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Abstract 

Regression models are the suitable statistical techniques for drawing inferences about relationships among 

interrelated variables. These models are applicable in many fields, such as the social field, physical field, 

biological sciences, business and medical fields. Regression models are perhaps the most used of all data 

analysis methods. This research interests in comparing regression models and applying these models in 

analyzing two real data sets of anemia diseases.  Also, many evaluating methods are applied in the research to 

choose between models, determining variables that effective the anemia diseases.  The analysis of the results 

detects the best variables, the suitable model and the best criterion can be used with the medical data.   

Keywords: logistic regression models; anemia diseases; Iterative weighted least square methods; r-squared 

measure; Hosmer-Lemeshow test. 
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1. Introduction  

Regression models are the widely statistical used models for analyzing the relationship between dependent and 

independent variables. The ordinary regression models is the suitable regression models when the outcome 

variable, Y is a continuous variable. The regression context assumed that there are a set of predictor variables 

𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … 𝑿𝑿𝒑𝒑 that related with the response variable Y and provide additional information for predicting Y [3]. 

The ordinary regression models are not appropriate for situations in which Y is categorical such as logistic 

regression models. Section (2) has details of ordinary and logistic regression models. Section (3) has the 

estimation and evaluating methods of ordinary and logistic models. Two real data sets are used to apply and 

compare between the two models. The application will be stated in section (4). The analysis of the results and 

conclusion are included in section (5). The recommendations is in section (6). Finally, the references will be 

stated at the end of the research  

2. The Ordinary and Logistic Regression Models 

Regression analysis is an important statistical tool to analyze data sets in all fields.  It enables researcher to 

identify and characterize the relationships among multiple factors. It also identifies the prognostic relevant risk 

factors and calculates risk scores [1]. This section introduces the classical statistical regression model that are 

defined by the ordinary regression models either the simple regression models or the multiple regression 

models. Also, the details of the logistic regression models are introduced. 

2.1. The Ordinary regression models 

The regression analysis is the widely used techniques for analyzing multifactor data. It expresses the 

relationship between a variable of interest, the response variable Y and a set of related predictor variables [9]. 

 There are many types of regression models each one can be applied and suitable in a situation on the basis of 

some conditions. The simple linear regression model is the simplest model that has only one independent 

variable and a continuous response variable. The model states the true mean of the dependent variable changes 

at a constant rate as the value of the independent variable increases or decreases. The functional relationship 

between the true mean of 𝑌𝑌𝑖𝑖, denoted by 𝐸𝐸(𝑌𝑌𝑖𝑖), and the independent variable has the following equation:  

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝛽𝛽0+𝛽𝛽1𝑋𝑋1                                                                           (1) 

Where the intercept is 𝛽𝛽0, and the rate of change in 𝐸𝐸(𝑌𝑌𝑖𝑖) per unit change is 𝛽𝛽1[1].   

The deviation of an observation 𝑦𝑦𝑖𝑖  from its population mean 𝐸𝐸(𝑌𝑌𝑖𝑖) is taken into account by adding a random 

error i to form the simple model as follows: 

𝐸𝐸(𝑦𝑦𝑖𝑖) = 𝛽𝛽0+𝛽𝛽1𝑋𝑋𝑖𝑖  + 𝜖𝜖𝑖𝑖                                                                    (2) 
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The subscript i indicates the particular observational unit, i = 1, 2... n. The 𝑋𝑋𝑖𝑖 are the n observations of the 

independent variable and are assumed to be measured without error. The observed values of X assumed to be a 

set of known constants. The 𝑌𝑌𝑖𝑖  and 𝑋𝑋𝑖𝑖  are paired observations measured on every observational unit. The 

random errors are normal distributed with zero mean and assumed to have common variance 𝜎𝜎2 and is pair wise 

independent [12]. 

A multiple regression model describes the relationship between two variables, the continuous dependent 

variable and many explanatory variables. The multiple model with two independent variables can be defined as 

follows: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝜀𝜀                                                            (3) 

Where the unknown parameters of the model are  𝛽𝛽0 , 𝛽𝛽1 and 𝛽𝛽2. The response variable y. is related with the 

predictor variables in a linear link. If there are not only two independent variables, then the model for k 

independent variables can be defined as follows  

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜀𝜀                                                   (4) 

The parameters are 𝛽𝛽𝑗𝑗  , 𝑗𝑗 = 0,1, … , 𝑘𝑘, that are called the regression coefficients. This model describes a 

hyperplane in the k - dimensional space of the regression variables𝑥𝑥𝑗𝑗. The parameter 𝛽𝛽𝑗𝑗 represents the expected 

change in the response variable y per unit change in the explanatory variable 𝑥𝑥𝑗𝑗  when all of the remaining 

regressor variables 𝑥𝑥𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗) are held constant. For this reason, the parameters 𝛽𝛽𝑗𝑗 , 𝑗𝑗 = 1,2, … , 𝑘𝑘, are the partial 

regression coefficients [9].  

2.2. The logistic regression models 

The use of logistic regression model back to 1958 by statistician David Cox in 1958 and is appeared in 

mathematical studies since that time [14]. The logistic regression is the increasingly and popular statistical 

technique used to model the probability of discrete outcomes. When the logistic regression analyses applied, it 

yields very powerful insights about what variables are more or less likely to predict event outcome in the 

population of interest [8]. The logistic model is the suitable used model to explain the relationship between a set 

of variables and the probability of an event. He focuses on the binary logistic regression and considers the 

binomial case [4]. 

There are two types of logistic regression models, the binary logistic model and the multinomial logistic model. 

In the binary logistic model and for each observation, the response Y can take only one of two possible values 

which are denoted by 0 for failure and 1 for success. The relation can be described as follows: 

logit[π(x)] = ln( π(x)
1−π(x)

)  =  a + βx                                                      (5) 

Where the constant of the equation is 𝑎𝑎 , and the regression parameter is 𝛽𝛽  .  There is a single explanatory 

variable X, which is quantitative or qualitative variable. The response variable Y, has the probability of success 

https://en.wikipedia.org/wiki/David_Cox_(statistician)
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at value x denoted by 𝜋𝜋(𝑥𝑥) . This probability is the parameter for the binomial distribution. The logistic 

regression model has the linear form for logit of this probability. This formula implies that 𝜋𝜋(𝑥𝑥) increases or 

decrease as an S-shaped function of x. The form of logistic regression model with multiple explanatory 

variables will be defined as follows: 

logit(πi) = log � πi
1−πi

� = βTxi = β1 + β2xi2 + ⋯+ βpxip                          (6) 

The parameters 𝛽𝛽𝑖𝑖 refers to the effect of 𝑥𝑥𝑖𝑖 on the log odds, Y=1. The component structural of the logistic model 

sets the logit link between the probability of success and the linear combination [11].   

In a medical study about the risk factors for the carcinogenesis of oral sub-mucous fibrosis in mainland China. 

The data is related to risk factors and collected using a short structured questionnaire. Results are associated 

significantly with increased risk for the malignant transformation of oral sub mucous fibrosis [17]. The 

complemented of diagnostic the breast cancer from the mammogram uses the logistic regression model. The 

results using logistic regression cross tabulation is to obtain the significant value between the breast cancer 

factors. The classification table for 130 samples shows that the percentage of correct classification for 

mammogram is 91.5%. The accuracy is compared with validated samples which are 46 samples where the 

percentage of correct classification is 67.4% [15].  

The nonlinear logistic regression model kernel logistic regression model that based on kernel density estimation 

is suitable in application for the classification proposes. A suitable comparison between logistic model and the 

other nonlinear model is made. This approach is important for clinical applications. Results of real datasets 

reveals that this approach not only achieves superior classification accuracy, but also reduces the computing 

time as compared to other methods [2]. 

3. The Estimation and Evaluating methods of  the Regression models 

There are two estimation methods for estimating the parameters of the regression models, the maximum 

likelihood method, and the least square method. Also, there are many evaluating measures to test the effect of 

the variables, the efficiency of the estimation methods, and the best fitted model. This section introduces the 

suitable estimating and evaluating methods to the proposed model.  

3.1. The Estimation methods of the Regression models 

The maximum likelihood method for the simple linear regression models is derived by using the joint 

probability density functions of  Y1, Y2, … , Yn . It is given as follows under the normal errors assumption:  

                           𝑓𝑓(𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛 \𝛽𝛽0,𝛽𝛽1,𝜎𝜎2) =  ∏ 𝑓𝑓(𝑛𝑛
𝑖𝑖=1 𝑌𝑌𝑖𝑖  \𝛽𝛽0,𝛽𝛽1,𝜎𝜎2)       

                                                                          =
1

(2𝜋𝜋𝜎𝜎2)𝑛𝑛 2�
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2𝜎𝜎2

 �(𝑌𝑌𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

�                                  (7) 
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The log-likelihood function is defined as follows:  

                         𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿(𝛽𝛽0 ,𝛽𝛽1,𝜎𝜎2\𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛) 

=−  𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) − 𝑛𝑛

2
𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎2) − 1

2𝜎𝜎2
∑ (𝑌𝑌𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖=1               (8) 

Taking the first partial derivatives of the log-likelihood function, the estimators of the parameters are obtained 

as follows: 

                                                                                𝛽̂𝛽1,𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥𝑥𝑥
�                                                                                        (9)                                  

                                                                                𝛽̂𝛽0,𝑀𝑀𝑀𝑀 = 𝑌𝑌� − 𝛽̂𝛽1,𝑀𝑀𝑀𝑀𝑋𝑋�                                                                               (10) 

Where the estimated maximum likelihood of the slop is β�1,ML  , and the estimated value of the 

intercept 𝑖𝑖𝑖𝑖  β0 ,[3].  

 The maximum likelihood for the multiple linear regression analysis of the parameters’ vector 𝛽𝛽 are the same as 

the least square estimator.  The errors are independently identically distribution with N (0,σ2)  and hence the 

probability density function of Y is defined as follows: 

                                                  𝑓𝑓 �𝑌𝑌\𝛽𝛽,𝜎𝜎2� =
1

�2𝜋𝜋𝜎𝜎2�𝑛𝑛 2⁄ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1

2𝜎𝜎2
�𝑌𝑌 − 𝑋𝑋𝛽𝛽�

𝑇𝑇
�𝑌𝑌 − 𝑋𝑋𝛽𝛽��                               (11) 

The log-likelihood function of 𝑌𝑌 can be defined as follows: 

                                                𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 �𝛽𝛽,𝜎𝜎2\𝑌𝑌� = −
𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) −

𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎2�  −

1
2𝜎𝜎2

�𝑌𝑌 − 𝑋𝑋𝛽𝛽�
𝑇𝑇
�𝑌𝑌 − 𝑋𝑋𝛽𝛽�        (12) 

The partial derivatives of the log-likelihood function yield the estimated estimator of β as follows: 

                                                 𝛽̂𝛽𝑀𝑀𝑀𝑀 = �𝑋𝑋𝑇𝑇𝑋𝑋�−1𝑋𝑋𝑇𝑇𝑌𝑌                                                                                            (13) 

Where the vector   𝛽̂𝛽𝑀𝑀𝑀𝑀 are the estimated vector of the parameters [3, 6]. 

The maximum likelihood for the logistic regression models is different from the multiple regression models. 

The likelihood of the sample data is defined as product across all the sampled cases of the probabilities for 

success as follows: 

                                            𝐿𝐿 = �𝑃𝑃�𝑌𝑌𝑖𝑖�𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

= ��
𝑒𝑒𝛼𝛼+∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗

𝑝𝑝
𝑗𝑗=1

1 + 𝑒𝑒𝛼𝛼+∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗
𝑝𝑝
𝑗𝑗=1

�

𝑌𝑌𝑖𝑖𝑛𝑛

𝑖𝑖=1

× �
1

1 + 𝑒𝑒𝛼𝛼+∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗
𝑝𝑝
𝑗𝑗=1

�
1−𝑌𝑌𝑖𝑖

       (14) 
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where Y is the outcome variable for the i th case ( i=0,1), and the values of the predictor variables based on a 

sample of n cases are Xi1, … , Xip . The use of Yi  and 1 − Yi  as exponents in the equation includes that the 

likelihood is an appropriate probability dependent on whether Yi = 1 or Yi = 0. Using the methods of calculus, a 

set of values for α, and the βj can be calculated as maximizing L, and these resulting values that are known as 

the maximization process. It is more complicated than the multiple regression analysis for finding estimates. It 

involves initial guesses for the unknown parameters. This iterative solution procedure is available in popular 

statistical procedures such as the SPSS and SAS packages [3]. 

3.2. The least square estimating method 

The least squares method minimizes the sum of squares of the vertical distances from each point to the fitted 

line. The vertical distances represent the errors in the response variable. These errors can be defined as follows: 

𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖                                      i=1, 2,…, n                             (15) 

The values of β�0 and β�1 that minimize the sum of squares are defined as follows:  

𝛽̂𝛽1 =
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)

∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
                                                                                     (16) 

 𝛽𝛽�0 = 𝑦𝑦� − 𝛽̂𝛽1𝑥̅𝑥                                                                                          (17) 

The estimates 𝛽̂𝛽0 and 𝛽̂𝛽1 are the intercept 𝛽𝛽0 and the slope 𝛽𝛽1 of the line respectively. The least square estimator 

of β for the multiple regression models is 𝛽̂𝛽 = �𝑋𝑋𝑇𝑇𝑋𝑋�−1𝑋𝑋𝑇𝑇𝑌𝑌   [13]. 

For the binary logistic regression where (y=0 or y=1), the iterative reweighted least squares is equivalent 

minimizing the log - likelihood of the Bernoulli distributed process using the Newton's method. If the problem is 

written in vector matrix form with parameters𝑤𝑤𝑇𝑇 = 𝛽𝛽0,𝛽𝛽1,𝛽𝛽3, … ], and with explanatory variables xi = [1, x1 (i), 

x2 (i), …], the parameters can be found using the following iterative algorithm: 

𝑤𝑤𝑘𝑘+1 = (𝑋𝑋𝑇𝑇𝑆𝑆𝐾𝐾𝑋𝑋)−1𝑋𝑋𝑇𝑇(𝑆𝑆𝐾𝐾  𝑋𝑋 𝑤𝑤𝑘𝑘 + 𝑦𝑦 − 𝜇𝜇𝑘𝑘)                                                       (18) 

Where a diagonal weighting matrix S=diag (μ(i) (1- μ(i))),  and μ= [μ (1) , μ (2),…] is the vector of the expected 

values [10]. 

3.3. The Evaluating Measures 

3.3.1. The Wald test statistic 

The Wald statistic used to assess the contribution of individual predictors or the significance of individual 

coefficients in a given model. The Wald statistic is the ratio of the square of the regression coefficient to the 

square of the standard error of the coefficient. The Wald statistic asymptotically distributed as a Chi-square 

https://en.wikipedia.org/wiki/Log-likelihood
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Newton%27s_method
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distribution. It can be defined as follows: 

                                                                                      𝑊𝑊𝑗𝑗 =
𝛽𝛽𝑗𝑗
2

𝑆𝑆𝑆𝑆𝛽𝛽𝑗𝑗
2                                                                                (19) 

Each Wald statistic is a compared with a Chi-square with 1 degree of freedom. Wald statistics are easy to 

calculate, but their reliability is questionable [1]. 

3.3.2. The Hosmer-Lemeshow test 

The Hosmer–Lemeshow test is used to examine whether the observed proportions of events are similar to the 

predicted probabilities of occurrence in subgroups of the model population. It performed by dividing the 

predicted probabilities into deciles and then computing a Pearson Chi-square that compares the predicted to the 

observed frequencies in a 2x10 - table. The value of the test statistics is defined as follows: 

𝐻𝐻 = ∑ �𝑂𝑂𝑔𝑔−𝐸𝐸𝑔𝑔�
2

𝐸𝐸𝑔𝑔
10
𝑔𝑔=1                                                                         (20) 

Where 𝑂𝑂𝑔𝑔 and 𝐸𝐸𝑔𝑔 denote the observed and the expected events for the gth risk decile group. The test statistic is 

asymptotically 𝜒𝜒2 distribution with 8 degrees of freedom. Small values (with large p-value closer to 1) indicate 

a good fit to the data, good overall model fit. Large values with (𝑝𝑝 <. 05) indicate a poor fit to the data [7].  

3.3.3 The R-squared and the adjusted R-squared measures 

The R-squared is the most widely measure for detecting goodness of fit of a model. The used symbol is 

symbolled by R2.  There are several definitions of 𝑅𝑅2 . It is also known as the square of the coefficient of 

correlation (Pearson's R) between x and y for a set of n points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). It is also the proportion of the variance in 

the dependent variable that is predictable from the independent variable(s).  It can be defined as follows: 

𝑅𝑅 = ∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)
�∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2(𝑦𝑦𝑖𝑖−𝑦𝑦�)2

=  𝑆𝑆𝑋𝑋𝑋𝑋
�𝑆𝑆𝑋𝑋𝑋𝑋 𝑥𝑥 𝑆𝑆𝑌𝑌𝑌𝑌

                                               (21) 

where overbars designate averages. The R is also given by R = (b b́)1/2, where b and b' are the least-squares 

slopes for linear regression of y upon x and x upon y respectively. It is also given by: 

𝑅𝑅2 = 1 −
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2  

= 1 − 𝑆𝑆𝑆𝑆𝐸𝐸
𝑆𝑆𝑌𝑌𝑌𝑌

                                                                                               (22) 

Where  y�i is the calculated value of y at xi from the regression of y upon x. The second term is recognized as the 

ratio of the residual sum of squares to the total sum of squares, and it expresses the extent to the fit model 

accounts for the variability in y. The R2 represents the efficiency of the least square fit. A perfect fit means that 
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R2= 1.  If there is a fit to a true model, R2 can be expressed as follows: 

                                                            𝑅𝑅2 = 1 − (𝑛𝑛−𝑝𝑝)𝑠𝑠2

(𝑛𝑛−1)𝑆𝑆2
                                                                               (23) 

Where the number of adjustable parameters is p, and an estimate of σ2 is  s2.  The  𝑆𝑆2 is the total variance in y, 

equivalent to the estimated variance for a fit to the model y=a [16] 

The Adjusted R2 does not have the same interpretation as R2 , it is instead a comparative measure of suitability of 

alternative nested sets of explanatory variables. The adjusted R2 is particularly useful in the feature 

selection stage of model building. It can be defined as follows: 

                                                                 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =1 − (𝑛𝑛−1)𝑆𝑆𝑆𝑆𝑆𝑆
(𝑛𝑛−𝑝𝑝)𝑆𝑆𝑦𝑦𝑦𝑦

= 1 − 𝑆𝑆2

𝑆𝑆2
                                                                       (24) 

where p is the total number of explanatory variables in the model (not including the constant term), and n is the 

sample size. The degrees of freedoms are n– 1[10].   

4. Applications of the Anemia Diseases Data Sets 

Anemia is a serious public health problem that affects populations in many countries. It arises when a person has 

lower number of red blood cells than the normal number; the amount of hemoglobin in the red blood cells drops 

below the normal level. The red cells prevent the body parts by the oxygen, where the body contains about 5-6 

quarts of blood, and the heart are then constantly pumped it throughout all the body parts. The blood carries 

oxygen, nutrients, and other essential compounds. When something goes wrong in the blood, it makes a big 

problem and impact on the health and the life of the person. There are many types of anemia like aplastic 

anemia, iron-deficiency anemia, hemolytic anemia and pernicious anemia [18]. 

The anemia affects 1.62 (1.50–1.74) billion people that corresponding %24.8 of the population. The highest 

prevalence is in the pre-school children that prevalence about %47.4 (%45.7–%49.1), and the lowest prevalence 

is in men %12.7 (%8.6–%16.9). The greatest number of individuals affected is non-pregnant women 468.4 

(446.2 –490.6) million [19].  

A study of anemia diseases in Philippine and results reveal negatively effects of the pre-school children. It 

damages the hindered physical, cognitive development and leads to a weaken immune system. The hemoglobin 

level is analyzed by the ordinal logistic regression models, using data set from National Nutrition Survey in 

2008. The results showed children aged between 6-11 months required more attention[5].  

This section introduces two applications using two real data sets. The first data set are chosen from the 

Maternity and Children Hospital in Jeddah and the second data set are chosen from King Fahad Hospital in 

Jeddah. The SPSS program is used to descriptive and apply regression (ordinary and logistic) models.  

4.1. The application of the children data set 

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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The data set of children is for children who aged from (12-168) months. There are 92 cases suffering from the 

anemia diseases. There are five available independent variables, the age/ month, sex, weight, HB (hemoglobin) 

and WBC (white blood cell) that affect the dependent variable (the anemia level). The following Table 1 

describes the data set, the minimum and the maximum values in the data, the mean for all used variables, the 

standard deviation and the variance:   

Table 1: The Descriptive statistics of variables 

 N Minimum Maximum Mean Std. 

Deviation 

Variance 

Age/.month 92 12 168 86.87 38.573 1487.851 

Sex 92 1 2 1.40 .493 .243 

Weight 92 3.35 54.30 18.6510 7.93988 63.042 

Anemia level 92 0 1 .25 .435 .190 

HB 92 5.80 10.90 8.4511 1.27749 1.632 

WBC 92 4.06 30.16 11.9408 5.16562 26.684 

 

The multiple regression model is used at first to fit and analysis the relationship between the dependent variable 

anemia level and all the independent variables age/.month, weight, sex, HB, and WBC. The correlation R, the 

multiple correlation of determinationR2, adjusted R square and the standard error of the model estimate for the 

regression model is summarized in the following Table 2:   

Table 2:  The summary of evaluating measures of multiple regression model for children 

R R - square Adjusted R - square Std. Error of the estimate 

.671 .450 .418 .332 

 

The ANOVA table for the multiple regression model is stated in Table 3 as follows: 

Table 3: The ANOVA for the multiple regression for children 

                      Sum of squares df Mean square F Sig. 

Regression 7.757 5 1.551 14.054 .000 

Residual 9.493 86 .110   

Total 17.250 91    
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The coefficients of the model are stated in Table 4 as follows: 

Table 4: The coefficient of the multiple regression model 

Unstandardized coefficients Standardized coefficients 

t Sig. B Std. error Beta 

(Constant) 2.017 .314  6.417 .000 

Age/month .004 .001 .315 2.924 .004 

sex .001 .073 .002 .020 .984 

weight -.006 .006 -.117 -1.113 .269 

HB -.226 .029 -.664 -7.782 .000 

WBC -.004 .008 -.047 -.519 .605 

 

The binary logistic regression model is also used to fit the data set where the dependent variable is divided into 

two levels, the moderate anemia level and the severe anemia level. The beginning classifications are in Table 5 

as follows: 

Table 5: The Classifications of the binary logistic regression model 

Observed 

Predicted 

Anemia .level 

Correct percentage  Moderate anemia Severe anemia 

Anemia level Moderate anemia 69 0 100.0 

Severe anemia 23 0 .0 

Overall percentage   75.0 

 

Table 6 reveals no variable in the equation of the logistic model: 

Table 6: Variables in the logistic model 

 

The summary of evaluating measures of the logistic model, and the classification tables are stated in Tables 7 

and 8 respectively as follows: 

 

 B S.E. Wald df Sig. Exp (B) 

Constant -1.099 .241 20.820 1 .000 .333 
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Table 7: The summary of evaluating measures of the logistic model 

Step -2 Log likelihood Cox & Snell Rs quare Nagelkerke R square 

1 49.232 .445 .660 

 

Table 8: The classification of the logistic model 

Observed 

Predicted 

Anemia level 

Correct percentage  Moderate anemia Severe anemia 

Step 1 Anemia level Moderate anemia 65 4 94.2 

Severe anemia 7 16 69.6 

Overall percentage   88.0 

 

The cut value is .500, while Table 9 reveals the variables in the equation as follows: 

Table 9: The Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1 Age/month .045 .018 6.118 1 .013 1.046 

sex .366 .809 .205 1 .651 1.442 

weight -.102 .085 1.422 1 .233 .903 

HB -2.354 .547 18.518 1 .000 .095 

WBC .004 .071 .003 1 .958 1.004 

Constant 14.801 4.156 12.680 1 .000 2678505.532 

 

4.2. The application of the adults’ data set 

The second data set is for adults who suffering from anemia diseases. There are 55 cases. The adults are aged 

from 16-80 years and having anemia on the bases of the laboratory analysis.  

There are five available independent variables, the age/year, sex, weight, HB (hemoglobin) and WBC (white 

blood cell) variables and the dependent variable is the anemia level. The description of the data is in the 

following Table 10: 
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Table 10: The descriptive statistics of variables 

 N Minimum Maximum Mean Std. deviation Variance 

Age/years 55 16 80 34.05 14.123 199.460 

sex 55 1 2 1.75 .440 .193 

weight 55 30.00 105.00 54.9545 14.41651 207.836 

Anemia/.level 55 0 1 .29 .458 .210 

HB 55 5.70 10.90 8.6109 1.29524 1.678 

WBC 55 2.68 668.00 21.3087 88.93254 7908.996 

Valid N (list wise) 55      

 

The multiple regression model is used to fit and analysis the relationship between the dependent and 

independent variables.  

The independent variables are entered together in the analysis. The correlation R, the multiple correlation of 

determination𝑅𝑅2, adjusted R square and the standard error of the estimate for the multiple model is stated in the 

following Table11: 

Table 11: The summary of evaluating measures of multiple regression model for adults 

Model R R square Adjusted R square Std. error of the estimate 

1 .830a .689 .657 .269 

 

The ANOVA table for the adults’ model is stated in Table 12 as follows: 

Table 12: The ANOVA for the multiple regression for adults 

Model Sum of squares df Mean square F Sig. 

1 Regression 7.812 5 1.562 21.666 .000a 

Residual 3.533 49 .072   

Total 11.345 54    

 

The regression coefficients for the adults model is stated in the following Table 13: 
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Table 13: The Coefficient of the Multiple Regression Model 

Model 

Unstandardized coefficients 

Standardized 

coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 2.854 .347  8.222 .000 

Age/years .002 .003 .073 .836 .407 

sex -.120 .090 -.115 -1.332 .189 

weight .001 .003 .024 .281 .780 

HB -.286 .028 -.809 -10.072 .000 

WBC -.001 .000 -.099 -1.139 .260 

 

The binary logistic regression model is also used to fit the data set where the dependent variable is the two 

levels of anemia, the moderate anemia level and the severe anemia level. The classification table of the logistic 

model when there are no predictor variables is stated in table (14) as follows: 

Table 14: The classification of the logistic model 

Observed 

Predicted 

Anemia/level Correct 

percentage  Moderate anemia Severe anemia 

Step 0 Anemia/level Moderate anemia 39 0 100.0 

Severe anemia 16 0 .0 

Overall percentage   70.9 

 

Table 15 reveals the significance of the logistic model and there are no independent variables in the model as 

follows: 

Table 15: The variables in the equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.891 .297 9.006 1 .003 .410 

 

Tables 16 and 17 have the summary of the model and the classification results respectively after entering the 

independent variables: 
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Table 16: The Summary of evaluating measures of the logistic model 

Step -2 Log likelihood Cox & Snell R square Nagelkerke R square 

1 14.193 .612 .874 

 

Table 17: The classification of the logistic model 

Observed 

Predicted 

Anemia/level Correct 

percentage Moderate anemia Severe anemia 

Step 1 Anemia/level Moderat anemia 37 2 94.9 

Severe anemia 2 14 87.5 

Overall percentage   92.7 

The cut value is .500 

 

5. The Analysis of the Results and the Conclusions 

5.1. The analysis of the results 

For the children data, all variables entered the analysis; the R-squared for the regression model is 0.45 whereas 

for the logistic model is 0.66 with correct classification is % 88. The variables are tested to determine which of 

them more impact the level of anemia and the correct classifications. There are just two variables, the WBC, and 

HB, and the R- squared for using the regression model reduced to 0.39 , whereas for the logistic model the 

resulted R-squared  is approximately 0.6 with correct classification approximately %84 with slowly decrease.  

For the adult data, the R-squared for the regression model is 0.689 whereas for the logistic model is 0.874 for 

the case of all independent variables with %92.7 correct classification. By using only the variables WBC and 

HB, R-squared for the regression model is 0.67 while for the logistic model is .862 with correct classification 

%92.7.  

5.2. The conclusions 

In analyzing the two data sets, the regression model sometimes produces right results although the outcome 

variable, the anemia / level is binary. This is a wrong technique in analyzing such data sets especially medicine 

data sets where the outcomes in the two data sets are not continuous. The results are suspected and researchers 

have to be aware to the conditions each method based on. For children data set the logistic model reveals % 88 

correct classifications, while for the adult’s data set the logistic model reveals %92.7.  
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6. Recommendations 

In the medicine applications, the logistic models provide excellent results and does not required any conditions 

except the categorical outcomes. There are also many other models such as the discriminant models, the 

operations research techniques, and the classification methods can be used if the conditions of each method 

exist. If the researcher has not experience it is good advice to use the logistic model either the binary or the 

multinomial model. Measures of evaluating the variables, and the models are available in the packages that 

analysis the data and reveals the contributions of each variable and the strength of the model. If there is an 

experience there are also available measures to evaluate the models and to select suitable variables explain the 

relationship between the outcome and independent variables 
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