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Abstract 

The transitivity, primitivity, rank and subdegrees, as well as pairing of the suborbits associated with the action 

of the actions of the direct product 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛, of the symmetric group  𝑆𝑆𝑛𝑛   by the alternating group 𝐴𝐴𝑛𝑛   alternating 

on the Cartesian product  𝑋𝑋 × 𝑌𝑌 , where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}  and 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛}  are disjoint sets each 

containing n elements is an area that has never received attention from researchers for a very long time. In this 

paper, we prove that the action is both transitive and imprimitive when 𝑛𝑛 ≥ 3. Also, we establish that that the 

rank is 6 if 𝑛𝑛 = 3, but is 4 for all 𝑛𝑛 ≥ 3. In addition, we show in this paper that the subdegrees associated with 

the action are 1, (𝑛𝑛 − 1), (𝑛𝑛 − 1), (𝑛𝑛 − 1)2. Lastly, we show that all the suborbits corresponding to the action, 

are self-paired when 𝑛𝑛 ≥  4.  

Keywords: Direct Product; Symmetric Group; Alternating Group; Action; Rank; Subdegrees; Suborbital. 

1. Notation and preliminary results 

Definition 1.1. Let  𝐺𝐺  be a group and  𝑋𝑋  a non-empty set. Then  𝐺𝐺  acts on the left of  𝑋𝑋  if there exists a 

function  𝐺𝐺 × 𝑋𝑋 → 𝑋𝑋  such that  (𝑔𝑔1𝑔𝑔2)𝑥𝑥 = 𝑔𝑔1(𝑔𝑔2)𝑥𝑥  and  𝑒𝑒𝑒𝑒 = 𝑥𝑥  where  𝑒𝑒  is the identity in  𝐺𝐺, 𝑥𝑥 ∈ 𝑋𝑋  

and 𝑔𝑔1,𝑔𝑔2 ∈ 𝐺𝐺. The action of  𝐺𝐺  on the right of 𝑋𝑋 can be defined in a similar way. In this case, 𝑋𝑋 is called a G-

set.  

------------------------------------------------------------------------ 
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Definition 1.2. Suppose a group 𝐺𝐺 act on a set  𝑋𝑋. Define a relation 𝑥𝑥 ∼ 𝑦𝑦 on  𝑋𝑋  iff  there exist a 𝑔𝑔 ∈ 𝐺𝐺  such 

that  𝑦𝑦 = 𝑔𝑔𝑔𝑔. This defines an equivalence relation on the set 𝑋𝑋.  

The equivalence class containing  𝑥𝑥  is called the orbit of  𝑥𝑥 which is  𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥) = {𝑔𝑔𝑥𝑥|𝑔𝑔 ∈ 𝐺𝐺}. Since any set is a 

disjoint union of equivalence classes under an equivalence relation, it follows that if  𝐺𝐺 acts on  𝑋𝑋  then  𝑋𝑋  is a 

union of disjoint orbits. 

Theorem 1.1. Let  𝐺𝐺  be a finite group acting on a set  𝑋𝑋.  The number of orbits of  𝐺𝐺  is  1
|𝐺𝐺|
∑ |𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔)|𝑔𝑔∈𝐺𝐺   

where 𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔) = {𝑥𝑥 ∈ 𝑋𝑋|𝑔𝑔𝑔𝑔 = 𝑥𝑥}.   

Theorem 2.3 is called the Cauchy-Frobenius Lemma [3] 

Definition 1.4. Let  𝐺𝐺  act on a set  𝑋𝑋  and let 𝑥𝑥 ∈ 𝑋𝑋.  The stabilizer in  𝐺𝐺  of  𝑥𝑥  denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥) is the 

subset  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥) = {𝑔𝑔 ∈ 𝐺𝐺|𝑔𝑔𝑔𝑔 = 𝑥𝑥}. In this case 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥)  forms a subgroup of  𝐺𝐺  called the isotropy group of 

 𝑥𝑥. It is also denoted by 𝐺𝐺𝑥𝑥. 

Theorem 1.2. Let 𝐺𝐺 be a group acting on a finite set  𝑋𝑋  and  𝑥𝑥 ∈ 𝑋𝑋.  Then  |𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥)| = |𝐺𝐺: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥)|  

Theorem 1.2 is called the Orbit-Stabilizer Theorem [3] 

Definition 1.5. The action of a group  𝐺𝐺  on the set  𝑋𝑋  is said to be transitive if for each pair of points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, 

there exists  𝑔𝑔 ∈ 𝐺𝐺  such that 𝑔𝑔𝑔𝑔 = 𝑦𝑦; in other words, if the action has only one orbit,  𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥) = 𝑋𝑋. 

Definition 1.6.  Let  𝐺𝐺  act transitively on a set  𝑋𝑋 and let  𝑌𝑌  be a subset of  𝑋𝑋  such that  |𝑌𝑌|  is a factor of  |𝑋𝑋|. 

Then if  𝑔𝑔𝑔𝑔 = 𝑌𝑌  or  𝑔𝑔𝑔𝑔 ∩ 𝑌𝑌 = ∅  for all 𝑔𝑔 ∈ 𝐺𝐺, then  𝑌𝑌  is called a block of the action. Clearly ∅, the set  𝑋𝑋  and 

the singleton subsets of  𝑋𝑋  form blocks, called the trivial blocks. If these are the only blocks, then  𝐺𝐺  is said to 

act primitively on 𝑋𝑋; otherwise  𝐺𝐺  acts imprimitively. 

Definition 1.7. Suppose  𝐺𝐺  is a group acting transitively on a set  𝑋𝑋  and let  𝐺𝐺𝑥𝑥   be the stabilizer in  𝐺𝐺  of a point 

 𝑥𝑥 ∈ 𝑋𝑋.  The orbits  ∆0= {𝑥𝑥},∆1,∆2, . . . ,∆(𝑟𝑟−1)  of   𝐺𝐺𝑥𝑥   on  𝑋𝑋 are known as suborbits of  𝐺𝐺. In this case  𝑟𝑟 is called 

the rank of  𝐺𝐺 while the sizes  𝑛𝑛𝑖𝑖 = |∆𝑖𝑖|(𝑖𝑖 = 0,1, . . . , 𝑟𝑟 − 1),  often called the lengths of the suborbits, are known 

as the subdegrees of  𝐺𝐺. It can be shown that both  𝑟𝑟  and the cardinality of the suborbits  ∆𝑖𝑖 (𝑖𝑖 =  0,1, . . . , 𝑟𝑟 − 1)  

are independent of the choices of   𝑥𝑥 ∈ 𝑋𝑋   

Definition 1.8. Let  𝐺𝐺 be a group acting transitively on a set  𝑋𝑋  and let  ∆  be an orbit of  𝐺𝐺𝑥𝑥   on  𝑋𝑋. Define  

 ∆∗= {𝑔𝑔𝑔𝑔|𝑔𝑔 ∈ 𝐺𝐺, 𝑥𝑥 ∈ 𝑔𝑔∆}.  Then  ∆∗  is also an orbit of  𝐺𝐺𝑥𝑥   and is called the  𝐺𝐺𝑥𝑥  -orbit (or G-suborbit) paired 

with  ∆  [2]. Clearly,  |∆| = |∆∗|  and ∆∗∗= ∆.  If ∆∗= ∆, then  ∆  is said to be self-paired. 

Definition 1.9. Suppose  𝐺𝐺  acts on 𝑋𝑋. Then 𝐺𝐺 acts on  𝑋𝑋 × 𝑋𝑋  also by 𝑔𝑔(𝑥𝑥,𝑦𝑦) = (𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔),𝑔𝑔 ∈ 𝐺𝐺, 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. If 

 𝑂𝑂 ⊆ 𝑋𝑋 × 𝑋𝑋  is a G-orbit, then for a fixed  𝑥𝑥 ∈ 𝑋𝑋,∆= {𝑦𝑦 ∈ 𝑋𝑋|(𝑥𝑥,𝑦𝑦) ∈ 𝑂𝑂}  is a Gx -orbit. Conversely, if  ∆ ⊆ 𝑋𝑋  is 

a Gx-orbit, then  𝑂𝑂 = {(𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔)|𝑔𝑔 ∈ 𝐺𝐺,𝑦𝑦 ∈ ∆}   is a G-orbit on 𝑋𝑋 × 𝑋𝑋. In this case ∆ is said to correspond to 𝑂𝑂. 
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The G-orbits on  𝑋𝑋 × 𝑋𝑋  are called suborbitals.  

Definition 1.10.  Let 𝑂𝑂𝑖𝑖 ⊆ 𝑋𝑋 × 𝑋𝑋,  (𝑖𝑖 =  0,1,2, . . . , 𝑟𝑟 − 1) be a suborbital. A suborbital graph  Γ𝑖𝑖   is formed by 

taking  𝑋𝑋 as the points of   Γ𝑖𝑖  and including a directed line from 𝑥𝑥  to  𝑦𝑦 (𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋) if and only if  (𝑥𝑥,𝑦𝑦) ∈ 𝑂𝑂𝑖𝑖 .  

Thus each suborbital  𝑂𝑂𝑖𝑖   determines a suborbital graph Γ𝑖𝑖.  Now  𝑂𝑂𝑖𝑖∗ = {(𝑥𝑥,𝑦𝑦)|(𝑦𝑦, 𝑥𝑥) ∈ 𝑂𝑂𝑖𝑖} is also a G-orbit. 

Definition 1.11. Let 𝐺𝐺 be transitive on  𝑋𝑋 and let  Γ be the suborbital graph corresponding to the suborbit  ∆. 

Then Γ is undirected if  ∆ is self-paired and directed otherwise [1]. 

2. Transitivity and primitivity of the action of 𝑮𝑮 = 𝑺𝑺𝒏𝒏 × 𝑨𝑨𝒏𝒏     on  𝑿𝑿 × 𝒀𝒀 

Theorem 2.1.  The action of 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛  on  𝑋𝑋 × 𝑌𝑌  is transitive if and only if  𝑛𝑛 ≥ 3. 

Proof. Consider the action of a group  𝐺𝐺 = 𝑆𝑆2 × 𝐴𝐴2 on the set  𝑋𝑋 × 𝑌𝑌  where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2} and 𝑌𝑌 = {𝑦𝑦1 ,𝑦𝑦2}  so 

that  𝑋𝑋 × 𝑌𝑌 = {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥1,𝑦𝑦2), (𝑥𝑥2,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), (𝑥𝑥2,𝑦𝑦3)}.    In this case  𝑆𝑆2 × 𝐴𝐴2 = {(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌), ((𝑥𝑥1𝑥𝑥2), 𝑒𝑒𝑌𝑌)} 

where  𝑒𝑒𝑋𝑋  is the identity element in 𝑆𝑆2  and  𝑒𝑒𝑌𝑌  is the identity in 𝐴𝐴2. Clearly,  𝐻𝐻 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥1,𝑦𝑦1) =  {(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌)} 

and by Theorem 1.2 

|𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)| = |𝐺𝐺:𝐻𝐻| 

   =
|𝐺𝐺|
|𝐻𝐻|

 

   =
2
1

 

               ≠ | 𝑋𝑋 ×  𝑌𝑌 | 

Therefore, the action is intransitive for 𝑛𝑛 = 2.   

Now, let  𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} and  𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2 , . . . ,𝑦𝑦𝑛𝑛} for  𝑛𝑛 ≥ 3 . In this case |𝐺𝐺| = 𝑛𝑛!𝑛𝑛!
2

 and |X × Y | = n2. 

Suppose   𝐻𝐻 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥1,𝑦𝑦1) = {(𝑔𝑔,𝑔𝑔′) ∈ 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛|𝑔𝑔𝑥𝑥1 = 𝑥𝑥1,𝑔𝑔′𝑦𝑦1 = 𝑦𝑦1}. Clearly,  𝑔𝑔 ∈ 𝑆𝑆𝑛𝑛  fixes  𝑥𝑥1 ∈ 𝑋𝑋  if and 

only if x1 belongs to a 1-cycle of  𝑔𝑔 so that  {𝑔𝑔 ∈ 𝑆𝑆𝑛𝑛|𝑔𝑔𝑥𝑥1 = 𝑥𝑥1} ≅ 𝑆𝑆𝑛𝑛−1. Also, {𝑔𝑔′ ∈ 𝐴𝐴𝑛𝑛|𝑔𝑔′𝑦𝑦1 = 𝑦𝑦1}  ≅ 𝐴𝐴𝑛𝑛−1. 

Thus,  𝐻𝐻 ≅ 𝑆𝑆𝑛𝑛−1 × 𝐴𝐴𝑛𝑛−1  and it follows that 𝐻𝐻 = (𝑛𝑛−1)!(𝑛𝑛−1)!
2

.  Now, by Theorem 1.2, 

|𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)| = |𝐺𝐺:𝐻𝐻| 

                      =
|𝐺𝐺|
|𝐻𝐻|
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                                               =
𝑛𝑛!𝑛𝑛!

2
(𝑛𝑛 − 1)! (𝑛𝑛 − 1)!

2

 

                  = 𝑛𝑛2 

                            = |𝑋𝑋 × 𝑌𝑌| 

Therefore, the action is transitive for all n ≥ 3. 

Theorem 2.2. The action of 𝐺𝐺 = 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛   on 𝑋𝑋 × 𝑌𝑌 is imprimitive for 𝑛𝑛 ≥ 3. 

Proof. Consider the subset  𝑋𝑋′ × 𝑌𝑌′ = {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥1,𝑦𝑦2), . . . , (𝑥𝑥1,𝑦𝑦𝑛𝑛)}  of  𝑋𝑋 × 𝑌𝑌  where  |𝑋𝑋′ × 𝑌𝑌 ′| = 𝑛𝑛   which 

divides |𝑋𝑋 × 𝑌𝑌| = 𝑛𝑛2.  Suppose 𝑔𝑔 = (𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦) ∈  𝐺𝐺 such that  𝑔𝑔𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛(𝑥𝑥1).  Then, 𝑔𝑔 either fixes an element 

of 𝑋𝑋′ × 𝑌𝑌 ′ or moves one element of 𝑋𝑋′ × 𝑌𝑌 ′ to another so that  𝑔𝑔(𝑋𝑋′ × 𝑌𝑌 ′) = 𝑋𝑋′ × 𝑌𝑌 ′. Any other 𝑔𝑔 ∈  𝐺𝐺 takes 

an element of  𝑋𝑋′ ×  𝑌𝑌 ′  to an element not in  𝑋𝑋′ ×  𝑌𝑌 ′  so that  𝑔𝑔(𝑋𝑋′ × 𝑌𝑌 ′) ∩ (𝑋𝑋′ × 𝑌𝑌 ′)  =  ∅. Thus, 𝑋𝑋′ × 𝑌𝑌 ′  

is a non-trivial block for the action. Therefore, the action imprimitive. 

3. Rank and subdegrees of 𝑺𝑺𝒏𝒏 × 𝑨𝑨𝒏𝒏  on  𝑿𝑿 × 𝒀𝒀 

Lemma 3.1. The group  𝐺𝐺 = 𝑆𝑆3 × 𝐴𝐴3  acts on  𝑋𝑋 × 𝑌𝑌  with rank  6  and subdegrees 1,1,1,2,2,2. 

The Stabilizer for the action is  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥1,𝑦𝑦1) = {(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌), ((𝑥𝑥2𝑥𝑥3), 𝑒𝑒𝑌𝑌)}. The number of elements in X × Y fixed 

by the elements of H is given in the Table below. 

Table 1: Elements of H and Corresponding Number of Fixed Points 

Type of ordered pair 

(𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔 ) 

Corresponding number 

of 

| 𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔 )|

= | 𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔𝑔𝑔) || 𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔𝑔𝑔 ) | 

Total 

of permutation in H ordered pairs in H       in 𝑋𝑋 × 𝑌𝑌 (col2×col3) 

(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌) 1 9 9 

((𝑎𝑎𝑎𝑎), 𝑒𝑒𝑌𝑌) 1 3 3 

Total 2  12 

By Theorem 1.1, the number of orbits of suborbits of  𝐺𝐺  on  𝑋𝑋 ×  𝑌𝑌 is 

1
|𝐻𝐻|

� |𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔) =
1
2

[9 + 3] =
12
2

= 6
(𝑔𝑔𝑔𝑔,𝑔𝑔𝑔𝑔)

 

The six suborbits of G are 

∆0= 𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥1,𝑦𝑦1) = {(𝑥𝑥1,𝑦𝑦1)}, 
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∆1= 𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥1,𝑦𝑦2) = {(𝑥𝑥1,𝑦𝑦2)}, 

∆2= 𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥1,𝑦𝑦3) = {(𝑥𝑥1,𝑦𝑦3)}, 

                ∆3= 𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥2,𝑦𝑦1) = {(𝑥𝑥2,𝑦𝑦1), (𝑥𝑥3,𝑦𝑦1)},  

               ∆4=  𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥2,𝑦𝑦2) = {(𝑥𝑥2,𝑦𝑦2), (𝑥𝑥3,𝑦𝑦2)}, 

             ∆5= 𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥1,𝑦𝑦1)(𝑥𝑥2,𝑦𝑦3) = {(𝑥𝑥2,𝑦𝑦3), (𝑥𝑥3,𝑦𝑦3)}. 

So, the action has rank 6 and subdegrees 1, 1, 1,2,2,2. 

Theorem 3.1. The action of  𝐺𝐺 = 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛  on  𝑋𝑋 × 𝑌𝑌  has rank  4  and subdegrees 1, (𝑛𝑛 − 1), (𝑛𝑛 − 1), (𝑛𝑛 − 1)2  

for all  𝑛𝑛 ≥ 4. 

Proof. Let  𝐻𝐻 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺(𝑥𝑥1,𝑦𝑦1) be as defined in Theorem 2.1 above. Then the orbits of H  on  𝑋𝑋 × 𝑌𝑌  are 

∆0= 𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)
(𝑥𝑥1,𝑦𝑦1) = {(𝑥𝑥1,𝑦𝑦1)}, where |∆0| = 1 

∆1= 𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)
(𝑥𝑥1,𝑦𝑦2) = {(𝑥𝑥1,𝑦𝑦2), (𝑥𝑥1,𝑦𝑦3), . . . , (𝑥𝑥1,𝑦𝑦𝑛𝑛)}, where  |∆1| = 𝑛𝑛 − 1 

∆2= 𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)
(𝑥𝑥2,𝑦𝑦1) = {(𝑥𝑥2,𝑦𝑦1), (𝑥𝑥3,𝑦𝑦1), . . . , (𝑥𝑥𝑛𝑛 ,𝑦𝑦1)}, where  |∆2| = 𝑛𝑛 − 1 

∆3=  𝑂𝑂𝑂𝑂𝑂𝑂𝐺𝐺(𝑥𝑥1,𝑦𝑦1)
(𝑥𝑥2,𝑦𝑦2) = {(𝑥𝑥2,𝑦𝑦2), (𝑥𝑥2,𝑦𝑦3), . . . , (𝑥𝑥2,𝑦𝑦𝑛𝑛), 

(𝑥𝑥3,𝑦𝑦2), (𝑥𝑥3,𝑦𝑦3), . . . , (𝑥𝑥3,𝑦𝑦𝑛𝑛), 

(𝑥𝑥4,𝑦𝑦2), (𝑥𝑥4,𝑦𝑦3), . . . , (𝑥𝑥4,𝑦𝑦𝑛𝑛), 

(𝑥𝑥5,𝑦𝑦2), (𝑥𝑥5,𝑦𝑦3), . . . , (𝑥𝑥5,𝑦𝑦𝑛𝑛), 

. . . , (𝑥𝑥𝑛𝑛,𝑦𝑦2), (𝑥𝑥𝑛𝑛 ,𝑦𝑦3), . . . , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)}, with  |∆3| = (𝑛𝑛 − 1)2. 

To prove that these are the only suborbits of  𝐺𝐺, it suffices to show that 𝑃𝑃 =  {∆0,∆1,∆2,∆3} is a partition of 

 𝑋𝑋 × 𝑌𝑌. 

Clearly,  ∆𝑖𝑖≠ ∅ for each   𝑖𝑖 = 0,1,2,3 and  ∆𝑖𝑖 ∩ ∆𝑗𝑗= ∅  if  𝑖𝑖 ≠ 𝑗𝑗 (𝑖𝑖, 𝑗𝑗 =  0,1,2,3). 

Now, 

� |∆𝑖𝑖

3

𝑖𝑖=1

| = 1 + 2(𝑛𝑛 − 1) + (𝑛𝑛 − 1)2 
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        = 𝑛𝑛2 

                                  =  |𝑋𝑋 ×  𝑌𝑌 | 

and it follows that    ⋃ ∆𝑖𝑖3
𝑖𝑖=1 = 𝑋𝑋 × 𝑌𝑌. Thus,  𝑃𝑃 is a partition of  𝑋𝑋 × 𝑌𝑌. 

4. Pairing of the suborbits of   𝑮𝑮 = 𝑺𝑺𝒏𝒏 × 𝑨𝑨𝒏𝒏  on  𝑿𝑿 × 𝒀𝒀 

Theorem 4.1. The suborbits of  𝐺𝐺 = 𝑆𝑆3 × 𝐴𝐴3  on  𝑋𝑋 × 𝑌𝑌  are self-paired except for a few. 

Proof. The action of  𝐺𝐺 = 𝑆𝑆3 × 𝐴𝐴3  on  𝑋𝑋 × 𝑌𝑌 has 5 non-trivial suborbits as  ∆1,∆1,∆3,∆4  and ∆5. Since |G| is 

even, then the action has at least one self-paired suborbit. Consider (𝑥𝑥1,𝑦𝑦2) ∈ ∆1  and  𝑔𝑔 = (𝑒𝑒𝑋𝑋, (𝑦𝑦1𝑦𝑦3𝑦𝑦2)) ∈ 𝐺𝐺. 

Then  𝑔𝑔(𝑥𝑥1,𝑦𝑦2) = (𝑥𝑥1,𝑦𝑦1) and  𝑔𝑔(𝑥𝑥1,𝑦𝑦1) = (𝑥𝑥1,𝑦𝑦3) ∈ ∆2.  So,  ∆1∗= ∆2. Next, consider (𝑥𝑥2,𝑦𝑦1) ∈ ∆3  and also 

 𝑔𝑔 = ((𝑥𝑥1𝑥𝑥2), 𝑒𝑒𝑌𝑌) ∈ 𝐺𝐺.  Then  𝑔𝑔(𝑥𝑥2,𝑦𝑦1) = (𝑥𝑥1,𝑦𝑦1) and therefore, 𝑔𝑔(𝑥𝑥1,𝑦𝑦1) = (𝑥𝑥2,𝑦𝑦1) ∈ ∆3.  Finally, consider 

(𝑥𝑥2,𝑦𝑦2) ∈ ∆4.   Suppose  𝑔𝑔 = ((𝑥𝑥1𝑥𝑥2), (𝑦𝑦1𝑦𝑦3𝑦𝑦2)) ∈ 𝐺𝐺.   Then  𝑔𝑔(𝑥𝑥2,𝑦𝑦2) = (𝑥𝑥1,𝑦𝑦1)  and hence it is seen that 

𝑔𝑔(𝑥𝑥1,𝑦𝑦1) =  (𝑥𝑥2,𝑦𝑦3) ∈ ∆5.   So, ∆4∗= ∆5. 

Theorem 4.2. The suborbits of  𝐺𝐺 = 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛  on  𝑋𝑋 × 𝑌𝑌  are self-paired for all 𝑛𝑛 ≥ 4. 

Proof. From Theorem 3.2, then  𝐺𝐺  has 3 non-trivial suborbits, namely ∆1,∆2  and ∆3. Consider (𝑥𝑥1,𝑦𝑦2) ∈ ∆1  and 

 𝑔𝑔 = (𝑒𝑒𝑋𝑋, (𝑦𝑦1𝑦𝑦3𝑦𝑦2)) ∈ 𝐺𝐺.  Then we have that 𝑔𝑔(𝑥𝑥1,𝑦𝑦2) = (𝑥𝑥1,𝑦𝑦1)  and 𝑔𝑔(𝑥𝑥1,𝑦𝑦1) = (𝑥𝑥1,𝑦𝑦3) ∈ ∆1.  So, ∆1∗= ∆1 .  

Next, consider (𝑥𝑥2,𝑦𝑦1) ∈ ∆2  and  𝑔𝑔 = ((𝑥𝑥1𝑥𝑥2), 𝑒𝑒𝑌𝑌) ∈ 𝐺𝐺.   Then  𝑔𝑔(𝑥𝑥2,𝑦𝑦1) = (𝑥𝑥1,𝑦𝑦1)  and therefore, it can be 

seen that   𝑔𝑔(𝑥𝑥1,𝑦𝑦1) = (𝑥𝑥2,𝑦𝑦1) ∈ ∆2 . So, ∆2∗= ∆2 . Finally, consider (𝑥𝑥2,𝑦𝑦2) ∈ ∆3.   Suppose 

 𝑔𝑔 =  ((𝑥𝑥1𝑥𝑥2), (𝑦𝑦1𝑦𝑦3𝑦𝑦2)) ∈ 𝐺𝐺. Then  𝑔𝑔(𝑥𝑥2,𝑦𝑦2) = (𝑥𝑥1,𝑦𝑦1) and therefore 𝑔𝑔(𝑥𝑥1,𝑦𝑦1) =  (𝑥𝑥2,𝑦𝑦3) ∈ ∆3.  So, ∆3∗= ∆3. 

5. Suborbital graphs of  𝑺𝑺𝒏𝒏 × 𝑨𝑨𝒏𝒏  on  𝑿𝑿 × 𝒀𝒀 

A suborbital graph of the action has  𝑋𝑋 × 𝑌𝑌  as its vertex set. Since for  𝑛𝑛 ≥ 4 all the suborbits are self-paired, 

then the corresponding suborbital graphs are undirected. Now, the construction and properties of the three non-

trivial graphs of the action are as follows: 

(i) The suborbital  𝑂𝑂1  corresponding to the suborbit  ∆1  is 

 𝑂𝑂1 =  {((𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥1,𝑦𝑦1), (𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥1,𝑦𝑦2))|(𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌) ∈ 𝐺𝐺, (𝑥𝑥1,𝑦𝑦2) ∈ ∆1}.  

Thus, the suborbital graph  Γ1  corresponding to the suborbital  𝑂𝑂1  has an edge from vertex  (𝑢𝑢, 𝑣𝑣)  to vertex 

 (𝑥𝑥,𝑦𝑦)  if and only if  𝑢𝑢 = 𝑥𝑥  and  𝑣𝑣 ≠ 𝑦𝑦.  The graph is regular of degree  (𝑛𝑛 − 1)  since vertex  (𝑢𝑢, 𝑣𝑣)  is 

connected to all the  (𝑛𝑛 − 1) vertices  (𝑢𝑢,𝑤𝑤) where  𝑣𝑣 ≠ 𝑤𝑤.  It is disconnected since there is no path from vertex 

 (𝑢𝑢, 𝑣𝑣)  to vertex  (𝑥𝑥,𝑦𝑦)  if  𝑢𝑢 ≠ 𝑥𝑥.  Clearly, a connected component of the graph consists of  𝑛𝑛 vertices so that 

there are |𝑋𝑋×𝑌𝑌|
𝑛𝑛

= 𝑛𝑛  connected components in the graph. It has girth 3 since  (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥1,𝑦𝑦2) and  (𝑥𝑥1,𝑦𝑦3) form 

cycle in  Γ1. 
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(ii) The suborbital  𝑂𝑂2  corresponding to the suborbit  Δ2  is 

𝑂𝑂2 =  {((𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥1,𝑦𝑦1), (𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥2,𝑦𝑦1))|(𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌) ∈ 𝐺𝐺, (𝑥𝑥2,𝑦𝑦1) ∈ ∆2}.  

The suborbital graph  Γ2  corresponding to the suborbital  𝑂𝑂2  has an edge from vertex  (𝑢𝑢,𝑣𝑣) to vertex  (𝑥𝑥,𝑦𝑦) if 

and only if  𝑢𝑢 ≠ 𝑥𝑥  and  𝑣𝑣 = 𝑦𝑦.  This graph is isomorphic to  Γ1  and therefore, the two have the same properties. 

(iii) The suborbital  𝑂𝑂3  corresponding to the suborbit  Δ3  is 

𝑂𝑂3 =  {((𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥1,𝑦𝑦1), (𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌)(𝑥𝑥2,𝑦𝑦2))|(𝑔𝑔𝑋𝑋,𝑔𝑔𝑌𝑌) ∈ 𝐺𝐺, (𝑥𝑥2,𝑦𝑦2) ∈ ∆3}.  

The suborbital graph  Γ3  corresponding to the suborbital  𝑂𝑂3  has an edge from vertex  (𝑢𝑢,𝑣𝑣) to vertex  (𝑥𝑥,𝑦𝑦) if 

and only if  {𝑢𝑢, 𝑣𝑣}  ∩  {𝑥𝑥,𝑦𝑦}  =  ∅. The graph is regular of degree (𝑛𝑛 − 1)2  since vertex  (𝑢𝑢, 𝑣𝑣) is connected to 

all the  (𝑛𝑛 − 1)2  vertices  (𝑥𝑥,𝑦𝑦)  where  {𝑢𝑢, 𝑣𝑣}  ∩  {𝑥𝑥,𝑦𝑦}  =  ∅.  The graph is connected since there is a path 

between any two distinct vertices. It has girth 3 since the vertices  (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) and  (𝑥𝑥3,𝑦𝑦3) form cycle in 

 Γ3 since the vertices (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), (𝑥𝑥3,𝑦𝑦3) are pairwise adjacent. 
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