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Abstract 

One of the essential components in rotating machinery are Rolling element bearings and their failure proved to 

be one of the most common reasons behind machine breakdown. Acoustic Emission (AE), a passive listening 

technique, has evolved as a significant opportunity to diagnose and monitor the mechanical integrity of rolling 

element bearings. The investigation reported in this paper mainly focuses on the application of the AE 

technology for detecting the defect on a radially loaded bearing. In order to undertake this task, a special 

purpose test-rig was designed so that defect could be seeded onto the outer race of a test bearing using an 

electrical engraver. By applying varying rotating speed and radial load, twenty tests were carried out. The 

structure mechanism allows locating an AE sensor directly on the bearing outer race. The AE wave signal has 

been analyzed in time and frequency domain. It was concluded that the AE can provide good indications of 

bearing defects. Moreover, it has been noted that the amplitude, absolute energy, and RMS provided indications 

of bearing condition. 
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1. Introduction  

Rotating machinery is widely used and is key equipment in many industries. The importance of condition 

monitoring and fault diagnosis of such equipment has been extensively recognized by both the industry and 

research community. Due to their low cost and reliability, rolling element bearings are among the essential 

components used in rotating machinery. However, the correct condition of the bearings is required to guarantee 

the normal and safe running of the machines. Any failures in the bearings such as fatigue cracks, pitting, spalling, 

etc., must be detected quickly. Otherwise they may cause malfunctions or even a catastrophic accident [1].  

During operation, intermittent or continuous monitoring of machines is an attractive opportunity for maintenance 

based on the actual condition of a machine rather than a predefined, fixed schedule. If the condition of 

components can be determined during operation, maintenance can be performed only when needed [2]. AE was 

originally developed for non-destructive testing of static structures [3, 4], however, it has been extended to health 

monitoring of rotating machines and bearings [5]. It offers the advantage of earlier defect detection in comparison 

to vibration analysis.  

Nevertheless, limitations in the successful application of AE technique for monitoring bearings have been partly 

caused by the difficulty in processing, interpreting and classifying the acquired data [6, 7]. 

The application of the high-frequency AE technique in condition monitoring of rotating machinery has been 

growing over recent years. This is particularly true for bearing defect diagnosis and seal rubbing [8-13]. Several 

studies have been conducted to analyze the AE response of defective bearings. Shiroishi and his colleagues [14] 

investigated defect detection methods for rolling element bearings through sensor signature analysis; they 

compared vibration and AE on seeded defective bearings.  They noted that the peak ratio was the most reliable 

indicator of the presence of a localized defect with the RMS. Reference [15] employed AE for bearing defect 

identification on various sized bearings and rotational speeds. The defects in the roller and inner race of the 

bearings were simulated by the spark erosion method. On one hand, it was concluded that AE counts increased 

with the increasing speed for damaged and undamaged bearings. On the other hand, an increase in load did not 

result in any significant changes in AE counts for both damaged and undamaged bearings. To ascertain the most 

appropriate threshold level for AE count diagnosis in rolling element bearings, an investigation was undertook by 

Reference [7]. Results demonstrated that the values of AE maximum amplitude did correlate with the increasing 

speed, but not with load and defect size. In addition, Reference [16] simulated two types of defects on the inner 

and outer races of spherical roller bearing. The seeded fault was a uniform surface line defect that was 

accomplished with an engraving machine. The test-rig was operated at three different rotational speeds and three 

radial load cases. It was concluded that the AE counts increased with the increasing speed, irrespective of the 

threshold level, and that RMS values increased with the increasing load, speed and defect size. Moreover, in their 

work, Al-Dossary and his colleagues [17], presented the application of the AE technology for characterizing the 

defect sizes on a radially loaded split Cooper cylindrical roller bearing. An experimental test-rig was designed so 

that defects of varying sizes could be seeded on to the outer and inner races of a test bearing. The test rig was run 

at the two speeds and three radial loads. It was demonstrated that the increase in defect size resulted in an increase 

in levels of AE energy for outer and inner race seeded defects. Furthermore, He and his colleagues [1] used a 
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deep ditch ball-bearing, as a test bearing. Three load cases were applied and two rotating speeds of the test rig 

were chosen. They proved that a constant load applied to the bearing has no obvious influence on the AE 

parameters, but the rotating speed has a strong influence on the AE parameters for almost every running 

condition. The specifications of the test bearing used in the experiment are tabulated in Table 1. 

Table 1: Test bearing specifications 

FEATURE DETAIL 

BEARING TYPE DEEP GROOVE BALL BEARING OF TYPE ZKL 6406 

NUMBER OF BALLS 7 

OUTER DIAMETER 90 MM 

INNER DIAMETER 30 MM 

WEIGHT 0.725 KG 

 

1. Test rig 

Figure 1 shows an actual test rig setup, which consists of the following: an asynchronous motor (1.1 kW), a 

30mm diameter shaft supported on two deep groove ball bearings of type URB 6006, a rotor-bearing unit, a 

loading unit, test bearing (see Figure 2), and a hub attached to the outer race of the test bearing. This housing 

was assembled to allow for the locating of the AE sensor straight onto the race. The speed of the rig can be 

adjusted easily by a variable frequency drive handle that ranges between 0 up to 1500 rpm. The radial load is 

applied to the test bearing by a power screw connected to a pulley and a belt system as shown in the same 

figure. The test bearing was lubricated by a jet of Mobil ATF 320 oil. Rubber sheets have also been provided 

under the system for the purpose of vibration isolation (i.e. eliminate noises). 

 

Figure 1: Test rig 
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2. Experimental procedure 

Twenty sets of AE data were recorded, ten of them for defect free condition and for the outer race defect 

condition. The procedure for recording the data simply involved over a 30-second period for each 

simulation. This was done in order to provide acceptable reliable test signal on the robustness of specific 

AE characteristic parameters for the diagnosis of operational bearings. An electrical engraver with a carbide 

tip was used to seed a simulated seeded defect onto the outer race of the bearing artificially as exemplified 

in figure 3. Shiroishi and his colleagues [11] noted that the AE sensor was not sensitive to the inner race. 

Initially, a defect was seeded on the outer race just beside the location where the AE sensor was mounted. 

Two load cases and five rotating speeds of the test rig were considered (see Table 2). The AE parameters 

measured for diagnosis in this particular investigation were amplitude, RMS, and absolute energy. Figure 4 

demonstrates the experimental procedure steps. 

 

Figure 2: Typical test Bearing 

  

Figure 3: Outer race seeded defect 

 

Figure 4: Experimental procedure 
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Table 2: Load and speed running conditions 

 

The diameter of the sensor was 19 mm, while the thickness of the test bearing races was 9 mm. accordingly, a 

wave guide has been used to be a coupling between the sensor and the bearing races. The wave guide was 

designed from stainless steel in a conical shape that has two diameters of 21 mm and 7mm, and length of 20 

mm, as shown in Figure 5. Further, Figure 6 shows the effect of the cone on the AE signal that has been 

measured by a Pencil-Lead Breakage Test (PLB), a Hsu-Nielsen source [3]. The pencil lead was broken on the 

specimen surface and the sensor was placed on the same surface directly which was mounted on the wave guide. 

The distance between the source and the sensor was constant in all experiments. The experiment was repeated 

five times, and when the amplitude of AE signal was averaged, the attenuation was measured and it was 

observed that the used wave guide made an attenuation of 0.3 dB. 

 

Figure 5: Wave guide dimensions in mm. 

 

(a) Sensor direct 

 

(b) Using wave guide 

Figure 6: Time domain signals before and after wave guide 

3. Results and discussion 

The analysis of the acquired AE signal has been carried out in frequency and time domains. 

3.1 Time domin analysis 

LOAD NO  LOAD 350 N 

SPEED (RPM) 300 600 900 1200 1500 300 600 900 1200 1500 
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The waveform signal was filtered using a high pass filter (Chebyshev) 100 kHz to eliminate motor effects. The 

raw data signal (Waveform) is shown in Figures 7 and 8, before and after seeded defect as well as with and 

without loads. 

 

(a) Defect free 

 

(b) Seeded defect 

Figure 7: Time domain waveform (Raw data) at 300 rpm at no load 

 

(a) Defect free 

 

(b) Seeded defect 

Figure 8: Time domain waveform (Raw data) at 1500 rpm at load of 350 N 

• Ae rms: 

The Root Mean Square (RMS) is an electrical engineering power term defined as the rectified, time-averaged 

signal, measured on a linear scale and reported in volts. Keeping into consideration, the RMS value gives the 

intensity of the AE signature.  Recently, this parameter is intensively used for signal analysis. For each test 

performed (20 in total), AE data was acquired for 30 seconds. AE measurement results are discussed. 

Additionally, the guidelines for interpreting the AE measurement results for prediction of the seeded defect on the 

outer race of test bearing are also deliberated. A clear relationship between the RMS level, rotational speed and 

radial load has been reported. For all test conditions, results clearly indicated a rise in RMS values with increasing 

rotational speed. Results from seeded defect indicated that RMS values increased with the increasing speed. In 

addition, at fixed rotational speeds, there was evidence to propose that increasing the load also resulted in an 

increase of RMS. The RMS values, at no load, are increased by more than 40% at speeds of 1200 and 1500 rpm. 
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Also, at load of 350 N, the increasing in values was clearly observed from a speed of 900 rpm along with higher 

speeds of 1200 and 1500 rpm. This is clearly demonstrated in Figure 11. 

  
(a) (b) 

Figure 9: Average RMS (a) No load, (b) 350 N load 

• AE Absolute Energy: 

The absolute energy is a measure of the true energy. It is derived from the integral of the squared voltage signal 

divided by the reference resistance (10 k-ohms) over the duration of the AE signal. The unit for absolute energy is 

atto-joules (10−18 joules). This energy is directly proportional to the electrical energy of the AE signal in the 

measured bandwidth by a constant of system electric impedance which, in this instance, was 10kΩ. The absolute 

energy values were compared at varying speeds and load conditions for defect free and seeded defect. It was 

deduced that absolute energy values increased with the increasing speed, although the increase with load was 

observed at 900, 1200, and 1500 rpm. A seeded defect condition resulted in an increase in absolute energy values 

which was clearly observed only at speeds of 1200 and 1500 rpm. Figure 12 explains that.  

  
(a) (b) 

Figure 10: Average Absolute energy (a) No load, (b) 350 N load 

• AE signal amplitude: 

Amplitude (A) is the greatest measured voltage in a waveform and is measured in decibels (dB). This is an 

important parameter in AE inspection because it determines the delectability of the signal. Since signals with 

amplitudes are below the operator-defined, the minimum threshold will not be recorded. It was noted that AE 

average amplitude increased by the increasing speed and load, see Figure 13. It was also evident that AE 

amplitude increased from fault free condition to the seeded defect.  

https://en.wiktionary.org/wiki/joule
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(a) (b) 

Figure 11: Average amplitude (a) No load, (b) 350 N load 

In general, AE RMS could be used to identify the faults over a wide range of speeds from 600 to 1500 rpm, as 

shown in Table 3. However, as explained in Table 4, the sharp rise in the values of absolute energy for the defect 

tested indicates that this may serve as a clear parameter for incipient fault detection in bearings at speeds above 

900 rpm. In spite of the fact that the signal amplitude has a percentage difference between defect free and seeded 

defect, this difference is small in comparison to RMS and absolute energy results (see Table 5).  For identifying 

bearing faults, the bearing should be tested at speeds higher than 900 rpm in order to make results clearer. 

Parameters percentage difference was calculated by using Equation (1). 

(Parameter average value)After fault−(Parameter average value)Before fault
(Parameter average value)Before fault

∗ 100%                   Equation (1) 

Table3: RMS percentage differences 

ROTATIONAL SPEED 300 RPM 600 RPM 900 RPM 1200 RPM 1500 RPM 

NO LOAD 18.4% 25.8% 28.24% 43.1% 47.3% 

350 N 29.3% 38.78% 47.48% 53.59% 64.44% 

 

Table 4: Absolute energy percentage differences 

ROTATIONAL SPEED 300 RPM 600 RPM 900 RPM 1200 RPM 1500 RPM 

NO LOAD 34.9% 40.4% 63.5% 78.7% 106% 

350 N 37.6% 42.1% 74.9% 80.2% 108% 
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Table 5: AE Amplitude percentage differences 

ROTATIONAL SPEED 300 RPM 600 RPM 900 RPM 1200 RPM 1500 RPM 

NO LOAD 2.4% 2.69% 6.25% 6.42% 8.43% 

350 N 2.82% 5.98% 7.07% 7.54% 8.7% 

 

3.2 AE Frequency Analysis 

   The frequency spectra of the hit with the highest energy were recorded during all running conditions. 

Frequency analysis provided indications of bearing defect. While the range of signal frequency increased from 

150 kHz for defect free condition to be about 300 kHz after the outer race defect for all speed and load 

conditions. Therefore, it can be used as a finger print to the presence of faults on the bearing’s races. For 

example, in this case study, the frequency range is increased higher than 200 kHz, which is indicated to faulty 

bearing, see Figures 9 and 10. 

 

(a) Defect free 

 

(b) Seeded defect 

Figure 12: Frequency analysis (FFT magnitude) at 300 rpm at no load 

 

(a) Defect free 

 

(b) Seeded defect 

Figure 13: Frequency analysis (FFT magnitude) at 1500 rpm at load of 350 N 

100 –200 kHz 150 – 300 kHz 

100 –200 kHz 100 – 300 kHz 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 29, No  2, pp 237-247 

246 
 

4. Conclusion 

The utility of the AE method for defect detection in rolling element deep groove ball bearings has been 

examined. AE parameters, such as RMS, amplitude, and absolute energy, were measured for running conditions 

of radial load and rotating speed, these parameters have been authorized as proposed techniques for spotting 

bearing damage. The results of AE parameter analysis validate that all the mentioned above parameters 

improved after outer race defect. Moreover, the radial load also has some influence on the AE parameters. 

However, the rotating speed has an impact on the AE parameters for almost every running condition. 

Therefore, from the physical meaning of AE parameters, it was concluded that the rotating speed has a powerful 

influence on the AE parameters under most running conditions of the bearing. The radial load has little evident 

effect on the generation of AE. Generally, in order to motivate good AE signal for monitoring faults of the 

bearing, the rotating speed should be increased in order to enhance the results. 
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