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Abstract

This paper aims to model and forecast the evolution of unemployment rate in Greece, using the Box- Jenkins
methodology during the period 1980-2013. The empirical study relieves that the most adequate model for the
unemployment rate for this period is ARIMA (1,2,1). Using this model, we forecast the values of unemployment
rate for 2014, 2015 and 2016. We found that the unemployment rate for 2014, 2015 and 2016 are 26.39% |,
25.33% and 25.27% respectively.
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1. Introduction

Unemployment is one of the most acute problems faced by the governments of all countries. An unemployed
person is twice more likely to suffer poverty than a person in employment. Therefore unemployment is a crucial
factor for the risk of poverty but neither is it the only one nor the most significant factor.The unemployment

rates as the growth rate are the most important measures of the economy.
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The unemployment rate is an indicator used by the investors to determine the health of the economy. In
addition, from the unemployment rate they can see which sectors are losing jobs faster. Therefore, it is very

important to estimate and forecast the unemployment rate in a country.

In Greece, the level of unemployment is very high especially in recent years and as a result the level of poverty
has been increased greatly. Officially, Greece is the country with the highest unemployment rate in the E.U.
Statistics unfortunately cannot be taken because of many Greeks and immigrant workers are off-the-books. In

addition, the immigrants make up nearly one-fifth of the work force, mainly in menial jobs.

Greece is a low-productivity economy with an ineffective welfare state, relying almost exclusively on low
wages and social transfers. The Centre for Planning and Economic Research (KEPE) reports that the areas
where the most jobs can be found today in Greece are trade, construction, industry and tourism. The failure of
governments is not to be compromised with this reality. They should be engaged seriously with the problem of

unemployment.

The rest of the paper is organized as follows: Section 2 describes literature review while in Section 3 data and
econometric methodology are given. In Section 4 the empirical results are presented. The 5 section is the

forecasting and finally, discussion and conclusions are provided in Section 6.

2. Literature Review

Literature on macroeconomic modeling, and forecasting, with the use of historical data from time series is vast.
Modeling unemployment rates like any other macroeconomic variables has been analyzed by building
econometric models, often related to stationary time series, and technique including autoregressive integrated
moving average models (ARIMA).

Box and Jenkins [1] methodology has been used extensively by many researchers in order to highlight the future
rates of unemployment. Specifically the authors in [4] are checking the evolution of unemployment in Romania
using Box and Jenkins methodology during the period 1998 — 2007. The empirical results showed that the
model ARIMA (2,1,2) is suitable to forecast the unemployment rate for January and February 2008.

Moreover, the research of author [6] is trying to forecast the unemployment rate in the Czech Republic and its
regions. She estimates a SARIMA model for the period of January 2000 to March 2008 and the results of the
forecasts showed that the unemployment rate in the Czech Republic at the end of the year 2009 will be about
10%.

In research [5] the authors are using monthly data of unemployment rates for Nigeria from January 1999 until
December 2008. The forecasts of unemployment rates that were find by the model ARIMA (1,2,1) for Nigeria
were: for January, February and March of 2009, 7.9%, 9.2% and 11.3% respectively.

The authors in their research in [7] have tried to forecast the unemployment rate in Thailand involving two

approaches: the Box-Jenkins methodology and the artificial neuron network. The findings of their work have
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shown that Box-Jenkins methodology is more effective in forecasting the unemployment rate with smaller

MAPE in comparison with the second approach.

The authors in [13] examined the possibility to forecast the time series of the unemployment rates in Slovakia
using techniques that didn’t require the assumption of constant variance over time. The analyzed data represent
the monthly rates of unemployment during the period January 1999 - May 2013. Thereafter they examined
whether the observed changing variability of the time series was statistically significant and could be described
by appropriate ARIMA-ARCH model. Their findings proposed a combination of the ARIMA (0,1,2)(0,1,1)12 +
GARCH(1,1) models, that proved to provide good predictors for both the conditional mean and the conditional
variance.According to a new research [1] the author is trying to compare forecasts of unemployment rates in the
Baltic States using time-varying parameter models. The time span of the data was from 2001 to 2014 and it
included the global financial crisis. She founds that the forecasting ability of the models depends on both the
forecasting horizon and the moment in time when the forecasts are done. The empirical evidence suggests that
no single model is the best one, but models that include a cyclical component tend to perform better than others.
The findings show that the preferred models differ in the time of increase or decrease in unemployment
rates.Finally, the author in [11] is using Phillips curve to examine unemployment rates and inflation for USA
from January 1980 to April 2015. Examining these variables with ARIMA and VAR models, she concluded that
VAR models give better forecast than ARIMA.

3. Methodology and Data

The variable used in the analysis is the unemployment rate from 1960 to 2013 extracted from the official

website of National Bank of Greece. We define linear time series model. Suppose that there are Yy, Y, ..., Y

observations. The variable Y; is explained by relating it to its own past values and to a weighted sum of current

and lagged random disturbances. The Autoregressive Moving Average (ARMA) (p,q) is represented by the

following model
Ve =AYt By, t O+ e — g~ — s (1)

If the time series is homogenous stationary, then after differenced the series Y; to produce stationary series W, ,

we can model W; as an ARMA process. If W, = A’ Y: and W, is an ARMA (p,q) process, then we say that Y,

is an integrated autoregressive moving average process of order (p,d,q), or simple ARIMA(p,d,q). Box and
Jenkins (1976) were the first researchers who systematically tried to answer whether the various time series can
be captured within an ARIMA model (p,d,q) or:

PLAYY, =65 +a(L)s,. )

Where:
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pL)=1-pL-p,L—..— B, L” is the autoregressive operator and

a(l)=1l-agl-a,L-..- a, L" is the moving average operator.

and thereafter to forecast their future development.

Theoretically Box-Jenkins model identification is relatively easy if one has a pure AR or a pure MA process.
However, in the case of mixed ARMA models (especially those of high order) it can be difficult to interpret
sample autocorrelation ACF and partial autocorrelation PACF, so Box-Jenkins identification becomes a
subjective exercise depending on the skill of the forecaster. Random noise in time series, especially price data,

makes Box-Jenkins model identification even more problematic [10].
The Box-Jenkins methodology consists of the following steps:

¢ Detection of the stationarity of the time series. If time series is not stationary in levels, we obtain successively
the first or the second differences to in order to attain stationarity. The autocorrelation function (ACF), partial
autocorrelation (PACF) as well as the Augmented Dickey-Fuller test [3] and the Phillips - Perron test [12] are
used for testing stationarity of the time series.

o When the time series is stationary, then the order of the model ARMA (p,q) can be determined. To determine
the order of ARMA(p,q), we use the sample of the autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the stationary series. These two plots are suggesting the model we should build. The

parameter p of autoregressive operator B(L) is determined by the rate of partial autocorrelation for which

Ou = 0 for k > p, and by decreasing rapidly to zero procedure of the partial autocorrelation coefficients. One

other simple way to determine the significance of the partial autocorrelation coefficient @kk is to compare its

2

value with the critical value iﬁ . The parameter g of the moving average operator Ot(L) is specified by the

autocorrelation coefficient O, for which O, = 0 fork > p, and by decreasing rapidly to zero procedure of the

autocorrelation coefficients. One other simple way to determine the significance of the autocorrelation

2

_ ~ . . . +— .
coefficient O, is to compare its value with the critical value _\/ﬁ . According to all the above an

autoregressive model AR(p) is resulting from the partial autocorrelation function which is trimmed to the lag p

and a model of moving average MA (q) is resulting from the autocorrelation function which is trimmed to the

2
lag g. In fact we use the limits — \/ﬁ for the non-significance of the two functions, so we will have a number
ARMA models (a, b), where 0 < o < p, 0< b < q.. For the optimum model we are using the criteria of Akaike
(AIC) Schwartz (SIC) and Hannan-Quinn (HQ).
e Estimation of the model. The involvement of the white noise terms in an ARIMA model entails a nonlinear

iterative process in the estimation of the parameters, B; and o;. To overcome this situation an optimized criterion
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like least error of sum of squares, maximum likelihood or maximum entropy is used. An initial estimate is
usually used, and then each iteration is expected to be an improvement of the prior estimate until the estimate
converges to an optimal one [5]. However, many researchers are trying to adopt linear methods in order to
estimate ARIMA models [2, 8].

o Diagnostic checking of the model. With diagnostic checking we investigate whether the estimated model is
acceptable and statistically significant, i.e. if it fits well to the data. Box and Jenkins for the adequacy of
estimated ARIMA model suggested checking the randomness of the residuals, i.e. whether the residuals from
the estimated ARIMA model is white noise, and are not serially correlated.

o Forecasting: One of the main reasons of the analysis of time series models is forecasting. The forecasts are
very useful either for policy making or for decision making. The accuracy of the forecasts depends on the
forecasting error, i.e. the deviation of the forecast and the real one. The smaller the difference is, the better will

be the forecast.

4. Empirical Results

The ARIMA approach is an iterative three-stage process of identification, estimation and testing.

4.1. Testing for non-stationarity

Autocorrelation function (Box-Jenkins approach) if autocorrelations start high and decline slowly, then series is
non-stationary, and should be differenced. Figures 1 and 2, represents the correlogram of the unemployment rate

series with a pattern of up to the 24 lags in level and for first differences.

Autocorrelation Fartial Correlation A PAaC C-Stat Frob
[N — | I — 1 0.802 0802 36734 0.000
[ — LI i 2 0584 -0.168 56.559 0.000
[ — L 3 0429 0050 67496 0.000
[ — | L 4 0.2342 0061 74562 0.000
[ i— | LI 5 03208 0030 80404 0000
[ i— | LI 5 0210 0089 86 444 0.000
[N i— | [ | ¥ 0209 0026 92595 0.000
[N | LI | 8 0305 0049 985707 0.000
[ 1 1 9 0288 0012 10429 0.000
[ | LI | 10 0269 0030 10928 0000
[ i | LI 11 0269 0073 11438 0.000
[ | 1 1 12 0262 -0.002 1192.326 0.000
[ 1 1 132 0249 0011 12295 0000
[ i || LI | 14 0219 -0.021 127.58 0.000
[ g o 15 0165 -0.088 12968 0.000
[ i | 1 1 16 0116 -0.016 12075 0.000
[N | LI | A 17 0077 -0.0328 131.22 0.000
[N | | g o 18 0032 -0.080 131.31 0.000
[ 1 g o 189 -0.015 -0.071 131.332 0.000
g o g o 20 -0.06Z2 -0.0281 131.6¥ 0.000
L | g o 21 -0.108 -0.071 13272 0.000
(I i | g 22 -0.141 -0.055 13462 0.000
{1 | LI | 23 -0158 -0.021 137.05 0.000
{1 | 1 1 24 -0.158 -0.015 132955 0.000

Figure 1: Correlogram of Unemployment Rate Series (Level)
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Figure 2: Correlogram of Unemployment Rate Series (First Differences)

From the above diagrams we can conclude that the coefficients of autocorrelation (ACF) starts with a high value
and declines slowly, indicating that the series is non-stationary. Also the Q-statistic of Ljung-Box [9] at the 24th
lag has a probability value of 0.000 which is smaller than 0.05, so we cannot reject the null hypothesis that the

unemployment rate series is non-stationary. Thus the series must be configured in second differences.

The third diagram represents the coefficients of the autocorrelation for the time series of unemployment rates,

with up to 24 lags again but in second differences.
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Figure 3: Correlogram of Unemployment Rate Series (Second Differences)
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The results are indicating that the series of unemployment rates is stationary in the second differences. The
results of Augmented Dickey—Fuller (ADF) test and Phillips-Perrons (PP) test on unemployment rate series are

representing in Table 1.

Table 1: ADF and Phillip-Perron’s Test on Unemployment Series

Level First Differences | Second Differences

C CT C CT C CT

ADF | 0.525 | -3.098 | -2.566 |-2.962 | -6.371 -6.412

(0.985) | (0.117) | (0.107) | (0.153) | (0.000) | (0.000)
PP | 1.468 |-0.340 | -2.276 | -2.713 | -5.275 | -4.689

(0.999) | (0.987) | (0.183) | (0.235) | (0.000) | (0.002)

The results in Table 1 indicate that unemployment rate is stationary in second differences. Therefore for our
model ARIMA (p,d,q) we will have the value d=2

4.2. ldentification of the model

After the identification of the stationarity of the time series we can use the correlogram of Figure 3 to determine

the model ARMA (p,q), i.e. the values of parameters p and g.

One other simple way in order to determine the parameters p and q is to compare the coefficients of partial

2
autocorrelation and autocorrelation respectively with the critical values £ —.
n

2
The limits for both functions (ACF, PACF) are iﬂz +0.272 . From the column of autocorrelation in

Figure 3 we can notice that only the value of the coefficient p, is greater from the value +(.272 , while from
the column of the coefficients of partial autocorrelation the values @4 is greater than the value +(.272 .
Therefore, the value of P will be between 0< P <4 (since the parameters are determined by the rate of

partial autocorrelation). Respectively, the value of  will be between to 0< g <4 (since parameter ( are

determined by the rate of autocorrelation).

From figure 3, the ACF cuts off at lag 4 (g=4) and the PACF at lag 4 (p=4). Exploring the range of models
{ARMA(p,q): 0<p<40, 0<0<4} for the optimal on the basis of AIC, SIC and HQ. Thereafter we
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create Table 2 with the values of P and  as follows:

Table 2: Comparison of models within the range of exploration using AIC, SIC and HQ

AIC [ SIC | HQ

2.708 | 2.783 | 2.736
2.636 | 2.748 | 2.679
2.624 | 2.774 | 2.682
2.367 | 2.555 | 2.439
2.645 | 2.758 | 2.688
2.679 | 2.831 | 2.737
2.618 | 2.807 | 2.690
2.104 |1 2.331 | 2.191
2.699 | 2.852 | 2.757
2.584 | 2.775 | 2.657
1.822 | 2.051 | 1.909
2.005 | 2.272 | 2.107
2.754 | 2.947 | 2.828
2.582 | 2.814 | 2.670
2.369 | 2.639 | 2.472
2.065 | 2.374 | 2.182
2.508 | 2.742 | 2.596
2.426 | 2.699 | 2.529
2.171 | 2.483 | 2.289
2.484 | 2.835 | 2.616

Bl BB B W] W] W W] NN NN R R P k| O Ol O O T
Bl W N B W] N R B W N R B W N R B W N o

The results from Table 2 indicate that according to the criteria of Akaike (AIC), Schwartz (SIC) and Hannan-
Quinn (HQ) the model ARMA is formulated to ARMA (2,3). As the model is stationary on second differences,
i.e. (d=2) our ARIMA model will be ARIMA (2,2,3).

4.3. Estimation of the model

Thereafter we can proceed to the second stage estimating the above model. Because the model ARIMA (2,2,3)
has not statistically significant coefficients, we create the model ARIMA (1,2,1) which it has statistically

significant coefficients.

The following Table 3 presents the results of this model.
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Cependent Variable: DDUMNE

Method: Least Squares

Date: 112014 Time: 09:47F

Sample (adjusted): 1983 2013

Included observations: 31 after adjustments
Convergence achieved after 17 iterations
M& Backcast 1982

“ariable Coefficient Std. Error t-Statistic Prob.
ARIT) 0.648121 070713 3796541 0.0007
MALT) -0.921870 0101163 -9 112736 0.0000
R-squared 0.113993 Mean dependent var 0.034516
Adjusted R-squared 0083441 3S.D. dependentwvar 1.178598
=.E. of regression 1128355 Akaike info criterion 2141740
Sum squared resid 36.92238 Schwarz criterion 3234255
Log likelinood -46.69697 Hannan-Cuinn criter. 3.171898
Curbin-VWatson stat 1.563646
Inverted AR Roots .65
Inverted MA Roots Az

Figure 4: Estimation Model ARIMA(1,2,1)
The results in Table 3 indicate that both coefficients are statistically significant at 1% level of significance.

The non-linear techniques used by Eviews 8.0 involved an iterative process that is converged after 17 iterations.
The roots of S(L) =0 and (L) =0 are 0.65 and 0.92, both inside the unit circle indicating stationarity and

invertibility respectively.
The chosen model as summarized in Table 3 is ARIMA(1,2,1) and is given by:

DDUNEt = 0.648121DDUNE; - 0.921870¢.; + &

t-stat. (3.796) (-9.112)
prob. [0.000] [0.000]
s {0.170} {0.101}

On the following diagram the inverse roots of AR and MA characteristic polynomials for the stability of

ARIMA model are presented.

From diagram 4 we can see that the ARIMA model is stable since the corresponding inverse roots of the

characteristic polynomials are in the unit circle.
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Inverse Roots of AR/MA Polynomial(s)
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Figure 5: Inverse Roots of AR and MA

4.4. Diagnostic checking of the model

Diagnostic checking of the model, help us to check if the estimated model is acceptable and statistical
significant that means that the residuals do not autocorrelated. For the check of autocorrelation we use Q
statistic of Ljung-Box [9]. The diagram below represents the test of the autocorrelation of the residuals of the
model ARIMA (1,2,1).

Correlogram of Residuals

Date: 11/20M4 Time: 10:03

Sample: 1980 2013

Included observations: 31

C-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC PAC -Stat  Prob

ol ] 0117 0117 0.4701

-0.250 -0.267 2.6752

0.027 0105 27027 0.100
-0.042 -0144 27709 0250
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14 -0.008 -0.022 32047 0994
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Figure 6: Correlogram residuals of model ARIMA (1,2,1)
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The results indicate that the Q statistic of Ljung — Box for all the 16 lags has values greater than 0.05 thus the

null hypothesis cannot be rejected i.e. there is no autocorrelation for the examined residuals of the series.
5. Forecasting
Forecasting plays an important role in decision making process.

From previous studies, many researchers have found that the selected model is not necessary the model that

provides best forecasting.

In this sense further forecasting accuracy test such as mean squared error, root mean squared error, mean

absolute error, mean absolute percentage error and the inequality coefficient of Theil.
An ARIMA(1, 2, 1) model may be written as VY, = BV?Y, , + .., + &,

This translates into

Ye=2Yia Yo = ﬂ1(y171 —2Y,+ yt—3)+ A&y T &

Ye =2V = Yot B =28 Y t BY s t i &

Yi = (:81 + Z)yt—l - (l+ Zﬁl)yt—z + LYt e &

At time t+k, the model may be written as:

Yiek = (ﬂl + Z)yt+k—1 - (1"‘ zﬁl)yt+k—2 + B Y s t Gt E

Taking conditional expectations at time t, we have

y.(@) = (ﬂl + 2)yt - (1+ zﬂl)yt—l + Yo+ g,
5.2 =(8+2)J, )~ L+28,)y, + Ay
J.(3) = (8, +2)7,(2) - (1+ 2,5, ) + By,

J,(k) = (B, +2)§,(k-1) - (1+28,)9, (k - 2) + B,J,(k -3)

In Figure 6 we represent the criteria for the evaluation of the forecasts of the model ARIMA (1,2,1)
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Forecast: DOUNEF

Actusl: DDUNE

47 = | | Forecast ssmple: 1380 2013

Adjusted sample: 1583 2013

o Inciuded observations: 21
— | Root Mean Squared Ermor 1.051380

Mean Absolute Error 0.479158

2 Mean Abs. Percent Eror 55 861282

Theil Ineguality Cosfficent 0.700777
Bias Proportion 0. 025EE3
Varianc= Proportion  0.522865
Ciowaniance Proportion 0.450773

................................................................

B o B B o S o B B e B o e e e e e e e e e
24 55 = 90 22 S 5 2 00 O 4 O OF 0 2

—— DDUMEF ----z2S5E

Figure 7: Forecast Accuracy Test on the model ARIMA (1,2,1)

The results in Figure 6 indicate that the inequality coefficient of Theil has a high value U = 0.70 which means
that our model do not have a good forecasting ability. Table 6 below summarizes the forecasting results of the

unemployment rates over the period 2014 to 2016.

Table 4: The unemployment rate forecasts

Years | Residuals | DDUNE | DUNE | UNE
2011 | 4.764 4.716 5122 | 17.653
2012 | 2.798 1.463 6.585 | 24.238
2013 | -2.205 -3.837 2.748 | 26.986
2014 | --- -3.342 -0.594 | 26.39
2015 | --- -1.564 -1.06 25.33
2016 | --- -1.124 -0.064 | 25.266

6. Conclusion - Recommendations

Unemployment plagues many countries so it is important to capture the trend of this series. The use of ARIMA
models is a highly flexible tool in order to forecast unemployment rate if there is no government’s intervention
which will change this trend. In this paper using Box — Jenkins technique we are trying to forecast the
unemployment rates in Greece for the next three years with an ARIMA model. In ARIMA models many
researchers find drawbacks, since they are neglecting the inclusion of explanatory variables and the conducts the
forecasts only on past values of dependent variable in combination with present and past moving average terms.
However, many empirical studies have been done regarding the effectiveness of ARIMA model in economic
forecasting and as a result it is an essential component of all forecasting techniques. The proper evaluation of the
ARIMA model is necessary to study and carry out the forecast process. The properly selected models enhance

the predictability of the models and assist the players in making sound government policy. After checking for
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the stationarity of the data series, we find the appropriate ARIMA (p, d, q) process. The corresponding
correlogram helped in choosing the appropriate p and g for the data series. Forecasting plays an important role
in decision making process so an ARIMA (1.2.1) model was created through the data used and estimating this
model we found that the unemployment rate for the years 2014, 2015 and 2016 is forecast to be 26.39%, 25.33%
and 25.27% respectively.

It is more than obvious that Greece during the last years is trying to decrease the unemployment rates and to
increase the growth rates. That achievement will lead the country to the exit from the most severe recession and
crisis of its modern history. Our results suggest that Greece is in the right way and the goal to decrease the

unemployment rates will be achieved in the near future time.

References

[1] Bedowska-S6jka, B. “Unemployment Rate Forecasts: Evidence from the Baltic States.” Eastern
European Economics, Vol 53, pp. 57-67, 2015

[2] Box, G. E. P. and Jenkins, G. M. Time Series Analysis. Forecasting and Control. Holden-Day, San
Francisco, 1976.

[3] Dickey, D. A.; Fuller, W. A. “Distribution of the Estimators for Autoregressive Time Series with a
Unit Root”, Journal of the American Statistical Association, Vol. 74 (366), pp. 427-431, 1979.

[4] Dobre, I. and Adriana, A. M. “Modeling Unemployment Rate Using Box-Jenkins Procedure”. Journal
of Applied Quantitative Method, Vol. 3(2), pp. 156-166, 2008

[5] Etuk, E.H., Uchendu, B., and Edema, V,U. “Arima Fit to Nigerian Unemployment Data”, Journal of
Basic and Applied Scientific Research, Vol. 2(6), pp. 5964-5970, 2012.

[6] Jetabkova, V. “Unemployment in the Czech Republic and its predictions based on Box-Jenkins
methodology”, in Proc of the 12th International scientific conference applications of mathematics and
statistics in economy, 2009, pp. 189-195.

[7] Kanlapat Mahipan, Nipaporn Chutiman and Bungon Kumphon. “A Forecasting Model for Thailand’s
Unemployment Rate”, Modern Applied Science; Vol. 7, No. 7, pp. 10-16, 2013.

[8] Koreisha, S. and Pukkila, T. “A Linear Estimation Method for Autoregressive Moving Average
Models”, Communications in Statistics - Simulation and Computation, Vol 19, Issue (1), pp. 71-102,
1990.

[9] Ljung, G. M., and G. E. P. Box. “On a Measure of a Lack of Fit in Time Series Models”. Biometrika,
Vol. 65, Issue (2), pp. 297-303, 1978.

[10] Meyler, A., G. Kenny and T. Quinn. “Forecasting Irish Inflation Using ARIMA models”. Central Bank
of Ireland, Technical Paper 3/RT/98, December 1998.

[11]Olsson, A. (2016). “Forecasting using the Phillips curve 117, Available at:
http://samastockholm.com/home/2016/2/8/forecasting-using-thephillips-curve [Dec. 10, 2017].

[12] Phillips, P. C. B.; Perron, P. “Testing for a Unit Root in Time Series Regression”. Biometrika, Vol. 75,
Issue (2), pp. 335-346, 1988.

[13]Rublikova, E. and M. Lubyova. “Estimating ARIMA-ARCH model rate of unemployment in
Slovakia”, Prognostické prace, Vol. 5, pp. 3 - 10, 2013.

55


http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Biometrika
http://samastockholm.com/home/2016/2/8/forecasting-using-thephillips-curve
http://en.wikipedia.org/wiki/Biometrika

