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Abstract

In this paper, we use Differential Transformation Method (DTM) to solve two dimensional mathematical model

of malaria human variable and the other variable for mosquito. Next generation matrix method was used to

solve for the basic reproduction number R, and we use it to test for the stability that whenever Ry < 1 the

disease-free equilibrium is globally asymptotically stable otherwise unstable. We also compare the DTM

solution of the model with Fourth order Runge-Kutta method (R-K 4) which is embedded in maple 18 to see the

behaviour of the parameters used in the model. The solutions of the two methods follow the same pattern which

was found to be efficient and accurate.
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1. Introduction

Differential Transformation Method is one of the methods used to solve differential equations and it was derived
from Taylor series expansion. It is also a semi-analytical method of solving both linear and nonlinear system of
ordinary differential equations (ODE) to obtain approximate series of solutions. [17] was the first scientist to
introduce this method and he used it to solve both linear and nonlinear initial value problems in electrical circuit
analysis. This method has been used to solve problems in Mathematics and Physics [6], Fractional Differential-
Algebraic Equations[16], Fourth-order Parabolic Partial Differential Equations[12], Fractional-order integro-
differential equations[10], Differential Equation[11] and problems in epidemic models [1,3,14,20].

SIR epidemic model was first introduced by [8, 9], extended this work by introducing a two dimensional model
with one variable human and the other variable for mosquito. [2] introduced exposed class in human that is SEIR
(Susceptible-Exposed-Infectious-Recovered or Removed) model and this caused reduction to the long term
prevalence on both infected humans and mosquitoes. [5] considered stability in SIR and ST model of malaria
with relapse . [7] considered SIJ/,R and SI model where /and /. are drug sensitive malaria strains and drug
resistant malaria strains respectively in a human population. [13] considered SEII;R and SEI model and ST model
where [ and 7, are human with malaria symptoms and human with drug resistance symptoms. [16] studied

simple SEIR model of malaria and [15] considered SEIR and SEI with non-linear forces of infection.

2. Model Formulation

Let S,, E,, I, and R, represent Susceptible, Exposed, Infected and Recovered in human (host) respectively,
S, E, and I, represent Susceptible, Exposed, Infected and Recovered in mosquito (vector) respectively. All
the variables are functions of #. The parameter A is the recruitment rate of humans into the population, & is the

biting rate of mosquitoes, b, is the Probability of transmission of infection from an infectious humans to a

susceptible mosquitoes, 7 is the exposed rate to become infected in human, g is the rate of natural death in
human, & is the rate of recovery from infectious in humans, o, is the rate at which humans that loss their

immunity moves from recovery state to susceptible, O is the diseases induced death rate, p, is the rate at
which the recovered human moved back to infectious class (that is Relapse), I" is the recruitment rate of
mosquitoes into the population, b, is the Probability of transmission of infection from an infectious mosquito
to a susceptible humans, 77 is the rate of natural death in mosquito, ¢ is the exposed rate to become infected in

mosquito, ¢ is the number of mosquitoes per individual.

2.1 Basic Assumptions
The following assumptions are considered

e The population has a constant size.
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e All parameters and variables are assumed to be positive.

. Eh and Em are infected but not infectious.

e  We assume that malaria is contacted only from infected mosquitoes.
e  We assume that there is no permanent recovery after treatment.

e Entry into the population is through birth and exit is through natural death or malaria induced death.

The SEIR and SET Relapse model with disease-induced death.

u‘{)] RJ.I

jl'jl 'E.'.u 'Ir?"rm

Figure 1: Flow chart of the model
2.2 Differential Equations of the Model

The diagram in figure 1 above is represented by the following differential equations.

48,(8) _ gy _KaSul
dt N

199



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 40, No 1, pp 197-219

dRr, (¢

%Z‘glh_(pﬁ‘pz"‘ﬂ)& (1)
dt "

dEZt(t) KuPuwln _(a+77)E”1

dl, (t)
n\) — gE —nl

Where k, =¢&b, and K, = &b,

Let N is the total population size for the humans and M is the total population size for the mosquitoes. Where

M and N are constant.

If the total population of human and the total population of mosquito are denoted by /N and M respectively,

then the total population of both human and mosquito at time ¢, can be described as

N=S,(0)+E,(t)+1,(t)+R, (1)
M=S, ()+E,(1)+1,(1)

Where N and M are constants.

Introducing new variables to normalize the system (1) as follows:

Where s,, x,, X,, X;, §,,, ¥, and y, are functions of #. System (1) becomes

ds,, (t)
dt

=A—=8bys,y, — us, + pyx;

dx, (Z)
dt

=S&b,s,y, _(T+ﬂ+5)xl
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dx, (t

=7x,+px, —(e+1+6)x,

~
~—

dx, (t
;’t( )zgxz—(p1+p2+,u)x3 (3)
dt

dy, (t

%:fbmsm‘xé _(a+77)y1

dy, (t
;t( ). ay, —1ny,

And equation (2) respectively becomes

s, =1-x,—x,—x,

S, =l=y -y,

(4)
Equation (3) can be reduced by substituting equation (4) into it, to get

dx, (1)
dt

=xkq(1-x,—x,—x,) y, —(t+ u+6)x,

dx, (¢

=X, + p,x, —(e+ u+96)x,

~
—~—"

dx, (¢
;t( )=8x2—(p1+p2 +/U)x3 (5)
dy, (¢
ycli( ):K(l_y1_y2)x2_(a+77)y1
t
dy, (t
;t()=ay1—f7yz

This is 5 — dimensional system of non-linear differential equations.
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2.3 Basic Properties of the Model

2.3.1 Positivity of Solution
The region 2 C Ri is positively invariant for the basic model (S)With non negative initial conditions in Ri .

We considered the biological feasible solutions to show that
Q= {(x1 (t),x2 (t),x3 (t),y1 (t),y2 (t)) eR’:ix,+x,+x, <Ly +y, < 1}

is positively invariant of R’ which is meaningful mathematically, biologically and epidemiologically in the

domain Q).

The solutions of equation(S)with the initial conditions are all positive V # >0 and it is important in order to

show that all variables have nonnegative.

Lemma

If x1(0)>0, X, (O)>O, x3(0)>0, y1(0)>0and y2(0)>0 the solutions X, (t), X, (t),x3 (t),

e (t) and y, (t) ofequation(S) are positive V £ 2 0.
Proof

From the initial conditions given, we can show that the solutions of the equation(S)are positive; if not, we

assume a contradiction in a way there exists a first time 7, such that
x(4)=0 x (1,)<0, x,(1,)20, x ()20, v (1,)20,
yQ(tl)ZO xz(tl)+x3(tl)+yl(tl)+y2(tl)>0 xz(t1)>0, (6)

x(1,)>0, v (4,)>0, y,(4)>0 1e(0,1)

There exist az, such that
xz(tz)zO x;(tz)SO, xl(tz)ZO, x3(t2)20, yl(ZZ)ZO,

y,(4,)=0 x(6)+x(6)+y(6)+y,(5,)>0 x (1,)> 0, (7)
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x3(t2)>0, yl(t2)>0, y2(t2)>0

There exist a¢; such that

1e(0,1,)

x(4)=0 x(t)<0, x (1;)=20, x, ()20, v (1,)=0,

yz(t3)20 xl(t3)+x2(t3)+y1(t3)+y2(t3)>O
xz(t3)>0, yl(t3)>0, yz(t3)>0

There existaz, such that

y,(4,)=0 v (2,)<0, x (1,)=0, x,(1,)=

yz(l4)20 xl(t4)+x2(t4)+x3(t4)+y2(t4)>0
x,(2,)>0, x,(1,)>0, y,(4,)>0

There exist a¢, such that

0, b (t4) =20,

yZ(ZS)ZO y;(IS)SO, xl(ts)ZO, xz(l‘s)ZO, x3(t5)20,

yl(tS)ZO xl(t5)+x2(t5)+x3(t5)+y1(t5)>0

xz(t5)>0, x3(t5)>0, yz(t5)>0

From the first case we can say

x (t)=xq(1-x,—x;) y, >0
This is a contradiction meaning that x, (t) >0,12>0.
From the first case we can say

X, (1)=7x,+ p,x; >0
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This is a contradiction meaning that X, (t ) >0,20.
From the first case we can say
/
Xy (t)=6x,>0 (13)
This is a contradiction meaning that X, (t ) >0,120.
From the first case we can say
!
yi(1)=x(1-y,)x,>0 (14)
This is a contradiction meaning that y, (t) >0,120.

we say,
Vi (t)=ay >0 (15)

This is a contradiction, meaning that y, (t) >0, ¢ =20. Therefore, the solutions x, (Z), X, (l) ,» Xy (l‘) » W (t)

and Y, (Z) of equation (5) is still positive V £ > 0.
2.3.2 Disease Free Equilibrium (DFE)

For equilibrium point, let the right hand side of equation (5) be equal to zero. That is

0= Kq(l—x1 —-X, —x3)y2 —(r+,u+§)x1

0=1x,+ p,x, —(e+ u+5)x,

0=cx,—(p +p,+1)x (16)
0=x(1-y,—»,)x,—(a+n)y

0=ay, -1y,

By substituting x, = x;= , Xy = x;,x3 = x; = yl* and y, = y; into the equation(l6) , we obtain the
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Endemic equilibrium points as

, xq(1-x-x) )
- (7+p+6)+Kqy;

* *
«_ TX + 0%

(6+u+5)
. EX,
! (,01+p2+,u) ( )

Lox(1-y)x

N (a+77)+1cx;
* a *
Yo ==
n

Therefore, equation(S)has shown that we can have two equilibriums in the non negative of R’ that is, the
Disease Free Equilibrium (DFE) point E | = (0,0,0,0,0) and the Endemic Equilibrium point,
E = (xl* S x;,x: R yl* S y;) which has been described in equation(S). The basic reproduction number of the

DFE thatis E|, can be derived by using next generation matrix method and it is shown in equation (1 8) below

R, = aTqu(p1+p2+,u) (18)

77(05+77)(r+,u+5)[(5+,u+5)(,01+p2+,u)—8p2]

2.4 Local Asymptotic Stability of Disease Free Equilibrium (DFE)

Theorem 1

For Basic reproduction number(RO) less than one(R0 < 1), the disease free equilibrium £ is locally

asymptotically stable. Otherwise, it is unstable.

Proof

If eh=dx1 (t)’l-hzdxz (t) - _dx3 (I) e _dyl (t)

, e, = then the system in equation (5
dt a " at dt )
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linearised for the disease free equilibrium (DFE) is given by
e, =kqy, —(7+u+8)x,
[, =TX, + pyx, —(&+ p+6)x,
r=6x,—(p+p+ 1) x, (19)
e, =kx,—(a+n)y
L, =Y, ~11Y,

The Characteristic equation of the polynomial of the above equation, that is |J (E 0 ) -1 | =0 where Ais the

eigenvalue and [ is the Identity matrix is given by
A+ AL+ AL+ 4,07+ A0+ 4, (1-R7 ) =0 (20)

Where

A, =a, +a, +as;+a,+as;

Ay =ay,a,, +ay, (all +a,, ) + (all ta,, +ay )(a44 + a55)+ (a44a55 - ‘9:02)

A4, = a,,a,, (a33 ta,+t a55)+ 33044 (all +ay, +a55)+ dss (a“ +a22)(a33 + a44)—8p2 (all ta,t ass)
A4, = ayag [allazz +as; (an +a,, ):| +a,,a,,0d; (a44 + ass)_ &P, [all (a44 +dss ) +aygass + OZTqu:|
A, = a,a,,a;;5 (a22a33 - Epz)

Using Routh-Hurwitz criterion, we discover that all roots of characteristics equation(ZO) have negative real
part and show that 4, > 0,4, >0, 4, >0 and A, > 0. Therefore, the disease free equilibrium E is locally

asymptotically stable.
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Table 1: Description of Parameters of the model

S/N | Parameter Description Value Reference
1 AN Recruitment rate of humans 1.2 [18]
2 B, Infection rate of humans 0.00638 [15]
3 T Developing rate of exposed in humans to | 0.05 [15]
infected
4 & Recovery rate 0.003704 [5]
5 0 Loss of immunity rate 0.0146 [5]
6 2 Relapse rate 0.004 [5]
7 H Natural death rate of human 0.03 [18]
8 ) Disease-induced death 0.089 [18]
9 B, Infection rate of mosquitoes 0.0696 [16]
10 ™™ Recruitment rate of mosquitoes 0.7 [16]
11 n Natural death rate of mosquitoes 0.1429 [5]
12 Developing rate of exposed in mosquitoes to | 0.083 [16]
infected
13 & Biting rate of Mosquitoes 0.29 [16]
14 X Probability of transmission of infection from | 0.022 [16]
an infectious mosquitoes to a susceptible
humans
15 b Probability of transmission of infection from | 0.24 [16]
" an infectious humans to a susceptible
mosquitoes
16 N Total population size for the human 1.0 [5]
17 M Total population size for the mosquitoes 1.5 [5]
18 q Number of mosquitoes per individual 1.5 [5]

3. Differential Transform Method (DTM)

The DTM can be derived from Taylor series expansion and it is a semi-analytical method of solving both linear

and nonlinear system of ordinary differential equations (ODE) to obtain approximate series of solutions. The

differential transform of the k™ derivative of a function (1) is given by;

F (k)

_ 1 d @)

k' dit e
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Wheref{(?) is the original function and F(k) the transformed function.

The inverse transformation is defined as follows;
>k
f()=>Y t"Flk]
k=0

Substituting Equation (2 1) into equation (22) , we obtain

£ k dk
-5 5[40

It is shown from equation (5) that the DTM is derived from Taylor series expansion and it does not find

numerical value for derivatives.

Basic rules of Differential Transform Method (DTM)

Given the arbitrary functions f (t ), g(t ) and h(t ) then the basic rules for manipulating differential

transform method are as follows:

RuleI: f (1) = g(1)* h(t) then, F[k]= G[k]* H[k]

Rule 2: f(t) =ag(t) then, Flk]=aG[k]

o 1S a constant

Rute3: f (1) = j—xg(t) then, F[k]= (k + )G[k + 1]

Glk +n]

Rule 4 f (1) = 522 g(t) then, F[k]= (k + 1)(k + 2)G[k + 2]
X
d” k!

Rule 5: f(t)— i g(t) then, F[k] = m

Rule6: f (t)= g(t)h(t) then, F[k]= f G[ilH [k —i]

k

Rule 7: f(l‘)z %then,F[k]z z

208
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k=

Rule 8: f (1) = t* then F[k]=8(k-a) where & (k-a )~ {(1) ‘-
N a

k
Rule9: f (1) = e", then F[k]z%

Rule 10: f (t) = (1+1)°, then F[k]= a(a —1);('61 —k+1)

Rule 11: f (1) = sin (at + ), then F[k] = Oli—k'sin [%k + ﬂj
Rule 12: f (t) = cos (at+ f),then F[k]= i—tcos[%k + ﬂj

Rule 13: f(x) = sinh(ax), then F[k]= 2l—k'(ak - (—a)k)

Rule 14: f (x) = cosh(ax), then F[k]= ﬁ(ak + (—a)k)

4. Numerical Solution and Results

Solution of the Model using Differential Transformation Method (DTM)

Let Sh (k),Xl (k),X2 (k),X3 (k),S (k),Yl (k) and Y2 (k) represent the differential transform of the

m

equation (2) and by applying the basic rules of DTM, each of the equation (2) has recurrence relation as follows:

s, (k+1)=ﬁ{m(k)-m {zs (k—i)Yz(i)}— S, (K)+ pX, (k)}

Xl(kﬂ):kL[th {iSh(k—i)Yz(i)}—(rerqL&)Xl(k)}

+1
X, (1) = [ X, () X, (K) (o4 04:8) X, ()

X3(k+1)=ﬁ X, (k)= (p, + s + 1) X, (k)]
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1

s, (k+l):k—[l“5(k)—/<m {Zk:Sm(k—i)Xz(i)}—nSm(k)}

+1

(k)= {25 (200 () 1)

¥, (k1) = [, (6) =72, (k)]

with the initial condition, where Sh (0) =0.83, Xl (0) =0.08 ,X2 (0) =0.07, X3 (0) =0.02,

S (0)=0.7, ¥(0)=0.2 and ¥,(0)=0.2 according to [18]. Using the initial conditions above and the
m 1 2

value of parameters in the Table 2, the results of iterations of differential transform of the equation (1) are

obtained through Maple 2016 version. That is, when k = 0, the above equations become
S, (1)=A—gx,S, (0), (0)— 15, (0)+ p,. X, (0)
X,(1) =455, (0)%, (0)—(z+ u+5) X, (0)
X, (1) =X, (0) (& + 1+ 8) X, (0) + p, X, (0)
X, (1) =X, (0)—(p, + p, + 1) X, (0)
s, (1)=T-x,8, (0) X, (0)-75, (0)

1 (1)= 5,5, (0) X, (0)~(a 1) (0)

m-m

%, (1) =¥ (0)-nY,(0)

When k=1, we have

5,(2) == {S, (0)(@¥, (0)~ 7%, (0)) + (A ~x;4S, (0)%: (0) - 15, (0) + p X, (0)) 1. (0)} -

%ﬂ{A_thSh (O)Yz (O)_I['lSh (0)+p1X3 (0)}"‘%/01 {‘9X2 (0)_(/01 + 0, +ﬂ)X3 (0)}
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X,(2)=7 %48, (0) (¥, (0) -7, (0))+ (A~ x,45, (0) 7, (0) - 5, (0) + p.X; (0)) ¥, (0)} -
(e u+8){ax 3, (0) . (0) - (r+ 4+ ) X, (0))

X, (2) = {05, (0) 1, (0) (4404 8) X,(0)) +5 s X (0)=(y + 1) X, (0)) -
(e )2, (0)+ 9., (0) (o 4+ ) X, (0)

X3(2)=%g{1XI(O)+ X, (0)—(e+ ,u+§)X2(O)}—%(pl + oy + 1) (£, (0) -

(o +p,+ 1) X, (0)}

7(2) =2 xS, (0) X, (0) ~(a 1)1 (0)} -3 {a; (0)-n7: (0)}

Andsoonfork=2,3,4...

We can now obtain the differential transform solution series as follows:

5,(6)=5,(0)+[ A =55, (0), (0)- 5, (0)+ . X, (O)]t+[—% {5, (0)(a%,(0) -
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70, (0)) +(A =38, (07, (0)~ 4, (0)+ 2. X, (0)) % (0)} e A - 1,65, 0) Y 0) -

15, (0) 49X, (O)}+3 2 {6 (0)= (1 s ) X, (O)

X, (1)=X,(0)+[ gx;5,(0) %, (0) = (7 + u+8) X ]H[ %915, (0)(a%; (0)-7Y,(0))+

(A=1,05, (0)7; (0) 15, (0)+ A, () (O)} =3 4.4+ 8) a5, ()1, (0)

~(z+u+8) X, (0)f ] -

X, (0) =X, (0)+ [, (0)(e-+8) X, (0)+ i, (0] +| s, (0)7,0) -
(r+1+8) X, ()4 {6, (0) (01 + 9o+ 40) X, (O)) = (64 o+5)

(2, (0)-+ p, X, (0)—(6-+ i+ 6) X, (0)} ]* +--

X, (1) =X,(0)+[£X,(0)—(p, + p, + 1) X ]w{ e{rX,(0)+ p,X;(0)-
(£+,L1+5)X2(0)}—%(p1 by + )X, (0)=(py + o, +ﬂ)x3(o)}}z o

S, (1)=S5,(0)+[T-x,S,(0)X,(0)-7S, (0)]:{—%;9, {8, (0)(X, (0)+ p,X; (0)-

(e+u+58)X,(0))+(I-x,8S, (0)X,(0)-7S,(0))X, (0)}—%;1(1“—

K,S,(0) X, (0)-5,,(0)) [ +---

() =1(0)+ [5,5. (0)X. (0)~(ar+n) 1 (0)]1+| . {5, 0)(e,(0)+ ., 0)
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~(e+u+5)X,(0))+(I'-x,S, (0) X, (0)-7S,(0)) X, (0)} —%(a+77)

5,5, (0)X; (0)=(ar+ 7)Y, (0)f |+

2~

(0)]

()= (0)+ [ (0) 07 (0) )+ Sl 5. (00, (0)~(+)

Using the following values A=1.2, x, =0.00638, I'=0.7, £ =0.03, g =1.5, p, =0.0146,
P, =0.004, 7 =0.05, 6 =0.089, £ =0.003704, x,, =0.0696, @ =0.083and 7 =0.1429. We

obtain the differential transform solution series as follows

S, (t) =0.83+1.174597690¢ —0.01819538748¢* +0.0001841729807¢ +

0.000003497073788¢* —0.0000006346815766¢° +0.00000004987487762¢° —
0.000000002784442912¢” +0.0000000001154782360¢° —3.337449766 x10*¢° +

4.151959351x107"*#'* +2.087513226x107"*¢" +---

X, (t) =0.08—0.012725690¢ +0.001646540080¢> —0.00009493055327¢ —

0.000000868278935¢* +0.0000006431329762¢> —0.00000006482083322¢° +
0.000000004135739122¢" —0.0000000001924002480¢° +6.564943952x10~"% ¢’ —

1.424321951x107¢'° —1.3326384 %1077 ¢ +---

X, (t) =0.07 —0.00450928¢ —0.0000429143434¢* +0.00002920954574¢" —

0.000002082862206¢* +0.000000042455881041° + 4.489970860x10~°¢° —

5.416878483x107°1" +3.415782323x107"'#* —1.534707551x107%¢"+
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5.166238760x107"*¢#'° —1.223942376x10 "¢ +---

X, (t) =0.02-0.00071272¢ +0.000008967909440¢" —1.982650422x107'¢* +

2.945695961x107°r* —1.829305969 x107+" +4.102680892 101+
2.090992737 x107¢" —2.635042547 x107°£*+1.548076489x107"*¢* —
6.436921943x107'°4'°+2.024008403 <1077 +-.-

S, (t) =0.7+0.5965596¢ —0.04396755654¢*+0.002228830777¢’ —0.00008569977010¢* +

0.000002424178504¢° —3.411109724 x107%¢° —1.048723261x107°¢ +
7.734082631x107"7* —1.36765112x107%¢° —2.982275032x 1073+
2.825688864x107 44" +--.

Y (t) =0.2—-0.0417696¢ +0.006061249445¢* —0.0005909215832¢" +0.00003944708700¢* —

0.000001757098465¢°+4.253000307 x 10 °2°+3.72572990x 10" —
6.912853686 %1075 +6.43890935x10 % +2.856363805x10 3¢ —
3.024857484x107 4" +-..

Y,(¢)=0.1+0.002317 - 0.001898487900¢”+0.0002581258750¢" —0.00002148316974¢* +

0.000001268810635¢° —5.452536872x107%°+1.617380778x107°¢" —
2.502501938x107"¢* —2.401770322x107"°#°+8.776424550 x 107" #'°+

2.041242592 %107 ¢! +-..
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Table 2: For Human Population Model
Comparison Between Fourth Order Runge-kutta and Differential Transformation Methods

TIME | R-K 4 DTM R-K 4 DTM R-K 4 DTM R-K 4 DTM
day(s) | S[h](t) S[hi(t) E[h](t) E[h](t) I[h](t) I[h](®) R[h](®) R[h](®)
0 0.83000000 0.83000000 0.08000000 | 0.08000000 | 0.07000000 | 0.07000000 | 0.02000000 | 0.02000000
1 1.98658939 1.98658939 0.06882563 | 0.06882563 | 0.06547498 | 0.06547498 | 0.01929608 | 0.01929608
2 3.10792572 3.10792572 0.06037835 | 0.06037836 | 0.06101172 | 0.06101172 | 0.01860926 | 0.01860926
3 4.19516726 4.19516725 0.05412525 | 0.05412527 | 0.05671848 | 0.05671848 | 0.01793917 | 0.01793917
4 5.24946239 5.24946238 0.04959382 | 0.04959383 | 0.05266733 | 0.05266732 | 0.01728577 | 0.01728577
5 6.27192851 6.27192854 0.04638242 | 0.04638240 | 0.04890145 | 0.04890145 | 0.01664924 | 0.01664924
6 7.26364128 7.26364157 0.04416012 | 0.04415986 | 0.04544188 | 0.04544184 | 0.01602983 | 0.01602983
7 8.22563024 8.22563207 0.04266084 | 0.04265922 | 0.04229322 | 0.04229301 | 0.01542787 | 0.01542788
8 9.15887825 9.15888703 0.04167510 | 0.04166734 | 0.03944841 | 0.03944738 | 0.01484364 | 0.01484367
9 10.06432297 | 10.06435781 | 0.04104103 | 0.04101055 | 0.03689256 | 0.03688831 | 0.01427737 | 0.01427748
10 10.94285942 | 10.94297848 | 0.04063590 | 0.04053289 | 0.03460582 | 0.03459067 | 0.01372922 | 0.01372962
Table 3: For Mosquito Population Model
Comparison Between Fourth Order Runge-kutta and Differential Transformation Methods

TIME | R-K 4 DTM R-K 4 DTM R-K 4 DTM

day(s) | S[m](t) S[m](t) E[m](t) E[m](t) I[m](t) I[m](t)

0 0.700000000 0.700000000 0.200000000 0.200000000 0.100000000 0.100000000

1 1.254737592 1.254737563 0.163738439 0.163738461 0.100649387 0.100649371

2 1.733783749 1.733783701 0.136556069 0.136556104 0.098784662 0.098784638

3 2.147769990 2.147769946 0.116087161 0.116087191 0.095344834 0.095344812

4 2.505793834 2.505793821 0.100557912 0.100557913 0.090985315 0.090985298

5 2.815639333 2.815639629 0.088651091 0.088650740 0.086155906 0.086155929

6 3.083969370 3.083972205 0.079397010 0.079393798 0.081159016 0.081159354

7 3.316491478 3.316509067 0.072087382 0.072067609 0.076192626 0.076194764

8 3.518099781 3.518184125 0.066208340 0.066113811 0.071381646 0.071391813

9 3.692995818 3.693330192 0.061389124 0.061015014 0.066800565 0.066840394

10 3.844791057 3.845933674 0.057363291 0.056086661 0.062489624 0.062624100
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Figure 8: The graph of Infected Mosquito
against Time for both DTM and R-K 4

5. Conclusion

Mathematical model of malaria is built on system of ordinary differential equation (ODE). Next generation

matrix method was used to solve for the basic reproduction number R, and we use it to test for the stability that

whenever R, < 1 the disease-free equilibrium is globally asymptotically stable otherwise unstable. These

models were solved using DTM. The Solution of DTM compared favorably with the solution obtained by using

classical fouth-other Runge-Kuta method. The solution of the two methods follows the same pattern and
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