 2,11%  

150 × 50 8 337,78 0,01%  1 338,18 8,30%  0 337,72 0,69%  

250 × 10 7 112,67 0,75%  4 112,74 1,83%  4 113,10 1,51%  

250 × 30 7 338,47 0,05%  3 339,38 3,93%  4 339,10 3,97%  

250 × 50 7 565,79 0,22%  3 566,30 2,15%  2 565,65 4,73%  

350 × 10 9 159,00 0,00%  4 158,28 2,20%  2 159,08 3,88%  

350 × 30 6 476,29 1,30%  3 478,27 5,30%  2 475,08 4,06%  

350 × 50 8 793,20 0,08%  2 797,05 4,94%  2 799,20 6,33%  

Sum/avg 85  271,14 1,43%  34  271,74 4,09%  27  271,33 4,76%  
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leads to the best results. On average, the deviation between the solutions returned by this method and the best 

solutions is 1,43%. These values are around 4,09% for TS40(EN) and 4,76% for TS40(NEH).  

∆T = 
TSλ(T)-min(TS40(EDD), TS40(NEH), TS40(EN))  

TS40(G)   (3) 

3.3. Comparison of the best algorithm among GA and TS  

 Now, the best algorithms GA and TS are compared. The results are presented in Table 9. Column ‘Best’ for 

‘Algo’ with Algo ∈ {GA1(EDD) TS40(EDD)} which indicates the number of times the method Algo outperforms 

the other methods, column Cpu(s) indicates the average computation time of Algo per nine instances, column 

‘∆Algo’ indicates the average deviation between GA1(EDD) and TS40(EDD). 

Table 9: Comparison of the best  GA and TS algorithm 

 

 

 

 

 

 

 

 

 

∆Algo= 
Algo-min(GA1(EDD), TS40(EDD))  

Algo
  (4)       

The best results are given by the Tabu search initialized by EDD rule. The average deviation between 

TS40(EDD) and the best solution is 1,03%, the average computation time of TS40(EDD) per 108 instances is 

271,17 seconds. These values are 7,09% and 269,55 seconds for GA1(EDD). 

4. Conclusion 

We consider in this paper the m-machine flow shop scheduling problem, with the objective to minimize the total 

tardiness. We propose two greedy algorithms (EDD and NEH), GA and TS algorithms which are initiated by 

n × m 
GA1(EDD) TS40(EDD) 

Best Cpu(s) ∆1EDD Best Cpu(s) ∆2EDD 

50 × 10 2 22.00 7.54% 9 22.01 0.00% 

50 × 30 0 67.01 8.94% 9 67.02 0.00% 

50 × 50 0 112.01 4.60% 9 112.04 0.00% 

150 × 10 2 67.02 10.93% 9 67.18 0.00% 

150 × 30 2 202.04 6.49% 8 202.28 0.01% 

150 × 50 0 337.05 13.00% 9 337.78 0.00% 

250 × 10 3 112.03 5.02% 9 112.67 0.00% 

250 × 30 3 337.05 1.89% 8 338.47 0.13% 

250 × 50 3 562.08 1.57% 7 565.79 0.67% 

350 × 10 2 157.09 17.76% 9 159.35 0.00% 

350 × 30 2 472.13 4.18% 8 476.19 11.11% 

350 × 50 2 787.09 3.19% 8 793.20 0.38% 

Sum/avg 21 269.55 7.09% 102 271.17 1.03% 
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EDD, NEH, EN solution. The neighborhood operators have also applied for the GA and TS method. The 

algorithms are tested and evaluated from 108 benchmark instances of  Vallada and his colleagues [21]. Many 

parameters for each method have been tested. The results obtained by the proposed algorithms show that TS 

method outperforms GA. The algorithms initiated by EDD heuristic are always better than the algorithms 

initiated by EN or NEH. Several research directions can be considered for a future work. The  first idea is to 

embed the resolution of the MILP (Mixed Integer Linear Programming) model into the GA, TS or into another 

metaheuristic, as a new neighborhood operator. A second idea is to find better crossover and mutation operators, 

in order to improve the genetic algorithm. A third idea is to propose a simulated annealing algorithm to be 

compared to the GA, TS algorithms for m-machine permutation flow shop scheduling problem. Finally, the 

metaheuristic methods that are proposed here can be used for minimizing the total tardiness in more complicated 

scheduling problems such as an integrated flow shop scheduling and vehicle routing problem. 
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