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Abstract 

Principal component Analysis (PCA) is one of the most frequently used multivariate statistical methods. 

Especially, it is used on the purpose of dimension reduction and obtaining uncorrelated variables. However, 

classic PCA (CPCA) is sensitive to outlier. Because it is based on classic covariance or correlation matrices 

influenced by outliers.  Therefore, CPCA can give fallacious results in data sets which have outliers. In this 

study, the robust PCA (RPCA) methods to solve this problem of CPCA are introduced in literature. Moreover, 

we bring forward a proposal to ROBPCA algorithm which is one of these methods. 

Keywords: ROBPCA; Robust Principal Component Analysis; Standardization; High Dimensional Data. 

1. Introduction  

Principal Component Analysis (PCA) is a statistical method reducing dimension of correlated variables. The 

new variables are called as components and these are unrelated. The components are linear combinations of 

original variables. The aim of PCA is dimension reduction and/or obtaining the unrelated variables.  

------------------------------------------------------------------------ 
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It is known that both the standardized variables and the original variables can be used in PCA. It is benefited 

from covariance matrix when original data matrix is used in analysis, while the correlation matrix should be 

employed when standardized data matrix is used. These cases might give strongly different results. Measure unit 

is the most important criterion on the selecting the matrix type. If the measure units and variances of the 

variables are close enough, covariance matrix is used; otherwise correlation matrix is used. If PCA is practiced 

to the data set that there are variables with big variance, variables which have big variances have greater weights 

than other variables on principal components. In that diagonal elements of S matrix are variances. However, the 

diagonal elements of R are 1 and equal. So, all variables have equal weights on principal components [1, 2, 3, 4, 

5, 6].  

In classical PCA, components are related to eigenvalues and eigenvectors of empirical covariance/correlation 

matrix. The first component corresponds to the direction in which the projected observations have the maximum 

variance. Then, the second component is orthogonal to first component and maximizes the variance of the data 

points projected on it. Continuing in this way produces all of the principal components. But, both classical 

variances which is being maximizes and classical covariance/correlation matrix which is being decomposed are 

very sensitive outliers. So, if there are outliers in data, classical PCA results are unreliable. Consequently, if the 

data set has outlier, robust principal component analysis methods must be preferred, not classical PCA. In that 

the aim of robust PCA is to find principal components which are not affected by outliers [7]. 

Fundamentally, there are two approaches in the robust PCA. Firstly, any robust covariance or correlation matrix 

is taken instead of classical matrix. Because these robust matrices are not sensitive to outliers, the results are 

reliable. In this approach, however, the data set should be low dimensional. In that the calculating of robust 

covariance estimation is restricted with the low dimensional data. The aim of solving this problem, the second 

approach is submitted. In this approach, firstly k directions are found and these directions are orthogonal each 

other as CPCA. While these directions are founding, a robust scatter measure called as projection index is 

maximized, for example MAD (Median Absolute Deviations: median of the absolute deviations from the 

median). Thus, the data is projected to low dimensional space.  

The ROBPCA method combines two approaches. ROBPCA has a complex algorithm.  Firstly, the dimension is 

reduced by being used second approach and low dimensional data is obtained. Then, principal components are 

computed by basing on first approach. In this method, after eigenvalue-eigenvector of covariance matrix is 

found without requiring calculating of scatter matrix, the robust covariance matrix is computed by using spectral 

decomposed [7]. 

In this paper, a deficiency of ROBPCA method is introduced and a suggestion is submitted to solve this 

deficiency. If you view to ROBPCA algorithm, you see that firstly eigenvalues-eigenvectors are estimated 

robustly and then robust covariance matrix is obtained by using the spectral decomposed. That is, these 

eigenvectors-eigenvalues pertain to covariance matrix. As stated previously, if the measure units of variables are 

not close enough, the analysis should be done by using correlation matrix and eigenvalues-eigenvectors of this 

matrix. Because the ROBPCA method does not take in consideration this problem, it has a deficiency. In this 

study, an approach is suggested to solve this problem and the idea is supported with simulation study.  
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2. Methods 

2.1. Classical Principal Component Analysis (CPCA) 

Generally, the aim of PCA is expressed as follows;  

• The dimension reduction   

• The obtaining uncorrelated variables 

• The data preparing to other statistical methods. 

In PCA, it was mentioned how covariance or correlation matrix is used in Section 1. In this section PCA based 

on correlation matrix is introduced. The multivariate data set is standardized denoted as [5]; 

𝒁𝒁 = �
𝑍𝑍1
⋮
𝑍𝑍𝑝𝑝
� = �𝜮𝜮

1
2�

−1
(𝒙𝒙 − 𝝁𝝁)                                                                                                   (1) 

Then, the covariance matrix of this standard random variable vector is the correlation matrix original variables 

as follows;  

𝐶𝐶𝐶𝐶𝐶𝐶(𝒁𝒁) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑿𝑿) = 𝑹𝑹.                                                                                                          (2) 

The principal components are obtained from this matrix 𝑹𝑹. If the eigenvalue-eigenvector pair of the 𝑹𝑹 is �𝜆𝜆𝑗𝑗, 𝑒𝑒𝑗𝑗�, 

𝑗𝑗𝑡𝑡ℎ principal component is expressed as follows; 

𝑌𝑌𝑗𝑗 = 𝑒𝑒𝑗𝑗′𝑍𝑍 = 𝑒𝑒1𝑗𝑗𝑍𝑍1 + 𝑒𝑒2𝑗𝑗𝑍𝑍2 + ⋯+ 𝑒𝑒𝑝𝑝𝑝𝑝𝑍𝑍𝑝𝑝 , 𝑗𝑗 = 1,2, … , 𝑝𝑝                                                     (3) 

and �𝑌𝑌𝑗𝑗� = 𝜆𝜆𝑗𝑗 , 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑗𝑗 ,𝑌𝑌𝑘𝑘� = 0. Moreover, the total variance of system is denoted as  

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2 = 𝑡𝑡𝑡𝑡(𝑹𝑹) = 𝜆𝜆1 + 𝜆𝜆2 + ⋯𝜆𝜆𝑝𝑝 = 𝑝𝑝.                                                                                 (4) 

In PCA, it is interested in the variance explanations rate and principal component scores. The variance 

explanations rate of  𝑗𝑗𝑡𝑡ℎ variable is calculated as;  

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑉𝑉𝑎𝑎𝑎𝑎�𝑌𝑌𝑗𝑗�
𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2 =

𝜆𝜆𝑗𝑗
𝑝𝑝

                                                                                                                 (5) 

The principal component scores of 𝑖𝑖𝑡𝑡ℎ unit (𝑖𝑖 = 1,2, … ,𝑛𝑛) are calculated by replacing standard variable values 

of it in Equation (3) [6].   

2.2. Robust Approaches to Principal Component Analyses 

2.2.1. Principal Component Analysis Based on Robust Covariance Matrix 

The aim of Robust PCA is to obtain components which are insensitive to outlier.  The best popular method for 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 29, No  2, pp 119-129 

122 
 

this aim is to replace any robust covariance matrix instead of classical covariance matrix and to obtain 

components based on eigenvalue-eigenvector pairs of this matrix or correlation matrix produced by using this 

matrix [8].   

Let’s be  𝝁𝝁�𝑟𝑟 ,𝜮𝜮�𝑟𝑟 robust location and scatter estimation. If the measure units of the variables are close enough, 

principal components are obtained by basing on the eigenvectors of covariance matrix; otherwise, eigenvectors 

of correlation matrix obtained with Equation (6).  

𝑹𝑹𝑟𝑟 = �𝑫𝑫𝑟𝑟
1
2� �

−1
  𝜮𝜮�𝑟𝑟 �𝑫𝑫𝑟𝑟

1
2� �

−1
                                                                                                   (6) 

where 𝐷𝐷𝑟𝑟
1
2�  is diagonal matrix and diagonal members of it are square root of diagonal members of  𝛴𝛴�𝑟𝑟 . Principal 

components found with this method are not impressed by outlier. 

The most popular robust multivariate parameter estimator is Minimum Covariance Determinant (MCD). The 

MCD estimator for location parameter of multivariate data was defined as by Rousseeuw [9];   

𝑇𝑇(𝑋𝑋) = 𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑋𝑋 𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                  (7) 

The covariance matrix of this subset is the MCD estimator of scatter parameter.  

In this method, 𝛼𝛼 is trimming ratio and ℎ = (1 − 𝛼𝛼) ∗ 𝑛𝑛. Moreover, the breakdown point of MCD estimators is 

equal to trimming ratio (𝛼𝛼). In this case, when ℎ = 0,5 ∗ 𝑛𝑛, the estimator has maximum breakdown point, %50.  

However, to balance between robustness and efficiency, generally, h is defined as ℎ = 0,75 ∗ 𝑛𝑛 and breakdown 

point is % 25 [10]. 

On the other hand, if one is certain that the fraction of outliers is at most 𝛼𝛼, (where 0< α <0,5), one can work 

with the estimators MCD obtained by replacing h by, 𝑘𝑘 = ⌊𝑛𝑛(1 − 𝛼𝛼)⌋ + 1  in Equation (7) [9]. 

Rousseeuw and Van Driessen were suggested a fast algorithm called as FAST-MCD to obtain MCD estimator 

[10].  

Principal components obtained in this way are not influenced by outliers. However, the data should be low 

dimensional (𝑛𝑛 > 𝑝𝑝)  for this aproach, as CPCA. Otherwise, the determinant of covariance matrix is zero. 

Therefore, this approach is restricted with low dimensional data. 

2.2.2. Projection Pursuit (PP) Approach 

The Projection Pursuit (PP) algorithm is another approach which ensures robustness in PCA and does not need 

robust covariance estimation. PP algorithm is based upon projecting lower dimension multivariate data.  The 

algorithm finds ways by maximizing a gradient called as Projection index [11]. Huber showed that CPCA is a 

special case of PP algorithm and it uses variance as projection index [12].  Li and Cheng used this method to 
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make robust PCA by taking a robust scale estimator [13].  Croux and Ruiz-Grazen investigated robustness 

properties of this method and suggested a fast calculation algorithm [14].   

The advantages of PP algorithm are below that:  

• As previously mentioned, robust estimations calculating is easier and faster in low dimension. 

However, projection ways again finding is time consuming after estimations are obtained.  

• Robust covariance estimation is restricted with low dimensional data. But PP algorithm can be used 

high dimensional data sets.  

• The projection ways searching is a sequential process. Thus user can determine exactly way number 

and the eigen analysis of covariance matrix is not difficult. Especially, the calculating time reduces 

signally in high dimensional data sets [15]. 

2.2.3. ROBPCA Approach 

The ROBPCA method uses together both robust covariance matrix estimation and projection pursuit approaches 

and it was suggested in 2005. Firstly, PP method is used in dimension reduction. Then, the principal components 

are obtained by basing on MCD estimations from low dimensional data which is obtained first step. The 

combined approach gives results more quickly than PP algorithm [7]. 

Let’s be 𝑿𝑿:𝑛𝑛𝑛𝑛𝑛𝑛 original data matrix where n is the number of observation and p is the number of original 

variable. The ROBPCA is practiced in three steps. Firstly, the data is reduced to a subspace which has maximum 

(n-1) dimension. Then, 𝜮𝜮0  the inception covariance matrix is obtained and k the number of components is 

determined. While it is determined, it is careful that the subspace with k dimension adapts well to data.   Finally, 

the data points are projected on this subspace where their location vector and k-nonzero eigenvectors 

(𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘) are calculated and the scatter matrix are robustly estimated. The eigenvectors related to these 

eigenvalues give k robust principal components [16]. 

In the original space with p dimension, these k components indicate k dimensional space. 𝑷𝑷𝑝𝑝𝑝𝑝𝑝𝑝  eigenvector 

matrix is obtained by collecting k eigenvectors.  𝝁𝝁�𝑝𝑝𝑝𝑝1 vector is called as robust location. The score matrix is 

given below as:  

𝑻𝑻𝑛𝑛,𝑘𝑘 = �𝑿𝑿𝑛𝑛,𝑝𝑝 − 𝟏𝟏𝑛𝑛 𝝁𝝁�′�𝑷𝑷𝑝𝑝,𝑘𝑘                                                                                                         (8) 

where  1𝑛𝑛 is vector consisted of ones. The robust scatter matrix is calculated as:  

𝜮𝜮𝑝𝑝,𝑝𝑝 = 𝑷𝑷𝑝𝑝,𝑘𝑘𝑳𝑳𝑘𝑘,𝑘𝑘𝑷𝑷𝑘𝑘,𝑝𝑝
′                                                                                                                    (9) 

where  𝑳𝑳𝑘𝑘,𝑘𝑘 is diagonal matrix which the diagonal elements are 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘 [7]. 

The ROBPCA has orthogonal equivariance property as CPCA. That is, when an orthogonal transformation is 

practiced to data, principal component scores do not change.  
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Other advantage of ROBPCA is to give diagnostic plot.  The diagnostic plot gives information about 

observations in data sets. In Figure 1 (a), the PCA is performed to three dimensional data and the principal 

components space is obtained with two components. The black points in figure are called as regular 

observations. Because 1 and 2 observations are akin to PCA space but their projections to PCA space are far 

regular observations, they are called as good leverage points.  As 3 and 4 observations are far to PCA space but 

their projections to PCA space are inside of regular observations, they are called as bad leverage points. Finally, 

because both differences of 5 and 6 observations to PCA space are high and their projections to PCA space are 

far to regular points, they are called as outliers. The diagnostic plot categorizes observations and the diagnostic 

plot of this data is given Figure1 (b) [17]. 

(𝑎𝑎) (𝑏𝑏)

 

 

Figure 1: (a) Projecting and Dimension Reduction; (b) The Diagnostic Plot [17] 

3. The Simulation Study 

When the ROBPCA algorithm is investigated, it is seen that firstly the eigenvalues-eigenvectors are estimated 

robustly and then the robust covariance matrix is obtained by using spectral decomposition. That is, 

eigenvalues-eigenvectors are connected with the covariance matrix. So, the PCA is practiced on original data.  

But it is known that principal components should be obtained from standardized data if the units of measures 

and variances of variables are very different.  It is obvious that the eigenvalues-eigenvectors of correlation 

matrix should be used in this case. Because the ROBPCA uses original data, it is unpractical when the units of 

measures and variances of variables are very different. In that there are rather different among units of measure 

in multivariate real data sets, generally. To solve this problem, two approaches can be suggested.  

The Suggestion 1: The robust correlation matrix is calculated by using finally obtained robust covariance matrix 

and principal components are again got by basing eigenvalues-eigenvectors of this correlation matrix.   

The disadvantaged of Suggestion 1: While the advantages of PP algorithm are introduced, it is mentioned that 

there is not time consuming because firstly eigenvalues-eigenvectors are estimated robustly. This suggestion to 

the ROBPCA algorithm which uses PP algorithm in the first stage causes losing mentioned advantage and time 
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consuming.  

Suggestion 2: As it is mentioned in the classical approach, the covariance matrix of standardized data set is 

equal to the correlation matrix of original data set. Therefore, if ROBPCA algorithm is started standardized data, 

finally obtained covariance matrix is correlation matrix and discrepancies among units of measure of variables 

do not negative effect on results. But a question is needed for this suggestion: “Which approach should we use 

in standardizing: classic or robust?” 

In classical approach, standardizing is denoted as Equation (10) [1]; 

𝑋𝑋 − 𝜇𝜇
𝜎𝜎

                                                                                                                                                  (10) 

and for robust approach it is denoted as Equation (11) ; 

𝑋𝑋 −𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋)
𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋)                                                                                                                                     (11) 

where Median (Med) and median absolute deviation (MAD) are robust alternatives of sample mean and 

standard deviation, respectively. And these are calculated as Equation (12) [18] and Equation (13) [19], 

respectively;   

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = �

𝑥𝑥
�𝑛𝑛+1𝑛𝑛 � 

 ,𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑥𝑥�𝑛𝑛2�
+ 𝑥𝑥�𝑛𝑛2+1�

2
,𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                                                                                  (12) 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀{|𝑥𝑥 − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)|}.                                                                                        (13) 

The simulation study is done to determine which standardizing give better results. In this study, the data sets are 

generated from multivariate normal and contaminated multivariate normal distributions. The general equation 

used to generate data sets is given Equation (14). 

(1 − 𝜀𝜀) 𝑁𝑁𝑝𝑝(𝝁𝝁,𝜮𝜮) + 𝜀𝜀𝑁𝑁𝑝𝑝� 𝝁𝝁�,𝜮𝜮��.                                                                                                   (14) 

The parameters are below. 

When n>p (For Low Dimensional Data) 

𝜇𝜇 = 𝟎𝟎5𝑥𝑥1 ,𝜮𝜮 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[16,8,4,2,1]    ;     𝝁𝝁� = [0,0,0,0,15]5𝑥𝑥1,𝜮𝜮� = 𝜮𝜮𝑥𝑥 �
1

15
� 

When n<p (For High Dimensional Data) 
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𝝁𝝁 = 𝟎𝟎75𝑥𝑥1 ,𝜮𝜮 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[100,80,75, … ,0.15,0.10,0.05] ;  𝝁𝝁� = [0, … ,60,0, … ,60]75𝑥𝑥1,𝜮𝜮� = 𝜮𝜮𝑥𝑥 �
1

15
� 

In Table 1, for (𝑝𝑝 = 5,𝑛𝑛 = 20, 𝜀𝜀 = 0), while average Explained Variance Ratio (EVR) of ROBPCA is  %83.61 

in classical standardized (Cstd) data, average Explained Variance Ratio (EVR) of ROBPCA is  %84.57 in 

robustly standardized (Rstd) data. On the other hand, for (𝑝𝑝 = 5,𝑛𝑛 = 20, 𝜀𝜀 = 0.10), while average Explained 

Variance Ratio (EVR) of ROBPCA is  %90.61 in classical standardized (Cstd) data, average Explained 

Variance Ratio (EVR) of ROBPCA is  %84.74 in robustly standardized (Rstd) data. In that case, it can be 

considered that classical standardizing is more preferable than robustly standardizing. However we use a 

different criterion called as the Outlier Detection Ratio (ODR) and these values are %12.5 and %89, 

respectively. In other words, if the data with outliers is standardized by using classic approach, the outlier 

detection power of ROBPCA method reduces. Thus, results of ROBPCA are unreliable in Cstd data. When the 

data is standardized robustly, EVR value is almost %84.6 while there are outliers or not in data. It is noticed that 

the results are stable and reliable.  

According to Table 1, similarly, 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑝𝑝 = 5,𝑛𝑛 = 50, 𝜀𝜀 = 0), while average Explained Variance Ratio (EVR) of 

ROBPCA is  %76.03 in classical standardized (Cstd) data, average Explained Variance Ratio (EVR) of 

ROBPCA is  %77.03 in robustly standardized (Rstd) data. On the other hand, for (𝑝𝑝 = 5,𝑛𝑛 = 50, 𝜀𝜀 = 0.10), 

while average Explained Variance Ratio (EVR) of ROBPCA is  %84.14 in classical standardized (Cstd) data, 

average Explained Variance Ratio (EVR) of ROBPCA is  %77.66 in robustly standardized (Rstd) data. In that 

case, it can be again considered that classical standardizing is more preferable than robustly standardizing. 

Table 1: When p<n, the Results of ROBPCA for standardized data sets with classical and robust estimators 

  Cstd Rstd Explanation 

p=5 

n=20 

𝜺𝜺 = 𝟎𝟎 %83.61 %84.57 EVR 

𝜺𝜺 = 𝟎𝟎,𝟏𝟏𝟏𝟏 
%90.31 %84.74 EVR 

%12.5 (25/200) %89 (178/200) ODR 

p=5 

n=50 

𝜺𝜺 = 𝟎𝟎 %76.03 %77.03 EVR 

𝜺𝜺 = 𝟎𝟎,𝟏𝟏𝟏𝟏 
%84.14 %77.66 EVR 

%2.8 (14/500) %81.6 (408/500) ODR 

 

However the ODR values are %2.8 and %81.6, respectively. In other words, if the data with outliers is 

standardized by using classic approach, the outlier detection power of ROBPCA method reduces. Thus, results 

of ROBPCA obtained with Cstd data are unreliable. When the data is standardized robustly, EVR value is 

almost %77.3 while there are outliers or not in data set. So, its results are stable and reliable.  

When Table 2 is investigated, similar results are noticed and similar interpretations are done.  Some diagnostic 

plots obtained from simulation are given below. These plots are only relevant to data with outliers.  
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The data set used in Figure 2 (a) and (b) is same and the ROBPCA did not determine outliers (19 and 20 

observations) for Cstd data in (a). But it achieved easily for Rstd data (b). 

Table 2: When p>n, the Results of ROBPCA for standardized data sets with classical and robust estimators 

  Cstd Rstd Explanation 

p=75 

n=20 

𝜺𝜺 = 𝟎𝟎 %79.82 %81.06 EVR 

𝜺𝜺 = 𝟎𝟎,𝟏𝟏𝟏𝟏 
%81.19 %81.21 EVR 

%0 (0/200) %89 (178/200) ODR 

p=75 

n=50 

𝜺𝜺 = 𝟎𝟎 %52.54 %53.61 EVR 

𝜺𝜺 = 𝟎𝟎,𝟏𝟏𝟏𝟏 
%55.30 %53.98 EVR 

%0 (0/500) %100 (500/500) ODR 

 

(𝒂𝒂) (𝒃𝒃)

(𝒄𝒄) (𝒅𝒅)
 

Figure 2: The some diagnostic plots of ROBPCA (a) When (n=20,p=5, ε=0.10)  in Cstd Data, (b) When 

(n=20,p=5, ε=0.10)  in Rstd Data, (c) When (n=50,p=5, ε=0.10) in Cstd Data, (d) When (n=50,p=5, ε=0.10) in 

Rstd Data 

Similarly, the data set used in Figure 2 (c) and (d) is same. While the ROBPCA did not determine outliers (46, 
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47, 48, 49 and 50 observations) for Cstd data in (c), it achieved easily for Rstd data in (d). 

4. Conclusions 

The ROBPCA algorithm is alternative method to CPCA when the data set has outlier(s). But the algorithm 

obtains principal components by basing on eigenvalues-eigenvectors of covariance matrix. Therefore, it may 

give fallacious results when the units of measure of variables are different. To solve this problem, the algorithm 

should be performed on covariance matrix of standardized data set as the classical approach. With simulation, 

however, it is shown that the ODR value of ROBPCA reduces for Cstd data.  

We have recommended that firstly data set should be standardized robustly and then principal components 

should be obtained by using ROBPCA, if data set consists of variables with different measure units. In this case, 

we demonstrated that the ODR value of ROBPCA used to robustly standardized data is more than that of 

classically standardized data. 

In the next studies, ROBPCA should be used by taking in consideration out proposal, if data set consists of 

variables with different measure units. Otherwise, it should not forget that the results are fallacious and overall 

outliers cannot determine. 
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