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Abstract 

In this paper, Natural transform and Homotopy perturbation methods are coupled to study third order Korteweg-

De Vries (KDV) equation analytically. The introduced technique is useful to obtain closed form solutions. The 

combined method required less computational effort when compared with some existing methods and reduced 

volume of calculations. Three illustrative examples are used to demonstrate the effectiveness of the method. 
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1. Introduction 

Nonlinear models are useful in the description of phenomena arising in physics, chemistry, engineering and 

other sciences. However, obtaining exact analytical solutions for these problems, except in limited cases could 

pose some difficulties [1]. Numerical calculation methods were good means of analyzing the nonlinear 

equations and their improvement led to improvement in analytical methods. In recent years, combination of 

numerical and analytical methods have drawn special attention. Example of such is homotopy perturbation 

method established by He in 1998 to obtain series solution of nonlinear differential equations [2,3]. The method 

has merits of simplicity and easy execution. Korteweg-De Vries equation is a mathematical model of waves on 

shallow water surfaces. It is a nonlinear partial differential equation whose solutions can be exactly and 

precisely specified. It was first introduced by Boussinesq in 1877 and rediscovered by Diederik Korteweg and 

Gustav de Vries in 1895.  
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The third order KDV equation can be presented in the form: 

( ) ( ) ( )1.1                                               0,    ;  0 xfxvbvavvv xxxxt ==++  

Where   and ba are constant. 

Laplace transforms method has been combined with homotopy perturbation method to solve KDV equation [4] 

and other nonlinear problems [5]. Similarly, Aboodh transform has been combined with homotopy perturbation 

method to calculate approximate solution of some third order KDV equations with initial conditions [6]. 

The Natural transform is similar to Laplace Integral transform [7]. 

The purpose of this paper is to enhance the application of the Natural transform method, by coupling it with the 

homotopy perturbation method known as Natural homotopy perturbation method (NHPM) for the solution of 

Korteweg-De Vries (KDV) Equation. The method has been successfully applied for obtaining exact solutions of 

Linear and Nonlinear Schrodinger Equations [8] and time dependent functional differential equations [9]. 

2. Basic Idea 

We illustrate the basic idea of NHPM by considering a general form of nonlinear non homogenous partial 

differential equation as follows: 

Dv(x,t) + Rv(x,t) + Nv (x,t) = g(x,t)           (2.1)                                                           

With the following initial conditions 

                                                                ( ) ( ) ( ) ( )                                             0,    ;   0, xfxvxhxv t ==  

 

where D is the second order linear differential operatoris the linear differential operator of less order than D, N 

represents the general nonlinear differential operator and g(x,t) is the source term. 

Applying the Natural transform to equation (2.1) subject to the given initial condition, we have 

N+[Dv (x,t)] + N+[Rv (x,t)] + N+[Nv (x,t)] = N+[g(x,t)] (2.2) 

using differentiation property of Natural transform and above initial conditions, we have 

( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( )3.2                    ,N,N,N1,, 2
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Operating with the inverse Natural transform on both sides of equation (2.3), we have 

( ) ( ) ( ) ( )[ ]







+−= +− txvtxRv

s
vtxGtxv ,N,NN,, 2

2
1  (2.4) 

where G(x,t) represents the term arising from the source term and the prescribed initial condition. 

Now, applying the homotopy perturbation method (HPM) 

( ) ( )∑
∞

=

=
0

,,
n

n
n txvPtxv  

and the nonlinear term can be decomposed as 

(2.5) 

( ) ( )∑
∞

=

=
0

,
n

n
n vHPtxNv  (2.6) 

where Hn(v) are He’s polynomials and can  be evaluated using the following formula[7]: 

(2.7) 

Substituting equations (2.5) and (2.6) in (2.4); we have 
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which is the coupling of the Natural transform and the homotopy perturbation method using He’s polynomials. 

Comparing the coefficient of same powers of P, we obtain the following approximations: 
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and so on. 

Thus, the series solution of equation (2.1) is 

( ) ( ) ( )10.2                                    ,
lim

,
0
∑
=∞→

=
k

n
n txv

k
txv  

3. Applications 

Here, the effectiveness and usefulness of Natural Homotopy Perturbation Method (NHPM) are demonstrated by 

finding exact solutions of three Korteweg-De Vries (KDV) Equations. 

 Example 3.1                 Consider the following linear homogenous KDV equation 

( )1.3                                                          06 =+− xxxxt vvvv  

with initial condition           ( ) ( )3.2                                                              60, xxv =  

applying the natural homotopy perturbation method on both sides of equation (3.1) subject to the initial 

condition (3.2) , we have           

( ) [ ] ( )3.3                               6N6,                                            xxxx vvv
s
v

s
xsxv −+= +  

The inverse of natural transform implies that 

( ) [ ] ( )4.3                                    6NN6,                  1




 −+= +−

xxxx vvv
s
vxtxv  

Now, we apply the homotopy perturbation method to get 

( ) ( ) ( )5.3              6NN6,             
00

1

0


























−+= ∑∑∑

∞

=

∞

=

+−
∞

= n
nxxx

n

n
n

n

n
n

n vPvHP
s
vPxtxvP  

Where ( )vH n are He’s polynomials that represents the nonlinear terms. 

The first few components of He’s polynomials are given by: 
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Comparing the coefficients of like powers of P in eqn (3.5); we obtain the following approximations. 
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and so on. 

Therefore, the solution ( )txv ,  is given by 

( ) ( ) ( )( ) ( )7.3                                    .   .   .     36363616, 32 ++++= tttxtxv  

Closed form solution of ( )1.3  is   ( ) ( )8.3                       136     ,     
361

6, <
−

= t
t

xtxv  

which is similar to results obtained using Homotopy perturbation Transform method HPTM [4], Aboodh 

transform method [6] and Variation iterative method VIM [10]. 

Example 3.2: Consider the following homogenous KDV equation 

( )9.3                                                        0=++ xxxxt vvvv  

with initial condition         ( ) ( )10.3                    10, xxv −=  

Applying the natural transform on both sides of equation ( )9.3  subject to the initial condition ( )10.3 , we have 

( ) [ ] ( )3.11                                          N1, xxxx vvv
s
v

s
xsxv +−

−
= +  

The inverse of Natural transform implies that: 
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( ) ( ) [ ] ( )12.3                              NN1, 1
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xxxx vvv
s
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Now, we apply the homotopy perturbation method to get: 
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                  Comparing the coefficients of like powers of P in eqn (3.13), we obtain the following 

approximations: 
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and so on. 

Therefore, the solution ( )txv ,  is given by 

( ) ( )( ) ( )14.3                             .   .   .   11, 32 ++++−= tttxtxv  

Closed form solution of ( )9.3  is  ( ) ( )15.3                           1      ,
1
1, <
−
−

= t
t
xtxv  

Which is similar to results obtained using Aboodh transform [6] and Variation iterative method [10]. 

 Example 3.3: Consider the following homogenous KDV equation 

( )16.3                                          06 =+− xxxxt vvvv  

with initial condition        ( )
( )

( )17.3                                               
3

20, 2−
=

x
xv  
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Applying the natural transform on both sides of eqn ( )16.3  subject to the initial condition ( )17.3 we have 

( )
( )

[ ] ( )18.3                       6N
3

2.1,                             2 xxxx vvv
s
v

xs
sxv −+

−
= +  

The inverse of Natural transform implies that  
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Now, we apply the homotopy perturbation method to get: 
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Comparing the coefficients of like powers of P in eqn (3.20), we obtain the following approximations 
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and so on. 

Therefore, the solution ( )txv ,  is given by 

( )
( )

( )21.3                                                     
3

2, 2−
=

x
txv  

Which is the closed form solution and similar to result obtained using variation iterative method (VIM) [10]. 

4. Conclusion 

In this paper, we have applied the natural homotopy perturbation method (NHPM) developed by  Maitama and 

his colleagues [8] to solve third order Korteweg-De Vries (KDV) equation. 
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The method leads to exact solution of the equation using the initial condition. The recurrent relations obtained 

show the effectiveness of the method in the solution of nonlinear partial differential equations of this type with 

wide applications in Applied Mathematics and Engineering. 
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