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Abstract 

Fast Generalized Fuzzy c-means clustering algorithm (FGFCM) and its variants are effective methods for image 

clustering. Even though the incorporation of local spatial information to the objective function reduces their 

sensitivity to noise to some extent, they are still lack behind in suppressing the effect of noise and outliers on the edges 

and tiny areas of input image. This article proposes an algorithm to mitigate the disadvantage of FGFCM and its 

variants and enhances the performance of clustering.  The experiments on the synthetic and real images are presented, 

to exhibit the improvements in the image clustering due to the proposed algorithm. 
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1. Introduction 

Clustering is the process of classifying data elements into divisions or clusters, so that data in the same cluster 

are as similar as possible. Image clustering has a spectrum of applications, such as, medical image segmentation 

[1, 2, 3, 4], remote sensing [5], and object recognition [6].  Fuzzy c-mean (FCM) [7] methods is very often used 

for image clustering [8, 9, 10, 4].   

It is able to retain more information from the original image, than the hard clustering methods [11]. But it is very 

sensitive to noise. The reason for this is, in FCM, no spatial information in image context is taken into account. 

Various researcher works have been done by imposing local spatial information into the standard FCM algorithm to 

promote the robustness of image clustering [12, 11, 13, 14].  By incorporating spatial constrains a Sugeno-model 

rule based system was developed by [14]. By introducing spatial penalty on membership functions, the FCM 

objective function was modified by Pham [15]. Further the objective function of FCM was modified in [16, 17].  

These articles have proposed a new variance of FCM, called FCM_S, in which the intensity-inhomogeneity is reduced 

by labeling a pixel, which itself by the influence of the labels of its immediate neighborhood pixels [16]. The 

disadvantage in FCM_S is that it is a time-consuming one, as it calculates the neighborhood term in each iteration 

step. To reduce the computational time of FCM_S, Chen and Zhang have replaced the neighborhood term of the 

objective function of FCM_S with the mean filtered image (in FCM_S1) / median filtered image (in FCM_S2) in 

[18].  

To accelerate the process of image clustering, in [19] enhanced fuzzy c-means (EnFCM) algorithm was proposed.  

Here the point taken into account in EnFCM is that, in general the number of gray scales q is very smaller than the total 

number of pixels N in an input image. By utilizing this fact, the process time of EnFCM can be reduced from O(NcI1) 

to O(qcI2), where I1 and I2 (<I1, generally) are the numbers of iterations in the standard FCM and EnFCM 

method respectively. The outline of EnFCM is different from, that of FCM_S and its variants. Initially, an 

image with linear-weighted sum of both mean filter image and the original image is created. Then, the 

resultant image is segmented on the basis of the gray values histogram instead of individual pixels in the 

image.  

Even though, the computation time of EnFCM is reduced, the objective function of EnFCM still has a 

parameter 𝛼𝛼  as in FCM_S and its variants. The parameter 𝛼𝛼  is manually adjustable to make a balance 

between the original image and its corresponding mean/median-filtered image. Setting the value of 𝛼𝛼 plays 

a vital role in the performance of these clustering methods. As 𝛼𝛼  has to maintain a balance between 

effectiveness of preserving the details and insensitiveness to noise, in general, determining its value is 

tedious. In other words, assigning a value to 𝛼𝛼 is depending on the noise in the input image to some extent. 

As the intensity and types of the noise, are generally unknown in advance, assigning the value of 𝛼𝛼 has 

to be done by trial-and-error method or by experience [17, 18, 19]. In addition to that, the value of 𝛼𝛼 is 

kept unchanged for all neighbor windows over the image.  Thus the spatial information (or local gray level) 

of the image may be overlooked. 
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To overcome the above said defect (of assigning a value to 𝛼𝛼) and at the same time to improve the 

performance of image clustering, fast generalized fuzzy c-means algorithms (FGFCM) frame work has 

been introduced by [20].  In FGFCM, a modified bilateral denoising filter with an automated Gaussian 

distance weight 𝑆𝑆𝑖𝑖𝑖𝑖  was introduced to replace the parameter 𝛼𝛼. 

But, when edge pixels and tiny areas in the input image are corrupted, bilateral filter is not performing 

well in denoising processes.  To improve the FGFCM frame work further, this article proposes a contrast 

limited adaptive histogram equalization fast fuzzy c-means (AHFFCM) algorithm.   

Experimental results on synthetic, real images establish that the proposed algorithm performs 

significantly better than the existing clustering algorithms. The rest of this article is organized into six sections 

as follows: In section 2, an introduction to fuzzy c-means clustering algorithms with spatial constraints (FCM_S, 

FCM_S1 and FCM_S2) are presented. EnFCM, FGFCM, FGFCM_S1 and FGFCM_S2 are briefed in section 3.  An 

introduction to contrast limited local adaptive histogram equalization (CLAHE) and the proposed algorithm is presented in 

section 4. The experimental results are compared with the existing algorithms in section 5.  Conclusions of this 

analysis, scope, and limitations of this proposed contrast limited AHFFCM algorithm are presented in section 6. 

2. Preliminaries 

2.1 Fuzzy c-Means clustering with spatial features (FCM_S) 

In the standard FCM algorithm a modification was proposed by [16, 17].  The influence of neighboring pixels in 

labeling a pixel was considered in these articles. This makes a piecewise-homogeneity in labeling. The objective 

function of FCM_S is modified as  

J
m
= ∑ ∑ uij 

m∥ xj – vi ∥2 N
j=1

C
i=1 + α

�Nj�
 ∑ ∑ uij

m  ∑  ∥ xr – vi ∥2
xr∈Nj

N
j=1

C
i=1    (1) 

where 𝑥𝑥𝑖𝑖 ∈ ℜ𝑃𝑃 is the data set, 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑁𝑁},  𝑢𝑢𝑖𝑖𝑖𝑖 - the degree to which element xj belongs to the cluster i, 

𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0,1] , 𝑖𝑖 =  1, 2, …  𝐶𝐶,   𝑗𝑗 =  1, 2, …  𝑁𝑁 , 𝑣𝑣𝑖𝑖 ∈ ℜ𝑃𝑃  and  𝑉𝑉 = {𝑣𝑣1,𝑣𝑣2, … ,𝑣𝑣𝑐𝑐}  - prototype or centroids of the 

cluster i, N - number of data,  C - number of clusters (2 ≤ C ≤ N), α - the controlling parameter of the 

neighbourhood feature,  �Nj�- the cardinality of the neighbourhood feature, 𝑁𝑁𝑖𝑖 - the set of neighbours of 𝑥𝑥𝑖𝑖, 

𝑥𝑥𝑟𝑟 - the neighbouring data point around 𝑥𝑥𝑖𝑖  falling in the window, with centre  𝑥𝑥𝑖𝑖  , and m - a weighting exponent 

that determines the amount of fuzziness of the resulting classification. 

 The coefficient uij of 𝑥𝑥𝑖𝑖  satisfies the condition that ∑ uij
C
i=1 = 1. Taking the first derivatives of J

m
 with 

respect to uij and vi and equating them to zero, respectively, two necessary conditions for J
m
 are obtained as 

follows: 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 28, No  1, pp 146-165 

149 
 

uij = 
� � xj  -  vi �

2
  +  α

�Nj�
 ∑‖ 𝑥𝑥𝑟𝑟  −  𝑣𝑣𝑖𝑖 ‖

2�

-1
�m - 1�

∑ � �xj - vk�
2
 +  α

�Nj�
∑‖𝑥𝑥𝑟𝑟 − 𝑣𝑣𝑘𝑘‖2�

-1
�m - 1�C

k=1

 ,    (2) 

and vi = 
∑ uij

m� xj + α
�Nj�

∑ 𝑥𝑥𝑟𝑟 �N
j=1

(1 + α)∑ uij
mN

j=1
      (3) 

where the summation of xr runs over Nj . The quantity,  1
�Nj�

∑ xr in the equation (3) is the mean filter image. 

FCM_S takes much time for computation and is sensitive to noise in the input image.  

2.2 Variants in FCM_S 

To reduce the processing time of FCM_S, the set of neighbourhood pixels was replaced by its mean | median in 

the equations (1) - (3).  In [18], the objective function is modified as   

J
m
=∑ ∑ uij

m ∥ xj – vi∥2N
j=1

C
i=1 + α ∑ ∑ uij

m ∥ x�j – vi ∥2N
j=1

C
i=1    (4) 

where x�j represents  the mean in FCM_S1 or median in FCM_S2.  

The corresponding equations for uij and vi are obtained as follows 

uij = 
� � xj  -  vi �

2
  +  α� x�j  -  vi �

2
�

-1
�m - 1�

∑ � �xj - vk�
2
 +  α�x�j - vk�

2
�

-1
�m - 1�C

k=1

 ,      (5) 

and vi = 
∑ uij

m� xj + αx�j�N
j=1

(1 + α)∑ uij
mN

j=1
 ,      (6) 

where  x� j – the mean of the pixels in the local window in FCM_S1 or median of the pixels in the local window in 

FCM_S2. 

To guarantee the gray homogeneity, the concept of FCM_S1 is, to make both the original noiseless image and the 

corresponding mean-filter image get the same clustering result.  But, FCM_S1 is not suitable for the images 

corrupted by salt and pepper noise [18]. This problem is overcome by FCM_S2 algorithm, by using the median-filter 

image instead of the mean-filter image. 

3. Fast Fuzzy c-means clustering algorithms 

3.1 Enhanced Fuzzy c-means clustering (EnFCM) 

In order to reduce the clustering process-time for gray scale images, EnFCM algorithm is proposed by [19].  To 
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speed up, the clustering, a linearly-weighted sum image 𝜉𝜉 is constructed in advance, from the original image and its 

mean filtered image, using the formula: 

                      𝜉𝜉k = 
1

(1 + α) � xk+ 
α

|𝑁𝑁𝑘𝑘| � xr 
xr∈Nk

�      ,                                                                               (7) 

where  𝜉𝜉k - the gray value of the kth pixel of the image 𝜉𝜉, xr - the neighbors of xk, Nk  - the set of neighbors 

falling into a window around xk and 1
|𝑁𝑁𝑘𝑘|

∑𝑥𝑥𝑟𝑟   - the mean filter pixel value.  

The fast clustering [19] is performed on the gray scale histogram of the newly created image 𝜉𝜉. In an analogous way, 

the objective function for fast segmenting is defined as 

                               J
S
= � � 𝛾𝛾luil 

m(𝜉𝜉l – vi)2      ,                                                                      (8) 
q

l=1

C

i=1
 

where  vi  - center of the ith cluster, 𝑢𝑢𝑖𝑖l - fuzzy membership of gray scale value l in cluster i , q - number of the 

gray scale of the input image, which is generally much smaller than N,  𝛾𝛾l - number of the pixels having the gray 

value equal to l, where l=1,..., q.  

Thus,              ∑ 𝛾𝛾l = Nq
l=1       (9) 

For any value of l, under the conditions   ∑ uil
𝑐𝑐
𝑖𝑖=1 = 1, the objective function J

S
 is minimized by utilizing the 

Lagrangian multiplier method. The first derivatives of J
S
 with respect to uil  and vi are obtained and equating them to 

zero.  Then the two necessary conditions for J
S
 are obtained as follows:  

uil = �𝜉𝜉l – vi�
-2

�m – 1�

∑ �𝜉𝜉l – vj�
-2

�m – 1�C
j=1

 , for 𝑖𝑖 = 1,2, … ,𝐶𝐶  and l = 1,2, … , 𝑞𝑞    (10) 

and  vi = 
∑ 𝛾𝛾l.uil

m𝜉𝜉l
q
l=1
∑ 𝛾𝛾l.uil

mq
l=1

   , for 𝑖𝑖 = 1,2, … ,𝐶𝐶       (11) 

The range of gray levels of the input image should be taken into account for the process time reduction; 

generally it is not considered in most of the FCM algorithms. That is why the gray value of the pixels is 

usually stored in 8 bits (in other words 256 levels in total). Thus the number of distinct gray levels q is 

generally considerably smaller than the size (N) of the image. As a resultant, in EnFCM the time 

complexity of clustering is reduced from O(NCI1) to O(qCI2). 

3.2 Limitations of EnFCM 

EnFCM is considerably faster than FCM_S algorithm and its variants. But the quality of the output cluster 

depends on (i) the size of the filter window, (ii) the value of the parameter 𝛼𝛼 , and (iii) the filtering 
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method used.  

3.3 Fast generalized fuzzy c-means algorithms (FGFCM) 

When assigning a value to  𝛼𝛼, the following facts should be considered: 

(1) The location (or spatial relationship) of pixels within the neighborhood window. For example, when the 

size of the filter window is extended from (3×3) to (5×5), 𝛼𝛼  should be assigned to different value for 

different spatial distance from the center of the filter window, otherwise blurred output image would be the 

resultant, 

(2) The gray scale relationship of the pixels within the same window will creep into the local neighborhood 

inhomogeneity of the window.  

So assigning different values to 𝛼𝛼 for different pixels within the window will suppress the influence of the 

outlier and avoid blur in the output image. To accelerate the process of clustering and at the same time 

choosing the value of 𝛼𝛼 by an automated system according to the local (gray value and spatial distance) 

information [20] proposed a fast and robust FCM framework for image segmentation by using modified 

bilateral filter.  

3.4 Bilateral filter  

It is a non-linear denoising filter proposed by [21]. In denoising process of it, the gray scale value at each pixel 

in an image is replaced by an adaptive weighted average of gray values of neighbourhood pixels. This adaptive 

weight is calculated by a Gaussian distribution. The weights depend on Euclidean distance of pixels, and the 

radiometric differences of intensity. It preserves fine features of an image by systematically looping through 

each pixel and by adjusting the weights of the neighboring pixels accordingly. The mathematical formulation for 

bilateral filter is described below: 

3.5 Mathematical model of bilateral filter 

Let  𝑋𝑋 = �𝑥𝑥𝑖𝑖,𝑖𝑖�, (𝑖𝑖 = 1,2, …𝑚𝑚, 𝑗𝑗 = 1,2, …𝑛𝑛)  be the set of data points in the input image and  𝜉𝜉 = �𝜉𝜉𝑖𝑖,𝑖𝑖�,    

(𝑖𝑖 = 1,2, …𝑚𝑚, 𝑗𝑗 = 1,2, …𝑛𝑛) be the output image processed. Here 𝑚𝑚 and 𝑛𝑛 represent the number of pixels does 

exist vertically and horizontally respectively.   

Let the spatial similarity weightage for the pixel 𝑥𝑥𝑖𝑖  (say) need to be calculated. A filter window of size         

(1 + 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝)x(1 + 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝) is placed in such a way that 𝑥𝑥𝑖𝑖 is the central pixel of the filter window, where 

‘pad’ is a positive integer.   

The adaptive weightage 𝑆𝑆𝑖𝑖𝑖𝑖 has been introduced to incorporate both the local spatial weightage�𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖� and 

the local gray level weightage�𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖�.  Its multiplication model is given below: 
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𝑆𝑆𝑖𝑖𝑖𝑖 =  𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖  ×  𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖        (12) 

where 𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖 - local spatial similarity weightage, 𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖  - local gray level similarity weightage, 𝑖𝑖𝑡𝑡ℎ pixel is the 

center of the local neighborhood filter window, and𝑗𝑗𝑡𝑡ℎ pixels are the set of the neighbors falling into a 

local window around the  𝑖𝑖𝑡𝑡ℎ   pixel. 

The local spatial similarity weightage 𝑆𝑆𝑆𝑆_𝑖𝑖𝑖𝑖  is given as follows: 

𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑝𝑝 �
−�  �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�

2+  �𝑞𝑞𝑖𝑖−𝑞𝑞𝑗𝑗�
2  �

𝜎𝜎𝑠𝑠_𝑖𝑖
2 � ,         (13) 

where (𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑖𝑖) - spatial coordinate of the central pixel 𝑥𝑥𝑖𝑖, �𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖� - spatial coordinate of 𝑥𝑥𝑖𝑖 ∈ 𝑁𝑁(𝑥𝑥𝑖𝑖) , and  

𝜎𝜎𝑠𝑠_𝑖𝑖
2  – the scale factor of the spread of 𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖  . 

The local gray level similarity weightage 𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖  is measured as   

   𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖 =  𝑒𝑒𝑥𝑥𝑝𝑝�
− �𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

𝜎𝜎𝑔𝑔_𝑖𝑖
2 � ,      (14) 

where 𝜎𝜎𝑔𝑔_𝑖𝑖 - a function of the local density around the central pixel 𝑥𝑥𝑖𝑖.  

Its value represents the degree of gray scale smoothness in the local neighbourhood window. It is defined 

by 

𝜎𝜎𝑔𝑔_𝑖𝑖 =  �
∑�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�

2

|𝑁𝑁(𝑥𝑥𝑖𝑖)|
,         (15) 

where  𝑥𝑥𝑖𝑖 - the gray value of the central pixel within a special window, 𝑥𝑥𝑖𝑖 ∈ 𝑁𝑁(𝑥𝑥𝑖𝑖) ,  

 |𝑁𝑁(𝑥𝑥𝑖𝑖)|- the cardinality of the neighbourhood pixels, and the summation runs over 𝑁𝑁(𝑥𝑥𝑖𝑖) 

By replacing the parameter 𝛼𝛼 with  𝑆𝑆𝑖𝑖𝑖𝑖  , a new image 𝜉𝜉 is generated as, 

𝜉𝜉i = 
∑  𝑆𝑆𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 j

∑  𝑆𝑆𝑖𝑖𝑗𝑗 j∈Ni
  , for 𝑖𝑖 = 1,2, …𝑁𝑁 and (𝑥𝑥𝑖𝑖 ∈ 𝑁𝑁(𝑥𝑥𝑖𝑖) )      (16) 

where  𝜉𝜉𝑖𝑖 - the gray value of the ith pixel of the new image 𝜉𝜉.  

3.6 FGFCM  

In [20], the value 𝛼𝛼 of FGFCM was replaced with the adaptive weightage 𝑆𝑆𝑖𝑖𝑖𝑖 of bilateral filter (which is an 

automated system) to overcome the two limitations (mentioned in section 3.2) of using a common 𝛼𝛼. As 
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the pixels of an image are arranged in rectangular matrix form, to provide a rectangular filter with equal 

weightage to diagonal and non-diagonal neighbourhood pixels, in [20] the radial distance in numerator of equation 

(13) is modified as  

𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑝𝑝 �
−𝑚𝑚𝑚𝑚𝑥𝑥�  �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�  ,   �𝑞𝑞𝑖𝑖−𝑞𝑞𝑗𝑗�  �

𝜆𝜆𝑠𝑠
�  ,    (17) 

where 𝜆𝜆𝑠𝑠 – the scale factor of the spread of 𝑆𝑆𝑠𝑠_𝑖𝑖𝑖𝑖  , and modified the equation (14)  is of the form, 

𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖 =  𝑒𝑒𝑥𝑥𝑝𝑝 �
− �𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

𝜆𝜆𝑔𝑔×𝜎𝜎𝑔𝑔_𝑖𝑖
2 � ,      (18) 

where 𝜆𝜆𝑔𝑔 - the global scale factor of the spread of 𝑆𝑆𝑔𝑔_𝑖𝑖𝑖𝑖  . 

Finally the output image 𝜉𝜉 is clustered by the equations (8) - (11). 

3.7 Variants in FGFCM 

(i) By assigning the value of 𝑆𝑆𝑖𝑖𝑖𝑖 in the equation (16) as 

𝑆𝑆𝑖𝑖𝑖𝑖 = �1      𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 ,
0      𝑖𝑖𝑖𝑖 𝑗𝑗 ≠ 𝑖𝑖 .       (19) 

 FGFCM algorithm is reduced into a fast version of the standard FCM. 

(ii)  By defining 𝑆𝑆𝑖𝑖𝑖𝑖 in (16) as  

𝑆𝑆𝑖𝑖𝑖𝑖 = �
α

�𝑁𝑁𝑗𝑗�
      𝑖𝑖𝑖𝑖 𝑗𝑗 ≠ 𝑖𝑖 ,

 0         𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 .
        (20) 

FGFCM algorithm reduces into EnFCM. 

(iii) By defining directly 𝑆𝑆𝑖𝑖𝑖𝑖 =  1 for all i and j in FGFCM framework, a variant    FGFCM_S1 was 

derived.          (21) 

(iv)  Another variant FGFCM_S2 was proposed by assigning the value of 𝑆𝑆𝑖𝑖𝑖𝑖   directly in the equation (16) as 

𝑆𝑆𝑖𝑖𝑖𝑖 = � 1     𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑚𝑚𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑜𝑜𝑖𝑖 𝑁𝑁(𝑥𝑥𝑖𝑖) ,
  0     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒                              

     (22) 

When bilateral filter is used, the noise on the edges and in tiny areas of the input image creeps into the edges and 

tiny areas of output image [22, 23]. It influences more on the segmentation accuracy of FGFCM algorithm and 

its variants. This article proposes a mathematical model with bilateral filter and contrast limited adaptive 

histogram equalization (CLAHE) to overcome this problem. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 28, No  1, pp 146-165 

154 
 

4. Contrast limited adaptive histogram equalized fast fuzzy c-means clustering (AHFFCM) 

4.1 Adaptive histogram equalization (AHE)  

AHE is an image processing technique, used to improve the contrast of an image. Unlike the histogram 

equalization, it operates on tiles (a small data area). The contrast of each tile is enhanced, so that the specified 

histogram is well approximated. The AHE has an attitude of amplifying the noise in relatively homogeneous 

regions in the input image. A variant of AHE called contrast limited adaptive histogram 

equalization (CLAHE) suppresses it by limiting the amplification. 

4.2 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

In CLAHE, the process of limiting the contrast is applied to each tile is proposed by [24]. Suppose any of the 

histogram bins have above the specified contrast limit. Then they are clipped and uniformly redistributed to 

other bins, before applying histogram equalization. After that, in order to eliminate artificially induced 

boundaries, the neighboring tiles are combined by bilinear interpolation.  Figure (1) depicts the redistribution of 

the pixels in the clip limit L1 – L2.  

 

Figure (1): In CLAHE re-distribution of the pixels lying above the clip limit L1L2. 

4.3 Bilinear interpolation  

CLAHE is a time consuming process. By introducing interpolation, [24] improved the efficiency of contrast 

enhancement. In this method histogram, cumulative distribution function (CDF) and transformation function are 

calculated for each tile.  The transformation functions are most suitable for the center pixel of the tiles. So the 

rest of the pixels are transformed with respect to the central pixels of the neighboring tiles. The pixels in the 

center part of the image (blue in color in figure (2)) are interpolated bilinearly.  The pixels nearer to the 

boundary of the image (green in color) are interpolated linearly, and pixels close to the corners (red in color) are 

transformed with the transformation function of the corner tile. The coefficients of interpolation determine the 

position of the pixels among the center pixels of neighboring tile, so that the result is continuous as the pixel 

approaches a tile center and this procedure reduces the computation time.  

 

Figure (2): Illustration of bilinear interpolation. 

https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Signal_noise
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 28, No  1, pp 146-165 

155 
 

4.4 Anisotropic diffusion 

It is a technique proposed by [25] to denoise an image  without removing fine features (like edges, lines) of 

input image.  In this technique a family of parameterized images is generated. Here the resulting image is a 

combination of the original input image and a local adaptive filter image of the original image. In other words, 

anisotropic diffusion is a space-variant non-linear transformation of the input image. Here the space-variant 

filter is anisotropic. It depends on the content of the input image. The impulse noise near the edges and other 

structures is approximated in the output image, in different levels of the resulting scale space. In a generalized 

formulation, the local adaptive filter is replaced by a shape adaptive filter. The orientation along the structure 

stretches it accordingly.   

4.5 Mathematical model for the proposed contrast limited AHFFCM algorithm 

The input image is pre-processed, before the clustering as follows: 

(i) The input image is denoised by the bilateral filter defined by the equations (16) – (18) and the new image 

𝜉𝜉 is constructed, 

(ii) another new image H is constructed by applying CLAHE on the image 𝜉𝜉,   

(iii) the output image H is smoothened further by anisotropic diffusion [26, 27], and   

(iv) a new image 𝐴𝐴 is constructed as a convex combination of the 𝜉𝜉 and H, using the following equation  

𝐴𝐴 =  �𝐴𝐴𝑖𝑖𝑖𝑖  | 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐾𝐾 ∗ 𝐻𝐻𝑖𝑖𝑖𝑖 + (1 − 𝐾𝐾)𝜉𝜉𝑖𝑖𝑖𝑖� ,  0 < 𝐾𝐾 < 1,  i= 1, 2 ...n,  j=1, 2…m   (23) 

 The number of tiles is a two-element vector of positive integers:[𝑅𝑅𝑜𝑜 ,𝐶𝐶𝑜𝑜] specifies the number of tile 

rows and tile columns. The total number of image tiles is equal to (𝑅𝑅𝑜𝑜 ∗ 𝐶𝐶𝑜𝑜). It is calculated in such a way that 

each tile size is equal to the size of the neighbourhood window using the following equation: 

𝑅𝑅𝑜𝑜 =  � No.of rows of input image
size of Neighbourhood window 

�       and 

 𝐶𝐶𝑜𝑜 =  � No.of Columns of input image
size of Neighbourhood window 

�      (24) 

where ⌊f⌋ denotes the integer part of f . 

Note that in the proposed method the number of bins in CLAHE is fixed as (2*C-1).  

4.6 Working rule for the proposed clustering method 

Step 1. Initializing the following parameters: 

(i)   Number of clusters C. 

(ii)   Assign 𝜀𝜀 > 0 to a very small value.  

(iii) Initialize prototype centers by random numbers.   

https://en.wikipedia.org/wiki/Image_noise
https://en.wikipedia.org/wiki/Impulse_function
https://en.wikipedia.org/wiki/Scale_space
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Step 2. Calculate the local adaptive weightage 𝑆𝑆𝑖𝑖𝑖𝑖   by, using the equation (12) over the image.  

Step 3. Construct a linearly-weighted summed image   𝜉𝜉 = {𝜉𝜉1 , 𝜉𝜉2 , … , 𝜉𝜉𝑁𝑁} , here 𝜉𝜉𝑖𝑖   is computed using the 

equation (16). 

Step 4. Construct a new image H by applying CLAHE (with 2*C-1 bins) from  𝜉𝜉. 

Step 5. Apply anisotropic diffusion on H. 

Step 6. Construct a new image A, using the equation (23) 

Step 7. Update the partition membership matrix [𝑢𝑢𝑖𝑖𝑖𝑖] using the equation (10). 

Step 8. Update the cluster centers {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑐𝑐},  using the equation (11). 

Step 9. Repeat the steps 5 and 6, until the termination condition 

   |𝑉𝑉𝑜𝑜𝑖𝑖𝑜𝑜 − 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛| < 𝜀𝜀  is satisfied, 

 where 𝑉𝑉𝑜𝑜𝑖𝑖𝑜𝑜   and 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛  are the set of prototype centers obtained in consecutive iterations.  

5. Results and analysis 

This section compares the performance of the AHFFCM with the existing six standard clustering algorithms 

FCM_S1, FCM_S2, FGFCM, EnFCM, FGFCM_S1, and FGFCM_S2 on synthetic, real and simulated MR images 

presented in [20].  In all these experiments the parameters are set as follows:  m = 2, Є =10−5. The algorithm is 

tested on the images corrupted by ‘Gaussian’, ‘Salt and Pepper’ and ‘Mixed’ noises separately.  The results are 

evaluated by calculating its Segmentation Accuracy (SA) and Classification errors. 

5.1 Segmentation Accuracy (SA) 

It is calculated as [28, 29] 

Sij= 
Aij∩ Aref j

Aij∪ Aref j
 ,      (25) 

where Aij refers the set of pixels of the jth cluster found by the ith algorithm, and Aref j represents the set of pixels 

of the jth cluster in the reference (original) segmented image. 

5.2 Fixing the noise level and distribution, in mixed noise 

When the mixed noise is used as a combination of the ‘Gaussian’ and “Symmetric 𝛼𝛼-Stable  (𝑆𝑆𝛼𝛼𝑆𝑆)’ 

noises, the combination of mixing the noises is given by the equation  
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   𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑆𝑆 + (1 − 𝑃𝑃)𝐺𝐺,  

where  S - the Symmetric 𝛼𝛼 -Stable noise, with location 0 and range 𝛾𝛾𝑆𝑆, and   

 G - the Gaussian noise with mean zero and variance 𝜎𝜎𝐺𝐺2  

Thus the characteristic function 𝜑𝜑(𝑜𝑜) of 𝑃𝑃𝑃𝑃 is formulated by [30] as, 

𝜑𝜑(𝑜𝑜) = 𝑒𝑒𝑥𝑥𝑝𝑝 �𝑗𝑗𝑃𝑃𝜂𝜂𝑜𝑜 − (1 − 𝑃𝑃)2 𝜎𝜎𝐺𝐺
2

 𝑜𝑜2 − 𝑃𝑃𝛼𝛼 𝛾𝛾𝑆𝑆|𝑜𝑜|𝛼𝛼�    ,    𝑃𝑃 𝜖𝜖 [0,1],    (26) 

where 𝛼𝛼 - the parameter, controlling the impulsive distribution as [30],  j = 2
(2+𝜋𝜋)

  .  

5.3 Results on synthetic image 

The clustering efficiency of the above algorithms are compared by applying it, on a synthetic input image 

of size (128x128) pixels, with two classes of gray scale values 0 and 90. Three types of experiments are 

conducted on synthetic image. 

5.3.1 Experiment 1 

 Here the image is corrupted at various levels in salt and pepper, Gaussian, and mixed noises separately. 

So, totally seven algorithms are applied on them. The parameters are fixed as  𝜆𝜆𝑔𝑔 = 3 (the optimal value 

obtained in [20], C=2, �Nj�=8 (a (3×3) neighbourhood window is placed on each pixel), K=0.25, clip limit =3x10-3. 

At the same time in FCM_S1, FCM_S2 and EnFCM, the value of 𝛼𝛼 is fixed at 3.8 (the optimal value obtained 

in [18].  

Results on synthetic image corrupted with mixed noise 

The clustering results on synthetic test image corrupted with mixed noise are presented in figure (3). The mixed 

noise used is as a combination of ‘Gaussian white noise N(0,100)’ and ‘symmetric 𝛼𝛼-stable noise (𝛼𝛼 = 

0.7)’ with 0 mean and unit dispersion.  

The clustering outputs are presented for visual comparison. Performances of FCM_S1, FCM_S2 and 

EnFCM are affected by the noise to different extents. It shows explicitly, that these algorithms are lacking 

behind in robustness to mixed noise. FGFCM_S1 removes most of the noises. The proposed AHFFCM 

algorithm produces comparatively better output.  

Quantitative comparison of the algorithms on synthetic image  

The following table (1) compares the SA of the existing six algorithms with the proposed contrast limited AHFFCM 

on the synthetic images corrupted individually, by different noises, in different levels from 3% to 15%.  
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Figure 3: Cluster results on synthetic image. (a) Original image (b) The image with mixed noise. Result of  (c) 

FCM_S1 (d) FCM_S2, (e) EnFCM, (f) FGFCM_S1, (g) FGFCM_S2, (h) FGFCM, (i) AHFFCM. 

Table 1: SA % of seven algorithms on synthetic image 

Noise Type 
Existing Algorithms  

Proposed 

Algorithm 

FCM_S1 FCM_S2 EnFCM FGFCM_S1 FGFCM_S2 FG_FCM AHFFCM 

Gaussian 3% 98.65 98.20 98.74 98.71 97.86 98.70 99.67 

Gaussian 5% 94.73 94.00 94.90 95.67 92.56 95.10 98.98 

Gaussian8% 89.49 88.23 89.77 91.10 86.80 90.67 98.61 

salt &pepper 5% 97.51 98.43 97.51 98.84 99.98 99.78 99.99 

salt &pepper 10% 95.76 97.60 95.76 97.55 100.00 99.63 99.93 

salt &pepper 15% 90.11 95.38 90.11 93.07 99.91 98.94 99.78 

mixed noise 

α=0.3 

93.80 97.24 95.34 95.81 99.65 97.75 99.74 

mixed noise 

α=0.5 

98.68 99.27 99.09 99.45 99.97 99.84 99.98 

mixed noise 

α=0.7 

99.38 99.62 99.40 99.69 100.00 99.91 99.93 
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• In presence of Gaussian noise, among the existing six algorithms, FGFCM_S1 produces a better output. The 

proposed AHFFCM algorithm produces a better output than that of FGFCM_S1. 

• In the presence of salt and pepper noise among the existing six algorithms, FGFCM_S2 produces a better 

output. AHFFCM algorithm produces comparable efficiency to FGFCM_S2 in the presence of salt & 

pepper noise 

• In presence of mixed noise, among the existing six algorithms, FGFCM_S2 produces a better output. The 

proposed AHFFCM algorithm produces a better output than that of FGFCM_S2 up to α = 0.5. 

From this results, it is observed that the AHFFCM algorithm relatively achieve a trade-off among the three types of 

noises.  It is relatively suitable for clustering images when the image is corrupted by unknown or Gaussian or mixed 

noises.   

5.3.2 Experiment 2 

The crucial parameters in the clustering algorithms are noise dependent.  So, it trivially influences the output.  

In the proposed AHFFCM and existing FGFCM algorithms 𝜆𝜆𝑔𝑔 is a crucial parameter, where as in FCM_S1, 

FCM _S2, and in EnFCM 𝛼𝛼 is the crucial parameter.  So, these parameters are suitably adjusted to improve the 

performance.  

The objective of the experiment 2 on synthetic image is, to study the effect of various values of the crucial 

parameters 𝜆𝜆𝑔𝑔 and 𝛼𝛼 in clustering efficiency. In this experiment, 𝜆𝜆𝑔𝑔 is assigned to the values 0 through 10 in 

steps of 1 where as 𝛼𝛼 is assigned to the values 0 through 3 in steps of 0.25. The synthetic image in figure 3(a) 

is corrupted by three types of noises separately and the experiment is conducted on them.  The graphical 

illustrations are in figure (4). It shows, that the variations of the number of misclassified pixels in 

FCM_S1, FCM_S2, EnFCM, and FGFCM, depends on the variation of the parameters 𝜆𝜆𝑔𝑔 and  𝛼𝛼. From 

figure 4(a) - 4(c), it is observed, that on all the three types of noises the misclassification of the proposed 

AHFFCM algorithm is almost independent of the choice of  𝜆𝜆𝑔𝑔 . Its performance is comparatively better 

than the existing algorithms.  

5.3.3 Experiment 3 

The objective of this experiment 3 on synthetic image is to study the effect of various values for the parameter 𝐾𝐾 

(in the equation (23)) in clustering efficiency. In this experiment 𝐾𝐾 is assigned values 0 through 0.8 in steps 

of 0.1 in AHFFCM. The synthetic image in figure 3(a) is corrupted by three types of noises separately and the 

experiment is conducted on them.  The results are presented graphically in figure 4(d). It reveals, that the 

variation of clustering efficiency in AHFFCM dependents on the variation of the parameter K, and the 

best performance is produced when K=0.25. 

5.4 Results on real images corrupted by noises 

5.4.1 Results on real image ‘eight’ with mixed noise using (3×3) neighborhood window  
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To test the clustering efficiency of the algorithm, it is applied on a real image ‘eight’ [31] of size (308 x 242) 

contaminated simultaneously by Gaussian white noise N (0,180) with unit dispersion, zero mean and symmetric 𝛼𝛼 

stable (𝑆𝑆𝛼𝛼𝑆𝑆) noise with 𝛼𝛼 = 0.9, K= (1/No. of Bins), clip limit = 3x10-3. To compare the experimental results, the 

crucial parameters are set (as specified in [20] as: 𝛼𝛼=8 in FCM_S1, FCM_S2, En-FGM, and 𝜆𝜆𝑔𝑔=2 in FGFCM and 

AHFFCM. For all the algorithms take C=3. 

 

Figure 4: Classification errors against the parameters 𝜆𝜆𝑔𝑔 and 𝛼𝛼 on the synthetic image corrupted separately with        

(a) Gaussian, (b) salt & pepper (c) mixed noise and (d) Classification errors against the parameter  𝐾𝐾. 

The segmenting results of figure 5(b) are presented in figs.5(c) – 5(h) and the segmentation accuracy are compared 

in Table (2).  From the results it is observed that all these algorithms are affected by the noise at different levels 

separately.  The proposed algorithm performs better than that of the rest of the algorithms. 

 

Figure 5: Segmentation results on real image ‘eight’ corrupted with mixed noise. (a) Original image. (b) Noisy 

image. Outcomes by applying (c) FCM_S1. (d) FCM_S2. (e) EnFCM. (f) FGFCM_S1. (g) FGFCM_S2. (h) FGFCM (i) 

AHFFCM algorithms respectively. 
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In an analogous way, the AHFFCM algorithm is applied on the image ‘eight’ corrupted separately by Gaussian noise 

and salt & pepper noise and compared with the results of the existing six algorithms.  

5.5 Results using (5×5) neighborhood window on ‘brain MRI’, corrupted by mixed noise 

For the comparative study of the proposed algorithm, a bigger size neighbourhood window on a real magnetic resonance 

image (MRI) of brain is chosen.  The quantitative comparison of the existing six algorithms in [20] is used for the 

comparative study of the proposed algorithm.   

To test the effect of using relatively bigger local window in the algorithm, it is applied on a brain MRI with a 

neighbourhood window of size (5×5) instead of the size (3×3). The real brain MRI of size (256 × 256) pixels, 

contaminated simultaneously by Gaussian white noise N(0,180) with unit dispersion, zero mean and by symmetric 𝛼𝛼-

stable (𝑆𝑆𝛼𝛼𝑆𝑆, α = 0.9) noise.  The clustered results of the seven algorithms are given in figure (6). To compare the 

results, the crucial parameters are set (as specified in [20] as C = 3, 𝜆𝜆𝑔𝑔= 0.5, 𝛼𝛼 = 5 and �Nj�= 24, clip limit = 3 x 

10-3.  K= (1/ No. of bins). From the results, it is observed, that when the window size is increased to (5×5), the 

output images of FCM_S1, FCM_S2, EnFCM, FGFCM_S1 and FGFCM_S2 are blurred heavily at different levels. But 

the blurring effect is reduced significantly, while applying FGFCM and AHFFCM algorithms. The less blurring 

area, while applying the proposed algorithm is encircled in figure 6(i). Thus, for a bigger neighbourhood window on 

real image, the clustering efficiency of AHFFCM algorithm is remarkable 

 

Figure 6: Clustering results obtained by using (5×5) neighborhood windows on a brain MRI: (a) Original image. (b) 

Corrupted image with mixed noise. Clustered results of (c) FCM_S1, (d) FCM_S2, (e) EnFCM, (f) FGFCM_S1, (g) 

FGFCM_S2, (h) FGFCM (i) AHFFCM 
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Table 2: Segmentation Accuracy (SA) of the seven algorithms corresponding to figs.(5) and (6) 

 
Cluster 

No. 

Existing Algorithms  
Proposed 

Algorithm 

FCM_S1 FCM_S2 EnFCM FGFCM_S1 FGFCM_S2 FGFCM AHFFCM 

SA
 %

  

Fi
gu

re
 

5(
b-

g)
 

1 67.41 66.00 67.53 67.52 63.96 71.26 76.04 

2 39.75 38.71 38.02 38.02 37.49 43.82 61.04 

3 97.66 97.89 96.98 96.98 98.02 98.30 98.98 

Fi
gu

re
 

6(
c-

h)
 

1 99.58 99.88 99.59 99.40 99.85 99.88 99.82 

2 70.80 70.68 69.63 65.08 68.68 78.17 88.66 

3 92.53 92.28 92.15 91.10 91.85 94.37 97.55 

5.6 Comparisons of processing time of clustering 

In this section, the computational complexity of the seven algorithms, and experimental investigation of their practical 

acceleration for image clustering are analyzed. The fast and the standard segmentation methods of FCM are applied 

on the after-filtered images 𝐴𝐴1 ,  𝐴𝐴2 , 𝐴𝐴3 ,𝐴𝐴4  and 𝐴𝐴5. The images 𝐴𝐴1 ,  𝐴𝐴2 , 𝐴𝐴3 and 𝐴𝐴4  are generated from the 

simulated brain MRI, given in fig 7(a). For that the equation (16) is employed, using the various algorithms of 

𝑆𝑆𝑖𝑖𝑖𝑖  given in the equations (20) (21) (22) and (12). 𝐴𝐴5  is generated using equation (24). Here the crucial 

parameters are set as C=8, 𝛼𝛼=0.8 in the equation (20) and 𝜆𝜆𝑔𝑔=1 in the equation (12), respectively. 

 

Figure 7: Segmentation results on simulated brain MRI. (a) Original T1-weighted image. 

         (b) The Filtered image 𝐴𝐴5. (c) Using FCM for  𝐴𝐴5 (d) Using fast FCM for 𝐴𝐴5 

The test image used is a T1-weighted [32] simulated MRI of 1 mm thickness with (181 x181) pixels.  The noise level is 

set as 3% without any gray inhomogeneity.  The sequence number of the slice in axial plane is 91.  Segmentation 

process has been performed on the filtered image 𝐴𝐴5 using FCM and fast FCM algorithms. The results are depicted 

in figure7(c) and 7(d) respectively.  Similar results can be obtained by using both segmentation methods on the 

images 𝐴𝐴1, A2 , A3  and A4 respectively.  
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Table 3: Comparison of computational complexity between fast segmentation and FCM algorithms 

Filter 

images 

No. of  Iteration Running Time (in sec) 
FCM Fast FCM FCM Fast FCM 

A1 147 181 2.1553 0.1392 
A2 113 205 1.7642 0.1533 
A3 210 81 3.2209 0.0949 
A4 173 162 2.5429 0.1268 

𝐀𝐀𝟓𝟓 212 58 3.1389 0.0631 

The computer used for segmentations has the following configurations: processor= Intel Core i5, CPU: 3.10 GHz, 

RAM = 4 G.B.  Operating system:  windows 7.0 (32 bit), Software: Matlab 11a.  From Table (3), it is observed that 

the number of iterations of fast segmentation is fewer than FCM. The time taken for computation is drastically 

reduced due to the less number of gray levels (256) rather than the image size N (181 x181). When AHFFCM is used, 

the speed of clustering is comparatively higher than that of the existing methods. Moreover the segmentation accuracy 

is also higher than rest of the available methods.  

6. Conclusion, scope and limitations 

From the results presented, it is seen that AHFFCM performs comparatively better than FGFCM and other fast 

version of FCM algorithms. The results presented in this article reveal the fact, that the AHFFCM algorithm is 

appropriate. It is fast, insensitive to various types of noises and suitable for large-size gray images.  Trilateral 

filter [33] can be used in denoising processes to preserve edges in color images in clustering.  
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