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Abstract 

In this paper, a new clustering method is proposed for CBIR system; this method depends on combining ABC 

and k-means algorithm. Four features are used with the proposed method to retrieve the images. These features 

are extracted by: color histogram of HSV image and color histogram of opponent image to describe the color, 

Gabor filters and Ranklet transform for RGB image to describe the texture. The proposed hybrid clustering 

method is a clustering process for database of each feature using k-means algorithm enhanced by ABC 

algorithm. The innovation in this approach is that each solution in ABC algorithm represents the centroids of 

clusters that come out from applying k-means algorithm. The proposed method is applied on Wang dataset 

(1000 images in 10 classes) and evaluated by comparing the test results of the proposed scheme with another 

existing method uses same database. The results proved that the proposed method is superior to the existing 

method in terms of the precision in 6 out of 10 categories of WANG dataset, such that the average of the 

precisions for all categories is 0.8093. 
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1. Introduction 

Nowadays, daily storage centers of many businesses such as the military, civilian, medical and internet collect 

huge amount of digital images archive. Contrary to the case of simple data of images, the dealing with massive 

data of images will be failing without effective management (browsing, searching and retrieval). For that, the 

exponentially growing amount of image data raises a big challenge in the area of image retrieval system 

especially with varied collection of images. The image retrieval is a method to searching for images in large 

database of images. Out of the prior studies, the image retrieval field is adopting two approaches; they are text-

based image retrieval and content-based image retrieval [34, 47, 43]. Formerly, the text-based image retrieval 

(TBIR) method was the traditional way of handling sets of image database. The framework of TBIR depends 

mainly on using the textual annotation to describe the images. Although the text-explicit method is easy and 

simple to apply, it requires non-repetitive and large number of keywords to describe image with many features, 

thus more time and effort of labor are consumed. These flaws have made the traditional way incompetent and 

inefficient to yielding accurate description for the image contents [9]. 

Today, content-based image retrieval (CBIR) methods are used to overcome the existing problems in the TBIR 

approach. In CBIR, the indexing and retrieval of images rely on the visual contents. Visual content of images is 

collection of low level features that can be extracted and used to describe the texture, color, and shape features 

of an entire image. since discovering the CBIR concept until now a lot of researches have been written to 

develop the CBIR approach but there are some problems that need to solve. The first is obtaining the good 

features by using the suitable describing method. The second is the dealing with features of huge database 

images. For that, we will propose a method to tackles the previous problems, the proposed method based on 

clustering technique using artificial bee colony and k-means algorithms. 

Clustering technique (cluster analysis) is one of the most widely used techniques for unsupervised classification. 

It is a commonly applied in many applications such as data mining, image segmentation, pattern recognition, 

data analysis and machine learning. Clustering is the process of converting a set of objects (data) into groups of 

objects. The principle of clustering is the detection of the similarities (distance, time and so on) between data 

objects, such that each group or cluster with the most similarity is considered as an object [14]. The main goal of 

image features clustering in image retrieval is to decrease the search space between images and the query image 

by comparing the query image with the center of the cluster. The retrieved images are the images that belong to 

the best cluster. K-means is one of the most popular partitioning clustering methods proposed by Stuart Lloyd 

firstly in 1957. It is a method used in analyzing data into predefined number of clusters. Although k-means is 

simple and easy to understand and faster in obtaining the optimal local solution, it does not has guarantee to get 

the optimum solution because it relies on selected centroids as its initial partition [1, 4]. The integration of ABC 

with the k-means algorithm aims to address the optimal solution problem for the clustering. The ABC algorithm 

was proposed by Karaboga as a simulation of real bee colony behavior in foraging [20]. The wide acceptance 

and popularity of ABC due that it is easy to implement, simple and has few control parameters [42]. As at today, 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 27, No  2, pp 235-258 

237 
 

many applications utilize the ABC algorithm in their work. The ABC algorithm can also be used as a measure 

for the compactness and separation of clusters using the objective function. 

The rest of the paper is structured as follows: Section two reviews related literature in the study domain; Section 

three presents the proposed system adopted by this study; Section four discusses the results of the study; and 

Section five concludes the study. 

2. Related works 

The proliferation in the advancement of digital technologies such as photographic devices and its varied use in 

trading, satellite, medicine, social media, etc. has led to the increase in volume of different types of images [50]. 

This has also led to difficulties in managing massive databases of digital images thereby posing different 

challenges and obstacles to users when searching across these large databases and discriminating among a huge 

number of images [19]. Because of these difficulties, it has become necessary to have the so-called automatic 

image retrieval. Image retrieval can be defined as a computer system employed for searching and retrieving 

specific number of images from database of images. The TBIR systems have witnessed several progresses such 

as multi-dimensional indexing, query assessment and image data forming [45]. The first actual TBIR system 

was presented by Prasad and his colleagues in [31]; this system is based on textual and numeric information. 

From 1987 until 1991, many attempts have been made to develop TBIR systems but were not feasible since the 

TBIR method primarily relies on manual labeling for images. TBIR method cannot provide robust and obvious 

description for images.  

Accordingly, the content-based image retrieval (CBIR) method is proposed to address the setback of TBIR 

approach [41]. CBIR is unlike TBIR method, it uses an image as input (query) to search in database of images 

and retrieve specific number of images that most similar to the image query. In CBIR, the comparison between 

the image query and the images in database made on the basis of their visual contents. There are several CBIR 

systems have been developed for the general purpose such as QBIC [12] and Virage [4] are examples for 

commercial systems. As well as, the academic systems such as CORE [44] and PhotoBook [30]. Also there are 

other systems such as VisualSeek [38], NeTra [26], IRIS [2]. 

The first attempt to developing the image visualization was by the authors in [40]. They proposed a method 

called image histogram that relied on the color of the object to index the image. This method represents the 

color distribution in the image, where each bin in the histogram represents a color and its amount. Another study 

in [47] focused on the use of image color extraction for image retrieval. This method employs the color 

histogram and color moment to describe the image for better retrieval accuracy. In addition, it divides the image 

into three regions (horizontally, equal and overlapping) to minimize the magnitude of color information used for 

indexing the color moments. As stated in [15, 18], color-based image retrieval is more effective and quicker in 

identifying the color distributive features for images in the case of the simple requirements. In another related 

work by BENČO and Hudec [6], the authors proposed a new method to describe the texture by improving the 

GLCM method. The new method called color GLCM or CGLCM; it exploited the color information using 

GLCM for better retrieval. An image retrieval method based on Gabor filter had been proposed in [48]. Rotation 
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normalization is realized by a circular shift of the feature elements so that all images have the same dominant 

direction. Huang and his colleagues in [15] presented a content based image retrieval method that is based on 

two features (color and texture). In their method, they used the color moment for color feature extraction, and 

the Gabor filter for texture feature extraction. Duan and his colleagues in [10] combined three features (color, 

texture and shape) to increase the accuracy of image retrieval in CBIR application. Their proposed method 

denotes the advantages of CBIR by combining more than one feature and comparing with individual features. In 

[33], the authors proposed the Features from Accelerated Segment Test (FAST) method. Although their method 

was faster than any detection algorithm but it has precision problems. Also, since FAST method is used only for 

detection, it lacks the ability to deal with image feature points that represent major issue for obtaining other 

main level descriptors like objects and surfaces [11].  

Despite these developments, CBIR is still not effective enough especially in applications that maintain large 

databases of images [19]. In order to address this setback, the clustering technique is mostly used to reduce the 

time of search space and provide accurate matching in large databases, which means improving the indexing 

scheme (efficient indexing and fast searching) [24]. A new CBIR system based on color and shape features 

combining with k-mean clustering algorithm was proposed by Shefalli and Jindal in [17]. The results of Jindal's 

system proved that the method is efficient in terms the accuracy and it reduced the time of retrieval. 

3. The proposed method 

This work proposes a new CBIR approach that relies on a hybrid clustering method resulting from combine 

Artificial Bee Colony (ABC) and k-means clustering algorithms. The proposed CBIR approach supports color 

and texture features to describe the visual contents of images. The work employs three descriptor methods to 

extract the color features. The first is color histogram for HSV color space when the levels of H, S, and V are 

16, 4, and 4 respectively. The second is color histogram for opponent color space while the third is the color 

moment. For the texture extraction methods, they are Gabor filters and ranklet transform method for RGB color 

space. The color moments method is only used to calculate the mean, standard deviation and skewness moments 

for the coefficients of the ranklet transform method. The aims of applying the hybrid clustering method are: i) to 

narrow the search space thereby reduce the computation time of the comparison between the feature of image 

query and features of all images in database, where after clustering no need to compare the image query with all 

images in database. ii)  Enabling a more efficient clustering of image dataset based on its features; this is help to 

improve the accuracy of retrieval. In the proposed hybrid algorithm, the role of k-means algorithm is to 

categorize the images in groups, while the ABC algorithm is utilized to enhance the clustering of K-means 

algorithm by supporting a global search in the whole solution space. The proposed method includes find: i) the 

best solution then  ii) best cluster of the best solution respectively. 

3.1. Color feature extraction 

The color is an evident and apparent feature in the image; one of the most vastly utilized features in low level 

feature. Comparing with texture and shape features, color feature shows better robustness against the 

background complication and it is more independent to the zoom and rotation [32]. 
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3.1.1. Color histogram 

Color histogram is the most popular technique used to extract the color features. The color histogram is way to 

capture the colors diffusion in images where each histogram represents the number of pixels for certain color 

(bin) in an appropriate color space (for example RGB) [13]. Any kind of color space can be used to build color 

histogram. 

The Equations (1) and (2) are defined to compute the color histogram for an image. 

𝑯𝑯(𝑰𝑰) = {𝒉𝒉[𝟎𝟎],𝒉𝒉[𝟏𝟏],𝒉𝒉[𝟑𝟑], . . . . . ,𝒉𝒉[𝒊𝒊] . .𝒉𝒉[𝒏𝒏]} (1) 

Where 𝐻𝐻 represent the histogram for the entire image 𝐼𝐼 ,  𝑖𝑖 is the color (bin), 𝑛𝑛 total number of 

colors (bins), and ℎ[𝑖𝑖] represents the number of 𝑖𝑖𝑡𝑡ℎ color in the image.  

If we compare images with different sizes, it necessary to normalize the color histogram first using Eqn. 𝐻𝐻′ is 

the histogram after normalization, and 𝑡𝑡 is the total pixels in the image.  

𝐻𝐻′(𝐼𝐼) = {ℎ′[0], ℎ′[1], ℎ′[3], . . . . . , ℎ′[𝑖𝑖] . . ℎ′[𝑛𝑛]} (2) 

ℎ′[𝑖𝑖] =
ℎ[𝑖𝑖]
𝑡𝑡

 
(3) 

3.1.2. Color moments 

The color moment have been successfully used in content based image retrieval systems as stated in [19, 38]. 

The use of color moment method for color features extraction characterizes the color distribution in one 

dimension with three moments: Mean, variance and skewness [55]. 

Moment1: Mean 𝐄𝐄𝐢𝐢 = �
𝟏𝟏
𝐍𝐍

𝐍𝐍

𝐣𝐣=𝟏𝟏

𝐏𝐏𝐢𝐢𝐢𝐢 (4) 

Moment2: Variance 𝛔𝛔𝐢𝐢 = �(
𝟏𝟏
𝐍𝐍
�(𝐏𝐏𝐢𝐢𝐢𝐢 − 𝐄𝐄𝐢𝐢)𝟐𝟐
𝐍𝐍

𝐣𝐣=𝟏𝟏

) (5) 

Moment3: Skewness 𝐬𝐬𝐢𝐢 = �(
𝟏𝟏
𝐍𝐍
�(𝐏𝐏𝐢𝐢𝐢𝐢 − 𝐄𝐄𝐢𝐢)𝟑𝟑
𝐍𝐍

𝐣𝐣=𝟏𝟏

)
𝟑𝟑

 (6) 

Where  𝑬𝑬𝒊𝒊, 𝝈𝝈𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂 𝒔𝒔𝒊𝒊 are the mean, variance and skewness respectively. 𝑷𝑷𝒊𝒊𝒊𝒊 is the image pixel, 𝒊𝒊 is the channel 

of image (𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝟑𝟑),  𝒋𝒋  is the pixel index (𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝑵𝑵), and 𝑵𝑵 is the number of pixels in one channel 

3.2. Texture feature extraction 

Texture is very significant and powerful feature to describe the image; it plays a vital role in handling the human 

perceptions against the surface specifications and directions [36]. Texture features are not as distinct as color 
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features; color focuses on one pixel while texture is a group of neighboring pixels with frequencies in their 

intensity. In other words, texture is the region or spatial domain of the image which has many regular or random 

differences in the color value, such that it generates various 'rough' and 'smooth' patterns [39]. 

3.2.1. Gabor filters 

Gabor filter (GF) is extensively used for extracting image texture features [15]. GF can be defined as a 

combination of wavelets; each wavelet captures the energy at a specific frequency and orientation. Moreover, 

the GF are capable capturing the whole energy of an image or a signal. Typically, I(x,y), an input image with 

size P  × Q, is convolved with a 2D Gabor function 𝑔𝑔𝑚𝑚𝑛𝑛(𝑥𝑥,𝑦𝑦), to obtain a Gabor feature 𝐺𝐺𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦)using the 

following equation: 

𝐺𝐺𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = ��𝐼𝐼(𝑥𝑥1, 𝑦𝑦1)
𝑦𝑦1𝑥𝑥1

𝑔𝑔𝑚𝑚𝑚𝑚∗(𝑥𝑥 − 𝑥𝑥1, 𝑦𝑦 − 𝑦𝑦1) (7) 

Where * indicates the complex conjugate.  

A 2D Gabor function 𝑔𝑔(𝑥𝑥,𝑦𝑦) has its form as: 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) =
1

2𝜋𝜋𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 [−

1
2
�
𝑥𝑥2

𝜎𝜎𝑥𝑥
+
𝑦𝑦2

𝜎𝜎𝑦𝑦
� + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋] (8) 

Where 𝑔𝑔𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦) is a set of self-similar functions generated from dilation and rotation of the Gabor function 

𝑔𝑔(𝑥𝑥,𝑦𝑦) [27]. 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the standard deviations of the Guassian envelopes along the x and y direction. 

 𝑔𝑔𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎−𝑚𝑚𝑔𝑔(𝑥𝑥′, 𝑦𝑦′) (9) 

 𝑥𝑥′ = 𝑎𝑎−𝑚𝑚(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦),   𝑦𝑦′ =  𝑎𝑎−𝑚𝑚(−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) (10) 

Where 𝑚𝑚,𝑛𝑛 represent the scale and orientation respectively (m = 1,2,…,M; n = 1,2…,N),  𝜃𝜃 = 𝑛𝑛𝑛𝑛/𝑁𝑁 , 𝑀𝑀,𝑁𝑁 

are the number of scales and orientations respectively, 𝑎𝑎>1,  𝑎𝑎−𝑚𝑚  is scale factor to ensure that energy is 

independent of the frequency  𝑚𝑚. 

We can obtain a set of magnitudes by applying Gabor filters on the image I(x, y) with different orientation at 

different scale as shown in Eqn. (11): 

𝐸𝐸(𝑚𝑚,𝑛𝑛) = �� |𝐺𝐺𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)|
𝑦𝑦𝑥𝑥

 (11) 

The mean 𝜇𝜇𝑚𝑚𝑚𝑚 and standard deviation 𝜎𝜎𝑚𝑚𝑚𝑚 of the magnitude of the transformed coefficients will calculated by 

the Eqn. (12): 

𝜇𝜇𝑚𝑚𝑚𝑚 =
𝐸𝐸(𝑚𝑚,𝑛𝑛)
𝑃𝑃 × 𝑄𝑄

,     𝜎𝜎𝑚𝑚𝑚𝑚 =
�∑ ∑ (|𝐺𝐺𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)| − 𝜇𝜇𝑚𝑚𝑛𝑛)2𝑦𝑦𝑥𝑥

𝑃𝑃 × 𝑄𝑄
 (12) 

The Gabor feature vector is given as: 
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𝑓𝑓 = [𝜎𝜎11,𝜎𝜎12, . . . ,𝜎𝜎𝑀𝑀𝑀𝑀] (13) 

3.2.2. Ranklet transform 

The Ranklet transform texture method is one of the methods used for pattern recognition especially in face 

detection [53]. This method has been used also in 3D structures and motion objects [54], the mammograms 

device to detect tumours [29], texture classification [49] and point tracking. The ranklet transform depends upon 

three major specifications which are nonparametric, orientation-selective, and multi-resolution. 

The nonparametric property bases on measuring the local intensity of image using the order of intensity instead 

of the intensity itself [47]. Let I be an image, 𝐼𝐼 = [18 5 22 13], then 𝜋𝜋(𝐼𝐼) = [3 1 4 2], where 𝜋𝜋(𝐼𝐼) is the rank 

transform of image 𝐼𝐼 , the range of 𝜋𝜋(𝐼𝐼) is [1 to m], where m is the dimension of 𝐼𝐼 , [1 to m*n] for two 

dimensional image. The orientation-selective property means that the ranklet transform provides coefficients for 

different orientations (vertical, horizontal and diagonal), along the lines of Haar wavelets [8]. Two statistics that 

can be used to obtain the ranklet coefficients namely Wilcoxon test [25] and MannWhitney test [28].  

To illustrate ranklet transform feature extraction, let P is a 2D image (m*n), N = m*n, where N is the number of 

pixels in P. The N pixels are then divided into two subsets: T(treatment) and C(control) for each orientation as 

denoted in Figure 2.11. Thus r pixels for T and k pixels for C can be obtained, where r = k = N/2. To calculate 

MannWhitney (𝑊𝑊𝑋𝑋𝑋𝑋) test by Eqn. (16), first we compute the rank transform (𝜋𝜋(𝑃𝑃)) and then compute the 

Wilcoxon (𝑊𝑊𝑃𝑃) test by Eqn. (14): 

𝑊𝑊𝑝𝑝 = �𝜋𝜋𝑖𝑖𝑉𝑉𝑖𝑖

𝑁𝑁

𝑖𝑖=0

 (14) 

𝑊𝑊𝑃𝑃 is the Wilcoxon test for image P, 𝜋𝜋𝑖𝑖 is the rank of element 𝑖𝑖, 

𝑉𝑉𝑖𝑖 = � 0,    𝜋𝜋𝑖𝑖  ∈ 𝐶𝐶
 1,    𝜋𝜋𝑖𝑖  ∈ 𝑇𝑇   (15) 

𝑊𝑊𝑋𝑋𝑋𝑋 = 𝑊𝑊𝑃𝑃 −
𝑟𝑟(𝑟𝑟 + 1)

2
 (16) 

After that, the ranklet coefficients 𝑅𝑅𝑗𝑗 can be calculated by the following equation: 

𝑅𝑅𝑗𝑗 =
𝑊𝑊𝑋𝑋𝑋𝑋

𝑗𝑗

𝑟𝑟𝑟𝑟/2
 (17) 

Where j represents the orientations (vertical, horizontal and diagonal) 

3.3. Color spaces 

The color space is a mathematical representation of colors in image. In this work, we will use three color spaces 

namely RGB, HSV and opponent. RGB color space is a three dimensional representation that consists of three 

main colors (Red, Green, Blue), each color is considered as a dimension for the image. The HSV color space is 

widely utilized in computer graphic, where it supports the Hue, Saturation and Value colorimetric 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 27, No  2, pp 235-258 

242 
 

characteristics. To convert the color space from RGB to HSV, the following is formula used and is defined as in 

Eqns. 18-20: 

𝐻𝐻 = cos−1( 
1
2 (2𝑅𝑅 − 𝐺𝐺 − 𝐵𝐵)

�(𝑅𝑅 − 𝐺𝐺)2 − (𝑅𝑅 − 𝐵𝐵)(𝐺𝐺 − 𝐵𝐵)
  ) (18) 

𝑆𝑆 = 1 −  
3 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅,𝐺𝐺,𝐵𝐵)
𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵

 (19) 

𝑉𝑉 =
𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵

3
 (20) 

Where (H, S, V, R, G and B) are hue, saturation, value, red, green and blue, respectively. The opponent color 

space uses opponent color axes (R-G, 2B-R-G, R+G+B). This representation has the advantage of isolating the 

brightness information on the third axis. The following equation is used to convert RGB image to opponent 

(RG-BY-WB) image. 

�
𝑅𝑅𝑅𝑅
𝐵𝐵𝐵𝐵
𝑊𝑊𝑊𝑊

� = �
   1         − 1             0
−1         − 1             2

     1               1            1  
� ×  �

𝑅𝑅
𝐺𝐺
𝐵𝐵
� (21) 

Both HSV and RG-BY-WB color spaces are perceptual because they reflect how the human eyes perceive 

colors [51, 52]. 

3.4. k-means clustering algorithm 

K-means clustering is one of the popular clustering methods; it is based on the number and centers of clusters 

[22]. This algorithm is widely used because its simplicity and efficiency [37].  From the name, k-means clusters 

the data object into a predetermined number of clusters (k). Each object belongs to particular cluster on the basis 

of calculating the sum of the square distance between each point and the centroid of that cluster. In our proposed 

CBIR, k-means algorithm attempts to minimize the Euclidean distance between the feature vectors of images 

and their centroids fast and simply. The k-means algorithm steps are illustrated as listed below. Figure 1 clarifies 

the steps of the algorithm by flowchart. 

Input: k (number of clusters), set of patterns. 

Output: the clustered patterns 

Step1: Determining the number of clusters (K). 

Step2: From patterns, choosing the position of clusters randomly. 

Step3: Calculate the centroids of clusters using the Eqn.22. 
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𝑚𝑚𝑘𝑘 =
1
𝑛𝑛𝑘𝑘

� 𝑧𝑧𝑝𝑝
∀𝑧𝑧𝑝𝑝∈𝐶𝐶𝑘𝑘

 
(22) 

Where 𝑚𝑚𝑘𝑘 is the centroid of 𝐶𝐶𝑘𝑘, 𝐶𝐶𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ cluster, 𝑛𝑛𝑘𝑘 is the number of patterns in cluster, 𝑧𝑧𝑝𝑝 is the pattern. 

Step4: Calculate the distance between the patterns and centroids using the Euclidean distance using the 

following equation. 

𝑑𝑑�𝑧𝑧𝑝𝑝 ,𝑚𝑚𝑘𝑘� = ��(𝑧𝑧𝑝𝑝𝑝𝑝 − 𝑚𝑚𝑘𝑘𝑘𝑘)2
𝐷𝐷

𝑑𝑑=1

 (23) 

Where 𝐷𝐷 is dimension of the vector, 𝑧𝑧𝑝𝑝𝑝𝑝  represents a feature in patterns, and 𝑚𝑚𝑘𝑘𝑘𝑘  represents the 

attribute of cluster k centroid. 

Step5: Update the clusters information depending on the minimum distance. 

Step6: Return back to implement steps 3,4,5,6 if there is no moving for patterns. 

Step7: The clustered pattern as output. 

 

 

Figure1: Flowchart of k-means clustering algorithm steps 
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3.5. Artificial bee colony (ABC) algorithm 

The ABC algorithm is a new approach and one of the swarm based algorithms that initially proposed in [20] for 

optimization issues. ABC simulates the intelligent behaviors that real bee colonies follow in the foraging. So far, 

ABC have been successfully employed in many approaches and applications such as neural networks [23], 

clustering [22], image processing and pattern recognition [7], and  constrained optimization problems [21] etc. 

to solve optimization problems. 

The collective intelligent search pattern for the bees includes three components: food resources, employed bees 

and unemployed bees (both of onlooker and scout bees) [5]. The bee colony as a whole comprises of two halves: 

the first represents the employed bees while the second represents the onlooker bees. There is just one employed 

bee for each food source. In another meaning, the number of employed bees or onlooker bees equal to the 

number of food sources around the hive [21]. In ABC algorithm, the food sources are considered as possible 

solutions for a particular problem, while the nectar amount of a food source matches up the quality (fitness) of 

the related solution. 

At first, the ABC algorithm generates population of solutions (set of source food positions) using Eqn.24. Then, 

the solutions will be subjected to iterated cycles (1 to MCN) of search processes (Employed bees, onlooker bees 

and scout bees). 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) ∗ (𝑢𝑢𝑖𝑖 − 𝑙𝑙𝑖𝑖) (24) 

Where𝑖𝑖 = 1, . . . , 𝑆𝑆𝑆𝑆;  𝑗𝑗 = 1, . . . ,𝐷𝐷;  𝑆𝑆𝑆𝑆 represent the number of food sources and 𝐷𝐷 represents the number of 

parameters or the dimension of the problem , 𝑢𝑢𝑖𝑖 and 𝑙𝑙𝑖𝑖  are respectively the upper and lower bound of the 

solution space of the objective function,  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  is random number within the range [0, 1]. 

The employed bees try to find another solution (new food source) and compare it with the selected by check the 

nectar amount (fitness value), then keep the solution that has highest fitness and forget the other. Eqn.25 is used 

to generate the new solution from the old one. After complete, the employed bees share their current information 

about the quality and positions of the food sources with their hive mate [20]. The onlooker bees receive the food 

source information from the employed bees and produce new solution from the current depending on the fitness 

probability of the local food source. Then like the employed bee, they keep the one which has the highest fitness 

and forget the other.  The probability (𝑃𝑃𝑖𝑖) of the source foods can be calculated by the Eqn.26. 

𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + ∅𝑖𝑖𝑖𝑖  (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘) (25) 

Where 𝑛𝑛𝑖𝑖𝑖𝑖 is the new food source, 𝑗𝑗 and 𝑘𝑘 are the parameter and the neighbor respectively (chosen randomly), 𝑖𝑖 

represents the current food source, where 𝑖𝑖 ≠ 𝑘𝑘, ∅𝑖𝑖𝑖𝑖  is random value between -1 and 1. 

𝑃𝑃𝑖𝑖 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖

∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗𝑆𝑆𝑆𝑆
𝑗𝑗=1

 (26) 

Where  
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𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 =  �

1
1 +  𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖

   ,           𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 ≥ 0

1 + 𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖) ,   𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 < 0

 (27) 

The scout bees change the current food source to a new one if it is abandoned for many times (exceeds limit 

parameters). Figure 2 shows the pseudo code of ABC algorithm in detail [21]. 

 

Figure 2: Pseudo code of the ABC algorithm 

3.6. Hybrid clustering (ABC – K-means) algorithm 

The hybrid clustering algorithm is basically an integration of the Artificial Bee Colony algorithm and the k-

means clustering algorithm; it combines the benefit of both algorithms. ABC algorithm applies a global search 

in the solution space while the k-means adopts the local search.  

The proposed hybrid clustering uses the ABC algorithm to improve the ability of k-means algorithm to get the 

optimum clustering. 

Step1 (Initialization): this step involves the following sub steps: 

a) Initialize the control parameters SN, MCN, K, Limit (see Table 2). 

b) Initialize the source food (SN solutions) using k-means clustering algorithm to partition the images into 

K clusters, where the length of solution vector equal to K as in Figure 3. Then calculate the fitness for 

each solution using Eqn. 27. 

Eqn.28 expresses the fitness function which will be used in the proposed hybrid clustering. According [56], the 

following function will minimize the quantization error. 

1: Initialize the population of solutions  𝑥𝑥𝑖𝑖,𝑗𝑗 , 𝑖𝑖 = 1 ... SN,    𝑗𝑗 = 1… D  
2: Evaluate the population  
3: cycle=1  
4: repeat  
5:      Produce new solutions υi,j for the employed bees by using (19) and evaluate them  
6:      Apply the greedy selection process  
7:      Calculate the probability values 𝑃𝑃𝑖𝑖,𝑗𝑗  for the solutions 𝑥𝑥𝑖𝑖,𝑗𝑗 by (20) 
8:      Produce the new solutions 𝑣𝑣𝑖𝑖,𝑗𝑗 for the onlookers from the solutions 𝑥𝑥𝑖𝑖,𝑗𝑗 selected 
         depending on 𝑃𝑃𝑖𝑖,𝑗𝑗  and evaluate them  
9:      Apply the greedy selection process  
10:    Determine the abandoned solution for the scout, if exists, and replace it with a 
          new randomly produced solution 𝑥𝑥𝑖𝑖,𝑗𝑗 by (18)  
11:    Memorize the best solution achieved so far  
12:    cycle=cycle+1  
13: until cycle=MCN 
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𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑍𝑍) =  𝐽𝐽𝑒𝑒 ∗  
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖)
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖)

 ∗ ( 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) +  𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) + 𝑀𝑀𝑀𝑀𝑀𝑀 (28) 

 

 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) is to apply the intra-cluster distance criterion,  And the 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) represents the inter-cluster 

separation criterion as in Eqn.29 and Eqn.30 respectively. Z={𝑧𝑧1, 𝑧𝑧2, . . . 𝑧𝑧𝑝𝑝, . . . 𝑧𝑧𝑛𝑛}, where Z is set of 𝑛𝑛 patterns 

(images) in cluster, 𝑧𝑧𝑝𝑝 is an image as D-dimensional vector. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) = max � �
𝑑𝑑(𝑧𝑧𝑝𝑝, 𝑚𝑚𝑖𝑖,𝑘𝑘)

𝑛𝑛𝑖𝑖,𝑘𝑘∀ 𝑧𝑧𝑝𝑝∈ 𝐶𝐶𝑖𝑖,𝑘𝑘

� (29) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍, 𝑥𝑥𝑖𝑖) = min�𝑑𝑑(𝑚𝑚𝑖𝑖,𝑗𝑗  ,𝑚𝑚𝑖𝑖,𝑘𝑘)�  ,    𝑗𝑗 ≠ 𝑘𝑘. (30) 

 
Figure 3: Population of food sources construction using the clusters 

𝐽𝐽𝑒𝑒 is the quantization error and is expressed in the general quality of a clustering algorithm as in Eqn. 31.  

𝐽𝐽𝑒𝑒 =  
∑ ∑ 𝑑𝑑(𝑧𝑧𝑝𝑝,𝑚𝑚𝑘𝑘) 𝑛𝑛𝑘𝑘⁄∀ 𝑧𝑧𝑝𝑝∈ 𝐶𝐶𝑘𝑘
𝐾𝐾
𝑘𝑘=1

𝐾𝐾
 (31) 

 

And MSE is the mean square error and it is expressed in Eqn. 32. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
� � 𝑑𝑑(𝑧𝑧𝑝𝑝,𝑚𝑚𝑘𝑘)2

∀ 𝑧𝑧𝑝𝑝∈ 𝐶𝐶𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 (32) 

𝑁𝑁 is the total number of patterns (images) , 𝐾𝐾 is the number of clusters, 𝑚𝑚𝑘𝑘 is centroid of 𝑘𝑘𝑡𝑡ℎ cluster, 𝑛𝑛𝑘𝑘 number 

of patterns (images) in 𝑘𝑘𝑡𝑡ℎcluster, 𝑑𝑑(𝑧𝑧𝑝𝑝,𝑚𝑚𝑘𝑘) is the Euclidean distance between 𝑧𝑧𝑝𝑝 and 𝑚𝑚𝑘𝑘. 

Step2 (Employed bee stage): For each employed bee, apply k-means for the current solution to get new 

solution, the centroids of clusters (current solution) will updated to the new solution if its fitness value less than 

the fitness value of the new solution (greedy selection). 

Step3 (Onlooker bee stage): For each onlooker bee, apply k-means for the current solution to get new solution. 

The centroids of clusters (current solution) will updated to the new solution if its probability value greater than 
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random value (between 0 and 1), and its fitness value less than the fitness value of the new solution (greedy 

selection). We can calculate the probability of the solution using Eqn.26. 

Step4 (Scout bee stage): For the scout bee phase, check the failures of each solution, if it exceeds the control 

parameter (limit), generate new solutions to replace the old one. In other word, the abandoned food source is one 

that cannot be improved upon after certain number of cycles, as determined by the limit parameter. 

Step5: Memorize the best solution achieved so far, and repeat the steps from 2 to 5 until met the MCN. 

Step6: Obtain the best solution (food source) as output. 

3.7. Similarity and performance measurement 

The similarity measurement computes the distance between two objects; in CBIR, it measures the distance 

between the query image and the images in database based on their own extracted features. If there are two 

similar images, that means they have few distance between them. The most commonly used similarity measures 

is Minkowski-form distance [16] which is defined in Eqn. (33): 

𝐷𝐷𝑝𝑝(𝐼𝐼, 𝐽𝐽) = (� |𝑓𝑓𝑖𝑖(𝐼𝐼) − 𝑓𝑓𝑖𝑖(𝐽𝐽)|𝑝𝑝
𝑁𝑁−1

𝑖𝑖=0

)1 𝑝𝑝⁄  (33) 

𝐷𝐷𝑝𝑝(𝐼𝐼, 𝐽𝐽) represents the distance between image 𝐼𝐼 and image 𝐽𝐽,  𝑁𝑁 is the number of features, while 𝑖𝑖 is the index 

of feature. When 𝑝𝑝 = 1, it is known as city block distance or Manhattan distance. When 𝑝𝑝 = 2, it is Euclidean 

distance or metric distance (most widely used in image retrieval). 

To evaluate the performance of CBIR, recall and precision pair (RPP) is the most efficient method [3]. This 

measure has two indicators: the recall and precision. The precision evaluates the system capability in terms of 

retrieve only the relevant images (Eqn. 34), while recall evaluates the system capability of in terms of retrieve 

all the relevant images in database (Eqn. 35). 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐴𝐴 

𝐴𝐴 + 𝐵𝐵
 (34) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐴𝐴 

𝐴𝐴 + 𝐶𝐶
 (35) 

𝐴𝐴 =number of relevant images retrieve, 𝐵𝐵 =number of irrelevant images, 𝐶𝐶 =number of relevant images not 

retrieved 

3.8. Proposed CBIR scheme 

The following illustrates the steps of the proposed CBIR: 

The inputs: Dataset of images (search domain) and query image 

The output: The most similar 10 images to the query image 
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Step1: Extract the color histogram for HSV image, color histogram for RG-BY-WB image, Gabor and ranklet 

transform features of all images in database, thus, a database of feature vectors for all images will be obtained. 

Step2: Choose one image as query image from the dataset of images (already its four features are extracted). 

Step3: cluster the features of images using the proposed hybrid algorithm (ABC-k-means). The output of this 

step is the best solution which contains 10 clusters of images.  

Step4: Calculate the distance between the query image and the centroids of each cluster in the best solution 

using Eqn. (233) to find the best cluster, where the best cluster has the least distance. 

Step5: Apply the Step3 and Step4 on each of the features that mentioned in step1, and then integrate the best 

clusters in one cluster. 

Step6: Calculate the similarity between the query image and each image that follow to the cluster that obtained 

from Step6 using Eqn. (36).  

𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑤𝑤1 × 𝐷𝐷1(𝐼𝐼, 𝐽𝐽) + 𝑤𝑤1 × 𝐷𝐷2(𝐼𝐼, 𝐽𝐽) + 𝑤𝑤1 × 𝐷𝐷3(𝐼𝐼, 𝐽𝐽) + 𝑤𝑤1 × 𝐷𝐷4(𝐼𝐼, 𝐽𝐽) (36) 

Where 𝐼𝐼  is the query image, 𝐽𝐽  is the image in cluster, 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the final distance between 𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎   𝐽𝐽 . 

𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷4  are the distance between 𝐼𝐼  𝑎𝑎𝑎𝑎𝑎𝑎   𝐽𝐽  depending on color histogram (HSV), color histogram 

(RG-BY-WB), Gabor filters and ranklet transform features respectively. 

Step7: retrieve the 10 images that are most similar to the query image. The proposed CBIR is as shown in 

Figure 4. 

 

Figure 4: The Proposed CBIR Scheme 
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4. Results and Discussions 

The experimental results of the proposed method is presented and discussed in this section. The discussion of 

results shall follow the steps outlined in section 3 based on the methodology presented in Figure 1 of the 

previous section; data preparation, feature extraction, apply the hybrid clustering algorithm (feature indexing), 

similarity measurement and retrieval of the results. The proposed method's performance is evaluated by 

comparing the retrieved results with the results of a prior work in the same field; it is [46]. 

4.1 Data preparation and parameter settings 

WANG dataset was used in conducting this experiment; this dataset is a subset of 1000 images of the Corel 

database which is manually selected and comprises of 10 categories, each category has 100 images. Table 1 

shows the categories of image dataset used for this study. 

Table 1: Categories of image dataset 

Category No. Category name Number of images Range of images  

1 Africa people and villages 100 0-99 

2 Beaches 100 100-199 

3 Buildings 100 200-299 

4 Buses 100 300-399 

5 Dinosaurs 100 400-499 

6 Elephants 100 500-599 

7 Flowers 100 600-699 

8 Horses 100 700-799 

9 Mountains and glaciers 100 800-899 

10 Food 100 900-999 

Before apply the proposed method, several parameters was used. The parameters are shown in table 2.  

Table 1: The parameters and values used in the proposed system 

Parameter Value 

K-means Number of clusters (K) 10 

ABC 

Maximum cycle number(MCN) 10 

Number of solutions (SN) 25 

Triggering threshold (limit) 3 

Similarity 

measurement 

The weight used in color histogram (HSV) features (w1) 0.41 

The weight used in color histogram ( RG-BY-WB) features (w2) 0.28 

The weight used in Gabor filter (RGB) features (w3) 0.07 

The weight used in Ranklet transform (RGB) features (w4) 0.24 
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4.2 Evaluation of the Proposed Method 

To test the retrieval effectiveness, we choose 4 images from various classes arbitrarily (each one is as an image 

query). Then retrieve the 10 most similar images to the query image. The first test case used is the African 

people and villages category using image 40.jpg. The system retrieved 10 images that were all relevant to the 

query image as shown in the Figure 5.  

 

     
40.jpg 83.jpg 55.jpg 29.jpg 39.jpg 

     
41.jpg 38.jpg 81.jpg 46.jpg 45.jpg 

Figure5: Top 10 retrieved images of African people and villages 

The second test case used is the Dinosaur category (image 484.jpg) as illustrated in Figure 6. The number of 

relevant images retrieved is 10.  

 

     
484.jpg 401.jpg 476.jpg 481.jpg 472.jpg 

     
467.jpg 400.jpg 468.jpg 498.jpg 460.jpg 

Figure 6: Top 10 retrieved images of Dinosaurs 

The third test case is the Flowers category. Figure 7 shows that the system retrieved 10 relevant images similar 

to the query image.  

Figure 8 shows the fourth test result of the proposed method for images of the Mountains category, which image 

query is 881.jpg. Two images (150.jpg and 166.jpg) are irrelevant but similar to the query image. 

Also, the precision and recall measurement is used to evaluate the proposed CBIR system. To calculate the 

precision and recall, we used all the images in each category as queries. For example, we used all the 100 
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images in each class; that means we got 100 precision for each category. Furthermore, the number of images 

retrieved from each on search (by one image query) is 10 images. And thus, the total precision for each category 

(calculated by Eqn.37) correspond the average of all precisions; same case for recall (calculated by Eqn.38).   

 

     
643.jpg 669.jpg 634.jpg 608.jpg 616.jpg 

     
624.jpg 667.jpg 610.jpg 601.jpg 602.jpg 

Figure7: Top 10 retrieved images of Flowers 

 

 

     
881.jpg 150.jpg 854.jpg 879.jpg 833.jpg 

     
166.jpg 876.jpg 835.jpg 889.jpg 895.jpg 

Figure 8: Top 10 retrieved images of Mountains 

 

𝑝𝑝′𝑐𝑐 = ∑ 𝑝𝑝(𝐼𝐼𝑖𝑖)100
𝑖𝑖=1

100�  (37)   

𝑟𝑟′𝑐𝑐 = ∑ 𝑟𝑟(𝐼𝐼𝑖𝑖)100
𝑖𝑖=1

100�  (38)   

Where p′ and r′ are the total precision and total recall respectively, c is the category (1-10), i is the index of 

image in certain category, p(Ii) and r(Ii) are the precision and recall respectively when the image query is I. 

Figure 9 shows the total precision and recall of the proposed method. The maximum precision average for 

Dinosaurs is 0.999; its recall is 0.968. While the minimum precision for Mountains is 0.52; its recall is 0.289.  
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Figure 9: Precision and recall of the proposed method 

Figure 10 shows the averages of the total precisions and recalls for all classes when the total numbers of images 

retrieved are 20,40,60,80 and 100. 

 
Figure 10: The average of precisions and recalls of all classes for different numbers of retrieved images 

 

4.3 Validation of the Proposed Method 

The proposed method was compared with the existing method [46] in terms of the precision. The choice of this 

particular method as a benchmark for this study was based on the fact that the study results of Younus and his 

colleagues have been shown to be more superior to other previous methods based on the findings of their study. 

Thus, since it is a superior method in terms of precision when compared to previous works, it will be an 

appropriate benchmark for this study. Also, their study employed the precision-recall measure, which besides 

being a good performance evaluator, is also the same evaluation measurement used for this study. In [45], the 

authors pointed out that comparing the performance of two CBIR methods is an improper unless those methods 

use same the evaluation measurement. In order to properly validate the proposed method, several criteria are 

compared with the existing method and selected as a benchmark for this study. These criteria include: 1) the 

clustering), 2) Wang dataset, 3) total number of image retrieved (10), 4) performance measure (precision-recall). 

Table 9 presents the precision values of each images subset for both the proposed and existing methods and also 

the difference between them; where A is the existing method, B is the proposed method and |A-B| is the 

difference between the two methods. Figure 11 illustrates the result of comparison between the proposed and 

existed method. 
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Table 3: The proposed and existing methods precision comparison 

The Category 
[58] 

PSO + k-means (A) 

The proposed method 

ABC + k-means (B) 
|A-B| 

Africa people and villages 0.890 0.864 0.026 

Beaches 0.730 0.525 0.205 

Buildings 0.701 0.729 0.028 

Buses 0.838 0.921 0.083 

Dinosaurs 0.998 0.999 0.001 

Elephants 0.795 0.790 0.005 

Flowers 0.925 0.963 0.038 

Horses 0.871 0.985 0.114 

Mountains and glaciers 0.550 0.502 0.048 

Food 0.755 0.815 0.060 

Average 0.8053 0.8093 0.04 

Table 3 demonstrates that the performance of the proposed method outperforms the existing method in six 

categories: Buildings, Buses, Dinosaurs, Flowers, Horses and Foods. For the Africans and Elephant categories, 

there is an approximation between the two methods while there is more difference in the beaches and the 

mountains categories. This high difference can be attributed to two reasons; firstly, the similarity between these 

two categories is because their features are similar, therefore, it is very important to look for another feature like 

the shape feature to ensure proper categorization. Secondly, the extraction process of more than one feature by 

itself is difficult because each category of images contain features that disparately differ from the other 

categories. Therefore, the amount of adjustment on each feature negatively or positively affects some categories. 

In general, based on the validation results, the proposed method showed better result in terms of the precision 

for six categories at the expense of less precision for four categories. Also from the results presented in Table 9, 

it can be seen that the sum average for all categories between the two methods is 0.8093 for the proposed 

methods while that of the existing method is 0.8053, with a sum difference of 0.04 in favor of the proposed 

method. Thus, the result is showing that the proposed method yields a higher precision result in CBIR and it is 

superior to the existed CBIR method in terms of accuracy. 

 

Figure 11: The Graph of precision and recall of the proposed CBIR 
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5. Conclusion 

This study proposed a new hybrid method for content-based image retrieval using a combination of (ABC + k-

means) algorithms. The k-means clustering algorithm has some setbacks, one of which is that it does not 

generate optimal clustering because it bases on an initial cluster centroids [35]. The proposed hybrid method 

addressed this setback by integrate the ABC technique with the k-means algorithm. In the proposed hybrid 

algorithm, the role of k-means algorithm is to categorize the images to groups, while the ABC algorithm is 

utilized to enhance the clustering of K-means algorithm by supporting a global search in the whole solution 

space. As a consequence, the proposed hybrid technique (ABC + k-means) helped to narrow the search space 

thereby reducing the computation time consumed to compare all images in database with the image query. Also, 

it produced a more efficient clustering for the color and texture features of the images, while at the same time 

supporting a global search in the whole solution space; this also helped improve the accuracy of retrieval.  

After evaluation, the proposed method proved to be more superior to the existing method in terms of the 

precision. The major limitation of this study is that the features of image used in the work are limited to only the 

color and texture description.to tackling this limitation, we can update the proposed system to support shape 

feature in addition to the color and texture features. Also, the use of tools like segmentation, to extract the 

meaningful and desired features should be investigated. Furthermore, we can take in account the human 

interaction availability (relevant feedback) to develop robust CBIR system. 
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