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Abstract 

When two distributions have ,approximately ,the  same characteristics, it is often difficult to discriminate 

between them. In this study, we use the ratio of likelihoods for selecting between the logistic and Gumbel 

distributions for describing a set of data. The parameters for the logistic and Gumbel distributions are estimated 

by using maximum likelihood (ML), moments (MOM) and order statistic (OS) methods.  In addition, by using 

Monte Carlo simulations, discriminating between the two distributions is investigated in terms of the probability 

of correct selection (PCS) as found based on the different methods of estimation. In general, it is found that the 

method of ML outperforms all the other methods when the estimators considered are compared in term of 

efficiency. 

Keywords: Logistic distribution; Gumbel distribution; Discriminating; Maximum likelihood; Moment; Order 

statistic. 

1. Introduction  

According to Reference [19], the logistic distribution has interesting application in many fields, such as public 

health, graduation of mortality statistics, survival data, income distribution; human population and biology. 

When compared to other distributions, including logistic, the normal distribution is the most widely used family 

of distributions in statistics and many statistical tests are based on the assumption of normality.  

----------------------------------------------------------------------- 
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There are many areas of application of Gumbel distribution such as environmental sciences, system reliability 

and hydrology. In hydrology, for example, the Gumbel distribution may be used to represent the distribution of 

the minimum level of a river in a particular year based on minimum values for the past few years. It is useful for 

predicting the occurrence of that an extreme earthquake, flood or other natural disaster. The potential 

applicability of the Gumbel distribution to represent the distribution of minima relates to extreme value theory 

which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or 

exponential type. Logistic and Gumbel distributions are quite similar since the shapes of these two density 

functions are similar for certain ranges of the parameters. The problem of estimation of the unknown parameters 

of  the distribution function is considered by many authors. In this section, several articles particularly regarding 

estimation of the logistic and the Gumbel parameters are reported. Reference [11] studied the maximum 

likelihood (ML) method for estimation of the parameters of a logistic distribution from censored samples. 

Reference [15] proposed linear unbiased estimators which maintain high efficiency relative to the best linear 

unbiased estimators for the parameters of the logistic distribution. Reference [20] discussed the problem of 

estimating the mean and standard deviation of a logistic population based on multiply Type-II censored samples. 

Also, they studied the best linear unbiased estimation and the ML estimation methods. They showed that these 

estimators are also quite efficient, and derived the asymptotic variances and covariance of the estimators. 

Reference [30] studied the logistic parameters estimation and suggested many estimators for the location and 

scale parameters. The problem of estimation of the unknown parameters of the Gumbel distribution is 

considered by many authors under simple random sampling. Reference [14] considered the estimates of the 

parameters of the Gumbel distribution by the methods of probability weighted moments, moments, and 

maximum likelihood. They used both independent and serially correlated Gumbel numbers to derive the results 

from Monte Carlo experiments. They found the method of probability weighted moments estimator is more 

efficient than the estimators. Reference [17] derived the MLE (maximum likelihood estimator)of Gumbel 

distribution parameters in case of censored samples and he gave expressions for their large-sample standard 

errors. Reference [16] given some modifications of the MLE the Gumbel distribution parameters to reduce the 

bias of the estimators.  Reference [12] estimated the parameters of the Gumbel distribution by moments, MLE, 

maximum entropy and probability weighted moments. He derived the asymptotic variance-covariance matrix of 

the MLEs and used simulation to compare between the various estimators. He found that the MLE is best in 

terms of the root MSE (mean square error). Reference [9] discussed the MLE and Cramer-Rao (CR) bounds for 

the location and scale parameters of the Gumbel distribution. Reference[18] found the Bayesian estimation for 

the two parameters of the Gumbel distribution based on record values.  

Many authors studied the discrimination between two skewed distributions. References [24,22,23,24] introduced 

and studied quite extensively the generalized exponential distribution in a series of papers. The readers may 

refer to References [27, 7 , 29, 5, 13] for more studies in discrimination between distributions. Reference [1] 

discussed the use of the coefficient of skewness as a goodness of fit test to distinguish between the gamma and 

lognormal distributions. Reference [8] considered the discrimination between the logistic and the normal 

distributions based on likelihood ratio when the MLE's. Reference [2] introduced Log-normal and log-logistic 

distributions and found,  for certain ranges of the parameters, the shape of the probability density functions or 

the hazard functions can be very similar in nature. 

http://en.wikipedia.org/wiki/Extreme_value_theory
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In the present paper, the problem of discriminating between the logistic and the Gumbel distributions is 

considered. The ratio of ML is used for discriminating between the two distributions. The methods of estimation 

that are considered are ML, MOM and OS. Monte Carlo simulation experiments are conducted for various 

combinations of sample sizes, and the performance of the ratio of maximized likelihood procedures is 

investigated in terms of the probability of correct selection (PCS) which is the ratio of the number of simulation 

experiments in which the procedure selects the true distribution relative to the total number of simulation runs. 

2. Material and methods 

a) Ratio of the maximized likelihoods procedures 

The ratio of likelihoods is determined for the logistic and the Gumbel distributions. The two tests of hypotheses 

are given by 

Ho: Logistic vs H1: Gumbel,                                                                                                   (1) 

and 

Ho: Gumbel vs H1: Logistic.                                                                          (2) 

Let  1 2,  ,..., nX X X   be a random sample of size n from any one of the two distribution functions. The 

probability density function (pdf) of a logistic random variable, denoted by ( , ),L α β  is given by 

2
1( ; , ) exp 1 exp ,  ,L

x xf x xα αα β
β β β

−
    − −

= − + − ∈ℜ    
    

                                         (3) 

where  and 0α β∈ℜ >   are the location and scale parameters respectively. The pdf of a Gumbel random 

variable, denoted by ( ),G η θ  is given by 

1( ; , ) exp exp ,G
x xf x η ηα β

θ θ θ
 − −  = − − −    

                                                            (4) 

where  and 0η θ∈ℜ >   are the location and scale parameters respectively. 

Both logistic and Gumbel distributions are assumed to be effective in analyzing the same set of data since the 

shapes of these two density functions are quite close.  It is clear that the shapes of the pdf and cumulative 

distribution function (cdf) of these two distributions are similar for certain range of the parameters. For example, 

as shown in Figures 1 and 2 the pdf and cdf for G(0,1) and L(0,0.68), it is found that these distributions  are 

very close. 
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Figure 1: pdf  for a random variable X which follows either  G(0,1) and L(0,0.68) 

     

 

Figure 2: cdf for a random variable X which follows either G(0,1) and L(0,0.68) 

Assuming that the data come from ( , )  or G( , ),L α β η θ  the likelihood functions are given by 
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1

( , ) ( ; , ),
n

L L i
i

l f Xα β α β
=

=∏                                                       (5) 

and 

1

( , ) ( ; , ),
n

G G i
i

l f Xη θ η θ
=

=∏                                                             (6) 

respectively. The logarithm of the likelihood functions in (5) and (6) for ( , )  or G( , )L α β η θ are given by  

( )
1 1

( , ) log 2 log 1 exp ,
n n

i i
L

i i

X XL n α αα β β
β β= =

    − −
= − − − + −    

    
∑ ∑                       (7) 

and 

( )
1 1

( , ) log exp .
n n

i i
G

i i

x xL n η ηη θ θ
θ θ= =

− −   = − − − −   
   

∑ ∑                                            (8) 

respectively.  

The test statistic that is applied for discriminating the two distributions is called  the ratio of maximized 

likelihoods, as based on the work of   Reference [27], for example. An introduction to this approach with several 

examples was given in References [3,4], where the statistic considered was the logarithm of the ratio of the 

maximized likelihoods of two separate families of distributions.  

If the method of parameter estimation used is MLE, then the test statistic is given by 

1

ˆˆ( , )log ,ˆˆ( , )
L mle mle

G mle mle

lT
l
α β
η θ

 
=   

 
                                                                                                 (9) 

where ˆˆ( , )mle mleα β  and  ˆˆ( , )mle mleη θ  are the estimators found based on MLE for the logistic and Gumbel 

distributions respectively. Accordingly, the other test statistics, denoted as 2 3 and T T  can be determined by 

substitution of the estimators found by MOME and OSE  in equation (9).   For the logistic distribution, the 

estimators are denoted by ˆˆ( , ),mle mleα β ˆˆ( , )moe moeα β ˆˆand ( , )ose oseα β respectively. For the Gumbel parameters, the 

respective estimators are denoted as ˆ ˆ ˆˆ ˆ ˆ( , ),  ( , ) and ( , ).mle mle moe moe ose oseη θ η θ η θ  

b) Methods of estimation 
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1. Maximum likelihood method  

By taking the partial derivatives for the log-likelihood function of the logistic distribution with respect to 

 and α β  and equating the resulting quantities to zero and with some algebraic manipulation, we obtain the 

following equations: 

1

exp
( , ) 0,

2
1 exp

i
n

i i

X
L n

X

α
βα β

α α
β

=

 −
− ∂  = − =

∂   −
+ −  

  

∑                                                    

and 

1 1

exp
( , ) 1 0.

2 2
1 exp

i i
n n

i

i i i

X X
XL n

X

α α
β βαα β

β β α
β

= =

   − −
−    −∂    = − + = ∂   −  + −  

  

∑ ∑
                                                   (10) 

There is no explicit solution for these simultaneous equations. So, for logistic distribution no closed form can be 

found for the MLE's. For the Gumbel distribution, MLE is given by 

( )
1

ˆˆ ˆ  and    log .
n

mle i i mle mle
i

x x w zη θ η
=

= − = −∑                                                               (11) 

where   
1,

1exp ,   and .ˆ
n

i i
i i i

imle S

x zz z z w
n nzβ =

 
= − = =  

 
∑  

2. Method of moment  

The moment estimators for logistic and normal distributions are given by 

3ˆˆ    and   ,moe moeX Sα β
π

= =                                                                                     (12) 

and 

moe
6ˆ   sθ
π

=  and    moe
ˆˆ   moe xη γ θ= −                                                                       (13) 

where   

s,  are the sample standard deviation and mean, respectively,x  and 0.57721566 is Euler's constant.γ =           
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3. Order statistic method  likelihood m 

The thp  quantile for the logistic distribution is given by 

1( ; , ) ( ) log .
1

pQ p F p
p

α β α β−  
= = +  − 

                                                                      (14) 

Based on (3.14), if we substitute 0.25 and 0.75,p p= =  corresponding to the first and third quartiles, we will 

have 

( )1(0.25) log 3F α β− = − and ( )1(0.75) log 3F α β− = +  

respectively. Accordingly, the two estimators of  and ,α β  denoted as ˆˆ  and ,ose oseα β  are        

( )1 11 ˆ ˆˆ (0.75) (0.25) ,
2ose F Fα − −= +                                                               (15) 

and 

( )1 11ˆ ˆ ˆ(0.75) (0.25) .
2 log(3)ose F Fβ − −= −                                                             (16) 

 

The thp  quantile for the Gumbel distribution is 

( )1( ; , ) ( ) log log ,       0 1Q p F p p pη θ η θ−= = − − < <                                                  (17) 

It is known that the lower quartile, median and upper quartile, denoted by 1 1 1(.25),  (.5) and (.75)F F F− − −  

respectively, and the distributional limits as given by 1 1(0) and (1)F F− −  provide the information on the feel of 

spread of the distribution over the axis. Since the interquartile range (IQR) given by 

1 1(0.75) (0.25),IQR F F− −= −  

is independent of the location parameter , the scale parameter can be estimated using IQR. Using (17), if we 

substitute 0.25  and  0.75,p p= =  corresponding to the first and third quartiles, or namely lower and upper 

quartiles, we will have 

( )1(0.25) log log 0.25 0.3266 ,F η θ η θ− = − − = −  
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and 

( )1(0.75) log log 0.75 1.2459 ,F η θ η θ− = − − = +   respectively. 

By taking 0.25 and 0.75,p =  the estimators of  ,η θ   are            

( )1 1 1 11 1 1ˆ 0.3266 (0.75) 1.2459 (0.25) (0.75) (0.25)
1.5725 5 5ose F F F Fη − − − −= + ≈ −                   (18) 

and 

( )1 11ˆ (0.75) (0.25) .
1.5725ose F Fθ − −= −                                                                        (19) 

3. Results 

In this simulation, without any loss of generality, in assessing the relative performance of the selection 

procedure, random samples are generated from (1,1) and G(1,1).L  To calculate the PCS when the true sampled 

distribution is logistic, the following algorithm is introduced:  

a) Let { },  1,...,iX i n=  be a sample of size n from (1,  1).L  

b) The parameters ( , ) and ( , )α β η θ  are estimated by MLE, MOME or OSE. 

c) The test statistics 1T  are calculated. 

d) Check whether  1 0.T >                            

e) The steps (a)-(d) are repeated 10, 000 times to get  1 ,  1,...,10,000.tT t =    

f) PCS is calculated by 

 

10,000
*

1 1 
1

1 ( 0),
10,000 t

t
T I T

=

≈ >∑   

where (.)I  stands for indicator function. The same procedure can be repeated for the other test statistics. 

In order to assess the performances of these procedures, estimates of the PCS can be based on the simulation 

results for several different cases using a Monte Carlo simulation of 10,000 runs according to the algorithm of 

Section 4 and also based on the asymptotic approximations. For different values of the sample size, i.e. 
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10,20,30,40,50,60,70,80,90,100,150,200,250,300,350,400,500.n =  The results of PCS under both null 

hypotheses are calculated. First, the case when the true sampled distribution is logistic is considered and the 

results are summarized in Table 1. Second, the case when the true sampled distribution is Gumbel is studied and 

the results found are presented in Table 2. 

Based on the simulation, with 10,000 iterations, as reported in Tables 1 and 2, the following remarks can be 

made: 

• It is observed that the two densities and distributions are very close. 

• When testing for logistic against Gumbel for the data generated, it is found that PCS is high and it 

increases as n increases when either MLE, MOME or OSE is used. PCS is equal one for a case OSE. 

• When the true sampled distribution is Gumbel for the data generated, it is found that PCS is high and it 

increases as n increases when either MLE or MOME is used. PCS is equal to zero for a case OSE. 

Table 1: The values of PCS when the true sampled distribution is logistic based on estimators found using 

MLE, MOME and OSE 

n  Ho: Logitic(1,1) 

 

MLE  MOME
 

OSE
 

10 0.552 0.610 1 

20 0.694 0.679 1 

30 0.779 0.709 1 

40 0.837 0.738 1 

50 0.878 0.759 1 

60 0.912 0.779 1 

70 0.926 0.790 1 

80 0.942 0.808 1 

90 0.954 0.825 1 

100 0.969 0.836 1 

150 0.989 0.873 1 

200 0.997 0.903 1 

250 1 0.931 1 

300 1 0.961 1 

400 1 0.986 1 

500 1 1 1 
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Table 2: The values of PCS when the true sampled distribution is Gumbel based on estimators found using 

MLE, MOME and OSE 

n  Ho: Gumbl(1,1) 

MLE  MOME
 

OSE
 

10 0.772 0.336 0 

20 0.843 0.457 0 

30 0.885 0.551 0 

40 0.910 0.622 0 

50 0.932 0.675 0 

60 0.942 0.721 0 

70 0.958 0.762 0 

80 0.968 0.797 0 

90 0.978 0.825 0 

100 0.981 0.849 0 

150 0.994 0.921 0 

200 0.998 0.959 0 

250 1 0.979 0 

300 1 0.987 0 

400 1 0.998 0 

500 1 1 0 

 

4. Discussion 

Determining a correct distribution for a given set of data is an important issue. When describing a data set, it is 

often difficult to choose between two distributions which have the same characteristics.  In this study, the 

problem of discriminating between the two distributions, namely, the logistic and Gumbel distributions is 

considered. The statistics based on the logarithm of the ratio of the maximized likelihoods is considered. The 

performance of the ratio of maximized likelihood procedures is investigated in terms of the PCS which is the 

ratio of number of simulation experiments in which the procedure selects the true distribution to the total 

number of simulation runs.  

The PCS's that are obtained are compared based on different estimators, namely, MLE, MOME and OSE, using 

Monte Carlo simulations. Based on the Monte Carlo simulations when the null hypothesis is logistic, with either 

MLE, MOME or OSE are being used as the method of estimation, the PCS is found to be high  and gets larger 

as the sample size increases. If the null hypothesis is Gumbel and when these estimators are compared in terms 

of their contribution to the PCS, it appears that MLE slightly outperforms all the other estimators.  
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