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Abstract

The transitivity, primitivity, rank and subdegrees, as well as pairing of the suborbits associated with the action
of the actions of the direct product S,, X A,,, of the symmetric group S,, by the alternating group A,, alternating
on the Cartesian product X XY, where X = {x;,x,,...,x,} and Y = {y,,y,,...,y,} are disjoint sets each
containing n elements is an area that has never received attention from researchers for a very long time. In this
paper, we prove that the action is both transitive and imprimitive when n > 3. Also, we establish that that the
rank is 6 if n = 3, but is 4 for all n > 3. In addition, we show in this paper that the subdegrees associated with
the action are 1, (n — 1), (n — 1), (n — 1)2. Lastly, we show that all the suborbits corresponding to the action,

are self-paired whenn > 4.
Keywords: Direct Product; Symmetric Group; Alternating Group; Action; Rank; Subdegrees; Suborbital.
1. Notation and preliminary results

Definition 1.1. Let G be a group and X a non-empty set. Then G acts on the left of X if there exists a
function G XX — X such that (g,9,)x = g:(g.)x and ex = x where e is the identity in G,x €X
and g4, g, € G. The action of G on the right of X can be defined in a similar way. In this case, X is called a G-

set.

* Corresponding author.
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Definition 1.2. Suppose a group G act on a set X. Define a relation x ~ y on X iff there existag € G such

that y = gx. This defines an equivalence relation on the set X.

The equivalence class containing x is called the orbit of x which is Orb;(x) = {g,|lg € G}. Since any set is a
disjoint union of equivalence classes under an equivalence relation, it follows that if G acts on X then X is a

union of disjoint orbits.

Theorem 1.1. Let G be a finite group acting on a set X. The number of orbits of G is MLIZQEG |fix(g)|

where fix(g) = {x € X|gx = x}.
Theorem 2.3 is called the Cauchy-Frobenius Lemma [3]

Definition 1.4. Let G act on a set X and let x € X. The stabilizer in G of x denoted by Stab(x) is the
subset Stabg(x) = {g € G|gx = x}. In this case Stab;(x) forms a subgroup of G called the isotropy group of

x. It is also denoted by G,.
Theorem 1.2. Let G be a group acting on a finite set X and x € X. Then |Orb;(x)| = |G: Stabg(x)|
Theorem 1.2 is called the Orbit-Stabilizer Theorem [3]

Definition 1.5. The action of a group G on the set X is said to be transitive if for each pair of points x, y € X,

there exists g € G such that gx = y; in other words, if the action has only one orbit, Orb;(x) = X.

Definition 1.6. Let G act transitively on a set X and let Y be a subset of X such that |Y]| is a factor of |X]|.
Thenif g¥ =Y or g¥ nY =@ forall g € G, then Y is called a block of the action. Clearly @, the set X and
the singleton subsets of X form blocks, called the trivial blocks. If these are the only blocks, then G is said to

act primitively on X; otherwise G acts imprimitively.

Definition 1.7. Suppose G is a group acting transitively on a set X and let G, be the stabilizer in ¢ of a point
x € X. The orbits Ag= {x},Aq,A,,...,Ap_q) Of G, on X are known as suborbits of G. In this case r is called
the rank of G while the sizes n; = |A;|(i =0,1,...,r — 1), often called the lengths of the suborbits, are known
as the subdegrees of G. It can be shown that both r and the cardinality of the suborbits A; (i = 0,1,...,r—1)

are independent of the choices of x € X
Definition 1.8. Let G be a group acting transitively on a set X and let A be an orbit of G, on X. Define

A= {gx|g € G,x € gA}. Then A* is also an orbit of G, and is called the G, -orbit (or G-suborbit) paired
with A [2]. Clearly, |A| = |A*| and A= A. If A*= A, then A is said to be self-paired.

Definition 1.9. Suppose G acts on X. Then G acts on X X X also by g(x,y) = (gx,9y),g € G,x,y € X. If
0 € X x X is a G-orbit, then for a fixed x € X,A= {y € X|(x,y) € 0} is a G,-orbit. Conversely, if AC X is
a Gy-orbit, then 0 = {(gx,gy)|g € G,y € A} is a G-orbit on X x X. In this case A is said to correspond to O.
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The G-orbitson X x X are called suborbitals.

Definition 1.10. Let0; € X x X, (i = 0,1,2,...,r — 1) be a suborbital. A suborbital graph T; is formed by
taking X as the points of T; and including a directed line from x to y (x,y € X) if and only if (x,y) € 0;.
Thus each suborbital O; determines a suborbital graph I;. Now 0] = {(x,y)|(y,x) € 0;} is also a G-orbit.

Definition 1.11. Let G be transitive on X and let T be the suborbital graph corresponding to the suborbit A.

Then T is undirected if A is self-paired and directed otherwise [1].

2. Transitivity and primitivity of the actionof G = §,, x4, on X XY

Theorem 2.1. The action of §,, X A, on X XY is transitive if and only if n > 3.

Proof. Consider the action of a group G = S, X A, on the set X XY where X = {x;,x,}and Y = {y,,y,} so

that X XV = {(x1,¥1), (%1, ¥2), (X2, ¥1), (%2, ¥2), (x2,¥3)}. In this case S, X A; = {(ex, ey), ((x1x2), ey)}
where ey is the identity element in S, and ey is the identity in A,. Clearly, H = Stab;(x1,y1) = {(ex,ey)}

and by Theorem 1.2

|Orbg(xq,y1)| = |G: H|

_lél
|H|
2
1
#|X XY|
Therefore, the action is intransitive for n = 2.
Now, let X = {x;,x5,...,x,} and Y = {y,,v,,..., ¥} for n =3 . In this case |G| =" and X x Y| =n2

2
Suppose H = Stabg(x1,y1) = {(9,9") € S,, X Aplgx1 = x4, 9'y1 = y1}. Clearly, g € S,, fixes x; € X if and
only if x; belongs to a 1-cycle of g sothat {g € S, |gx; = x;} = S,_1. Also, {g’ € A,|g'y1 = y1} = A1

(n-1)!(n-1)!

Thus, H = S,,_; X A,_, and it follows that H = . Now, by Theorem 1.2,

|Orbg(x1,y1)| = |G: H|

_al
|H|
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nln!
_ 2
n—D!'(n-1)!
2
=n2
=|X xY|

Therefore, the action is transitive for all n > 3.
Theorem 2.2. The action of G = S, X 4,, on X X Y is imprimitive for n > 3.

Proof. Consider the subset X' X Y' = {(xq,¥1), (1, ¥2), ..., (x1,¥,)} of X XY where [X' XY '| =n which
divides |X X Y| = n®. Suppose g = (gx,gy) € G such that gx € Stabs, (x;). Then, g either fixes an element
of X' x Y "or moves one element of X’ x Y 'to another so that g(X' xY ") = X' x Y '. Any other g € G takes
an element of X’ x Y ' to anelementnotin X' x Y'sothat g(X' xY)nX xY'") = @. Thus, X' xY'

is a non-trivial block for the action. Therefore, the action imprimitive.
3. Rank and subdegrees of S, x A, on X XY
Lemma 3.1. The group G = S; X A5 actson X XY with rank 6 and subdegrees 1,1,1,2,2,2.

The Stabilizer for the action is Stabg (x;,y1) = {(ex, ey), ((x2x3), ey)}. The number of elements in X x Y fixed

by the elements of H is given in the Table below.

Table 1: Elements of H and Corresponding Number of Fixed Points

Type of ordered pair Corresponding number | fix(gX, gY)| Total
(gX,9Y) of = | fix(gX) || fix(gY) |
of permutation in H ordered pairs in H inX XY (col2xcol3)
(ex, ey) 1 9 9
((ab), ey) 1 3 3
Total 2 12

By Theorem 1.1, the number of orbits of suborbitsof G on X X Yis

1 , 1 12
T > Ifix(gX,gV) =519 +3] == =6
(gX.9Y)

The six suborbits of G are

Ay= Orb(xl.yl)(xl' :)’1) = {(xlt Y1)}'
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A= Orb(xl,yl)(pr’z) ={(x1,y2)}
A,= Orb(xi,yl)(pr’a) = {(x1,y3)},
A3= Orb(y, 1) (%2, ¥1) = {(x2, 1), (%3, ¥1)}
84= O7b(x, ) (X2, ¥2) = {(x2,¥2), (%3, ¥2)}
As= Orb(xl,yl)(xz'}%) = {(x2,¥3), (x3,¥3)}-

So, the action has rank 6 and subdegrees 1, 1, 1,2,2,2.

Theorem 3.1. The action of G = S, X 4,, on X X Y has rank 4 and subdegrees 1, (n — 1), (n — 1), (n — 1)?

forall n > 4.

Proof. Let H = Stabg; (x;, y,) be as defined in Theorem 2.1 above. Then the orbitsof H on X X Y are

Ao= OrbG(xl,yl) (x1, 1) = {(x1,¥1)}, where |[Ao| = 1
A= OrbG(xl'yl) (x1,¥2) = {(x1,¥2), (X1, ¥3), ..., (X1, ¥)}, where |A;] =n—1
A= Orba(xl‘yl) (x2,¥1) = {2, 31), (3, 1), .., (X, ¥1)}, where |A| =n—1
Az= Orbc;(xl_yl) (x2,¥2) = {(x2,¥2), (X2, ¥3), -, (X2, ¥n)s

(x3,¥2), (X3, ¥3), -+, (X3, ),
(x1,¥2), (X4, ¥3), -5 (Xas V),
(x5, ¥2), (X5, ¥3), -, (X5, V),
coer Qo Y20, (s ¥3)5 0 Gt Y)} With [Ag] = (n — 1)2.

To prove that these are the only suborbits of G, it suffices to show that P = {A,, A, A,, Az} is a partition of

X XY.
Clearly, A;# @ foreach i=0,1,23and A;NnA=0 if i #j(i,j = 0,1,2,3).

Now,

3

ZlAi|=1+2(n—1)+(n—1)2

i=1
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= |X X Y|
and it follows that U3?_; A; = X X Y. Thus, P is a partition of X X Y.
4. Pairing of the suborbitsof 6 =5, x4, on X XY
Theorem 4.1. The suborbits of G = S; X A; on X X Y are self-paired except for a few.

Proof. The action of G = S; X A; on X X Y has 5 non-trivial suborbits as A;,A;, A5, A, and As. Since |G| is
even, then the action has at least one self-paired suborbit. Consider (x;,y,) € A; and g = (ex, (1Y3Y2)) € G.
Then g(x1,y,) = (%1, y1) and g(xq,v1) = (x1,¥3) € A,. So, A= A,. Next, consider (x,,y;) € A; and also
g = ((x1x3),ey) € G. Then g(x,,v,) = (x1,y,) and therefore, g(x;,y,) = (x3,¥;) € A;. Finally, consider
(x5,v,) €A,. Suppose g = ((x1x3), V1¥3Y2)) € G. Then g(x,,y,) = (x1,y:) and hence it is seen that
9(x1,y1) = (x2,¥3) € As. SO, Ay= As.

Theorem 4.2. The suborbits of G = S,, X A, on X XY are self-paired for all n > 4.

Proof. From Theorem 3.2, then G has 3 non-trivial suborbits, namely A,, A, and A;. Consider (x;,y,) € A; and
9 = (ex, (1¥3¥2)) € G. Then we have that g(x;,¥,) = (x1,¥1) and g(x;,¥1) = (x1,¥3) € Ay. S0, Aj= A;.
Next, consider (x;,y,) € A, and g = ((x;x3),ey) € G. Then g(x,,y;) = (x1,y,) and therefore, it can be
seen that g(x,y,) = (x5, y1) €4, . So, A3;=A, . Finally, consider (x;v,) € As. Suppose

g = ((x1%2), ("1¥3Y2)) € G. Then g(x,,y,) = (x1,¥,1) and therefore g(x;,¥,) = (x3,¥3) € A3. S0, A3= A;.
5. Suborbital graphs of S, x 4, on X XY

A suborbital graph of the action has X X Y as its vertex set. Since for n > 4 all the suborbits are self-paired,
then the corresponding suborbital graphs are undirected. Now, the construction and properties of the three non-

trivial graphs of the action are as follows:

M The suborbital 0, corresponding to the suborbit A, is

01 = {((gx> 9v) 1, Y1), (Gx> Gy) (c1, YD) (Gx Gy) € G, (x1,¥2) € Aq}.

Thus, the suborbital graph T; corresponding to the suborbital 0; has an edge from vertex (u,v) to vertex
(x,y) if and only if u=x and v # y. The graph is regular of degree (n— 1) since vertex (u,v) is
connected to all the (n — 1) vertices (u,w) where v # w. Itis disconnected since there is no path from vertex

(u,v) to vertex (x,y) if u # x. Clearly, a connected component of the graph consists of n vertices so that
there are Ixnﬁ = n connected components in the graph. It has girth 3 since (xy,y;), (x1,¥,) and (x4, ys) form

cyclein Ty.
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(i) The suborbital 0, corresponding to the suborbit A, is

0, = {((gx, 9v) (x1, Y1), (Gx> y) (X2, YII(Gx, Gy) € G, (x2,¥1) € By}

The suborbital graph T, corresponding to the suborbital 0, has an edge from vertex (u,v) to vertex (x,y) if

and only if u # x and v = y. This graph is isomorphic to I'; and therefore, the two have the same properties.

(iii) The suborbital 05 corresponding to the suborbit A; is

05 = {((gx, 9v) (x1, ¥1), (Gx, 9v) (X2, ¥2))|(gx, 9y) € G, (x2,¥2) € A3}

The suborbital graph T; corresponding to the suborbital 05 has an edge from vertex (w,v) to vertex (x,y) if
and only if {u,v} N {x,y} = ©. The graph is regular of degree (n — 1)2 since vertex (u,v) is connected to
all the (n— 1)? vertices (x,y) where {u,v} N {x,y} = @. The graph is connected since there is a path
between any two distinct vertices. It has girth 3 since the vertices (x;,y;), (x2, ;) and (x3,y;) form cycle in

[ since the vertices (x4, y1), (X2, ¥2), (x5, y3) are pairwise adjacent.
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