

International Journal of Sciences: Basic and Applied Research (IJSBAR)

International Journal of
Sciences:
Basic and Applied
Research
ISSN 2307-4531
(Print & Online)
Published by:
IRRER

ISSN 2307-4531 (Print & Online)

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

On Certain Types of Affine Motion

Fahmi Y. A. Qasem^{a*}, Abdalstar A. M. Saleem^b

^aDepartment of Mathematics , Faculty of Education-Aden, University of Aden, Khormaksar , Aden, Yemen ^bDepartment of Mathematics , Faculty of Education-Yafea, University of Aden

> ^aEmail: Fahmiyassen@gmail.com ^bEmail: Abdulsstar@yahoo.com

Abstract

In the present paper, the affine motion and the projective motion generated by recurrent in a general Finsler space is studied, the necessary and sufficient conditions for this projective motion to be affine motion are obtained, projective motion is studied in recurrent Finsler space.

Keywords: Finsler space; affine motion; projective motion; hv-curvature tensor U^i_{jkh} ; U- recurrent space; U-birecurrent space; projective recurrent space.

1. Introduction

K. Takano and T. Imai [15] studied certain types of affine motion generated by contra, concurrent, special concircular, recurrent, concircular, torse forming and birecurrent vector fields in a non-Riemannian space of recurrent curvature and ended with some remarks on the affine motion in a space with recurrent curvature. K. Takano and T. Imai [15], P. N. Pandey and V. J. Dwivedi [8] further wrote a series of three papers on the existence affine motion in a non-Riemannian space of recurrent curvature and obtained various interesting results. K. Takan and T. Imai [15] and S. P. Singh [14] discussed the affine motion in a birecurrent non-Riemannian space.

* Corresponding author.

Several results obtained by these authors were extended to Finsler spaces of recurrent curvature by R. B. Misra [6], F. M. Meher [5], A. Kumar ([1], [2], [3]), A. Kumar, H. S. Shukla and R. P. Tripathi [4], P. N. Pandey, F. Y. A. Qasem and Suinta Pal [9], S. P. Singh [13] and others. K. Yano [16] defined the normal projective connection coefficients Π_{jk}^i by

(1.1)
$$\Pi_{ik}^{i} = G_{ik}^{i} - y^{i} G_{ikr}^{r}.$$

The connection coefficients Π^i_{jk} is positively homogeneous of degree zero in y^i 's and symmetric in their lower indices and the normal projective tensor N^i_{jkh} is defined as follows [16]:

$$(1.2) N_{jkh}^i = \Pi_{jkh}^i + \Pi_{rjh}^i \Pi_{ks}^r y^s + \Pi_{rh}^i \Pi_{kj}^r - k|h|,$$

where

$$\Pi^{i}_{ikh} = \dot{\partial}_i \Pi^{i}_{kh} .$$

 Π_{jkh}^{i} constitutes the components of a tensor.

Remark 1.1. K. Yano [16] denoted the tensor Π^i_{jkh} by the curvature tensor U^i_{jkh} .

The curvature tensor U_{jkh}^{i} is defined by

(1.4)
$$U_{jkh}^{i} = G_{jkh}^{i} - \frac{1}{n+1} \left(\delta_{j}^{i} G_{jkr}^{r} + y^{i} G_{jkhr}^{r} \right).$$

is called *hv-curvature tensor*, where G_{jkh}^{i} is connection of hv-curvature tensor. Also this tensor satisfy the following:

$$(1.5) U_{jkh}^i y^j = 0.$$

We also have the following commutation formulae [12]

$$(1.6) \qquad (\dot{\partial}_i \mathcal{B}_k - \mathcal{B}_k \dot{\partial}_i) X^i = U^i_{ikh} X^h - (\dot{\partial}_r X^i) U^r_{ikh} y^h$$

and

$$(1.7) \mathcal{B}_k \mathcal{B}_h T_j^i - \mathcal{B}_h \mathcal{B}_k T_j^i = T_j^r N_{rkh}^i - T_r^i N_{jkh}^r - (\dot{\partial}_r T_j^i) N_{skh}^r y^s.$$

A Finsler space is called recurrent Finsler space and birecurrent Finsler space, respectively, denoted them by $UR-F_n$ and $UBR-F_n$, respectively, if it's hv- curvature tensor U^i_{jkh} satisfies ([10], [11])

$$(1.8) \mathcal{B}_m U_{ikh}^i = \lambda_m U_{ikh}^i, U_{ikh}^i \neq 0$$

and

$$(1.9) \mathcal{B}_l \mathcal{B}_m U^i_{jkh} = a_{ml} U^i_{jkh}, U^i_{jkh} \neq 0,$$

where λ_m and α_{lm} are non-zero covariant vector and tensor fields.

Let us consider a transformation

$$(1.10) \bar{x}^i = x^i + \varepsilon \, v^i(x^j),$$

where ε is an infinitesimal constant and $v^i(x^j)$ is called *contravariant vector filed* independent of y^i . The transformation represented by (1.10) is called an *infinitesimal transformation*. Also this transformation gives rise to a process of differentiation called

Lie-differentiation.

Let X^i be an arbitrary contravariant vector filed. Its Lie-derivative with respect to the above infinitesimal transformation is given by ([12], [16])

$$(1.12) L_{\nu}X^{i} = \nu^{r}\mathcal{B}_{r}X^{i} - X^{r}\mathcal{B}_{r}\nu^{i} + (\dot{\partial}_{r}X^{i})\mathcal{B}_{s}\nu^{r}\gamma^{s},$$

where the symbol L_v stands for the Lie- differentiation. In view of (1.12), Lie-derivatives of y^i and v^i with respect to above infinitesimal transformation vanish, i.e.

(1.13)
$$a) L_n y^i = 0$$

and

$$b)\,L_v v^i = 0.$$

Lie-derivative an of arbitrary tensor T_i^i with respect to the above infinitesimal transformation is given by

$$(1.14) L_v T_i^i = v^r \mathcal{B}_r T_i^i - T_i^r \mathcal{B}_r v^i + T_r^i \mathcal{B}_i v^r + (\dot{\partial}_r T_i^i) \mathcal{B}_s v^r y^s.$$

Lie-derivative of the normal projective connection parameters Π_{jk}^i is given by [16]

$$(1.15) L_v \Pi_{jk}^i = \mathcal{B}_j \mathcal{B}_k v^i - U_{rjk}^i y^s \mathcal{B}_s v^r + N_{rjk}^i v^r.$$

The commutation formulae for the operators \mathcal{B}_k , $\dot{\partial}_i$ and L_v are given by

$$(1.16) (L_v \mathcal{B}_k - \mathcal{B}_k L_v) X^i = X^h L_v \Pi^i_{kh} - (\dot{\partial}_r X^r) L_v \Pi^i_{kh} \gamma^h$$

and

$$(1.17) \qquad (\dot{\partial}_i L_v - L_v \dot{\partial}_i) X^i = 0.$$

where X^i is a contravariant vector filed.

The necessary and sufficient condition for the transformation (1.10) to be a motion, affine motion and projective motion are respectively given by

$$(1.18) L_{v}g_{ij} = 0,$$

$$(1.19) L_{\nu}\Pi_{kh}^{i} = 0$$

and

$$(1.20) L_{\nu}\Pi^{i}_{jk} = \delta^{i}_{j}P_{k} + \delta^{i}_{k}P_{j},$$

where P_i is defined as

$$(1.21) P_i = \dot{\partial}_i P_i,$$

P being a scalar, positively homogeneous of degree one in y^i .

It is well know that every motion is affine motion and every affine motion is a projective motion. A projective motion need not be affine motion.

2. Affine motion

Let an infinitesimal transformation (1.10) be generated by a vector filed $v^i(x^j)$. The

infinitesimal transformation is an affine motion if and if Lie – derivative of the normal

projective connection parameters Π^i_{jk} with respect to infinitesimal transformation (1.10) vanishes identically, i.e. $L_v \Pi^i_{jk} = 0$.

The vector filed $v^i(x^j)$ is called *contra*, *concurrent*, *special concircular*, *recurrent* and *torse forming* according as it satisfies

$$(2.1) a) \mathcal{B}_k v^i = 0,$$

b)
$$\mathcal{B}_k v^i = c \delta_k^i$$
, c being a constant,

c)
$$\mathcal{B}_k v^i = \rho \delta_k^i$$
, ρ is not a constant,

$$d)\mathcal{B}_k v^i = \mu_k v^i$$

and

$$e) \mathcal{B}_k v^i = \mu_k v^i + \rho \delta_k^i$$

respectively. The affine motion generated by above vectors is called *contra affine motion, concurrent affine motion, special concircular affine motion, recurrent affine motion* and *torse forming affine motion, respectively.*

3. Contra Affine Motion

Let us consider an infinitesimal transformation generated by contra vector $v^i(x^j)$ characterized by (2.1a).

Differentiating (2.1a) covariantly with respect to x^{j} in the sense of Berwald, we get

$$(3.1) \mathcal{B}_i \mathcal{B}_k v^i = 0.$$

Taking skew-symmetric part of (3.1), using the commutation formula exhibited by (1.7) for v^i , we get

$$(3.2) N_{hik}^{i} v^{h} = 0.$$

Using (3.1), (2.1a) and (3.2) in (1.15), we get

(3.3)
$$L_v \Pi_{jk}^i = 0.$$

Hence the infinitesimal transformation considered is an affine motion.

Thus, we conclude

Theorem 3.1. Every contra vector generates an affine motion in a Finsler space.

Thus, we conclude

Corollary 3.1. Every contra vector generates a projective motion.

Theorem 3.2. In an $UR - F_n$, if any contra vector $v^i(x^j)$ generates an infinitesimal transformation, it must be orthogonal to the recurrence vector.

proof

Let us consider an $UR - F_n$ and a contra vector $\mathbf{v}^i(\mathbf{x}^j)$ characterized by (1.8) and (2.1a), respectively. Then, the hv-curvature tensor U^i_{jkh} satisfies $L_\nu U^i_{hjk} = 0$.

In view of (1.14) and (2.1a), we get

$$(3.4) L_v U_{jkh}^i = v^r \mathcal{B}_r U_{jkh}^i.$$

Differentiating (3.3) partially with respect to y^h , we get

$$(3.5) \dot{\partial}_h L_v \Pi^i_{ik} = 0.$$

Taking skew-symmetric part of (3.5), using the commutation formula exhibited by (1.17) for Π_{jk}^i , (3.5) in view of remark 1.1., we get

(3.6)
$$L_v U_{hik}^i = 0.$$

In view of (3.4) and (3.6), we get

$$(3.7) v^r \mathcal{B}_r U^i_{ikh} = 0.$$

Transvecting (1.8) by v^m and using (3.7), we get

$$(3.8) v^m \lambda_m = 0,$$

where $U_{jkh}^i \neq 0$.

Thus, we see that the contra vector $v^i(x^j)$ is orthogonal to the recurrence vector λ_m .

Theorem 3.3. In an UBR $-F_n$, if any contra vector $v^i(x^j)$ generates an infinitesimal transformation, then the recurrence tensor a_{lm} satisfies

(3.9) a)
$$a_{ml}v^m = 0$$
 and b) $v^m a_{lm} = 0$.

proof

Let us consider an $UBR - F_n$ and a contra vector $\mathbf{v}^i(\mathbf{x}^j)$ characterized by (1.9) and (2.1a), respectively. Then, the hv-curvature tensor U^i_{jkh} satisfies $L_\nu U^i_{hjk} = 0$.

Differentiating (3.7) covariantly with respect to x^l in the sense of Berwald, using (2.1a) and (1.9), we get

(3.10)
$$a_{ml}v^m = 0$$
,

where $U_{jkh}^i \neq 0$, it's the equ. (3.9a).

Taking skew-symmetric part of (3.10), we get

$$(3.11) (a_{ml} - a_{lm})v^m = 0,$$

where $U_{jkh}^i \neq 0$.

Using (3.9a) in (3.11), we get

$$(3.12) a_{lm}v^m = 0$$

which its equ. (3.9b).

4. Concurrent Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^i(x^j)$ characterized by (2.1b).

Differentiating (2.1b) covariantly with respect to x^j in the sense of Berwald, we get (3.1). Taking skew-symmetric part of (3.1), using the commutation formula exhibited by (1.7) for v^i , we get (3.2). Using (3.1), (2.1a) and (3.2) in (1.15), we get (3.3). Hence the infinitesimal transformation considered is an affine motion. Thus, we conclude

Theorem 4.1. If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the transformation is necessarily an affine motion.

In view of (3.6) and (1.14), we get

$$(4.1) v^r \mathcal{B}_r \mathcal{U}^i_{jkh} - \mathcal{U}^r_{jkh} \mathcal{B}_r v^i + \mathcal{U}^i_{rkh} \mathcal{B}_j v^r + \mathcal{U}^i_{jrh} \mathcal{B}_k v^r + \mathcal{U}^i_{jkr} \mathcal{B}_h v^r + (\dot{\partial}_r \mathcal{U}^i_{ikh}) \mathcal{B}_s v^r y^s = 0.$$

Using (2.1b) in (4.1), we get

$$(4.2) v^m \mathcal{B}_m \mathbf{U}_{ikh}^i + 2c \mathbf{U}_{ikh}^i = 0.$$

Differentiating (4.2) covariantly with respect to x^l in the sense of Berwald and using (2.1b), we get

$$(4.3) v^m \mathcal{B}_l \mathcal{B}_m U_{ikh}^i + 3c \mathcal{B}_l U_{ikh}^i = 0.$$

Thus, we conclude

Theorem 4.2. If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the hv-curvature tensor U^i_{jkh} satisfies (4.2) and (4.3).

If the space an $UR - F_n$, which is characterized by (1.8), is symmetric and denoted by $SUR - F_n$. Thus, the $SUR - F_n$ is characterized by

$$(4.4) \mathcal{B}_m U_{jkh}^i = 0.$$

In view of (4.2) and (4.4), we get $cU_{jkh}^i = 0$, which implies $U_{jkh}^i = 0$ for $c \neq 0$.

Thus, we see that a symmetric recurrent space admitting an infinitesimal transformation generated by a concurrent vector is necessarily flat*.

Thus, we conclude

Corollary 4.1. A non-flat $SUR - F_n$ does not admit any infinitesimal transformation generated by a concurrent vector.

If the space $UBR - F_n$, which is characterized by (1.9), is bisymmetric and denoted by

 $SUBR - F_n$. Thus, the $SUBR - F_n$ is characterized by

$$(4.5) \mathcal{B}_l \mathcal{B}_m U_{ikh}^i = 0.$$

In view of (4.2), (4.3) and (4.5), we get $cU^i_{jkh} = 0$, which implies $U^i_{jkh} = 0$ for $c \neq 0$. Thus, we see that a bisymmetric space admitting an infinitesimal transformation generated by a concurrent vector is necessarily flat.

Thus, we conclude

Corollary 4.2. A non-flat $SUBR - F_n$ does not admit any infinitesimal transformation generated by a concurrent vector.

5. Special Concircular Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^i(x^j)$ characterized by (2.1c).

Hence, the infinitesimal transformation considered is an affine motion, we get $L_{\nu}\Pi_{jk}^{i}=0$.

In view of (1.15), (1.19), (2.1c), (1.5) and (3.2), we get

$$(5.1) \mathcal{B}_i \rho \delta_k^i = 0.$$

Transvecting (5.1) by y^k and using the fact $(\mathcal{B}_j y^k = 0)$, we get

$$(5.2) y^i \mathcal{B}_i \rho = 0.$$

Transvecting (5.2) by y_i and using the fact $(y^i y_i = F^2)$, we get

$$(5.3) F^2 \mathcal{B}_i \rho = 0$$

which implies $\mathcal{B}_i \rho = 0$, a contradiction

Thus, we conclude

Theorem 5.1. A Finsler space does not admit any special concircular affine motion

A Finsler space with vanishing hv-curvature tensor is called *flat*.

6. Recurrent Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^i(x^j)$ characterized by (2.1d)

Differentiating (2.1d) covariantly with respect to x^{j} in the sense of Berwald and using (2.1d), we get

$$(6.1) \mathcal{B}_i \mathcal{B}_k v^i = (\mathcal{B}_i \mu_k + \mu_i \mu_k) v^i.$$

In view of (1.15), (6.1), (2.1d) and putting $\mu = \mu_h y^h$, we get

(6.2)
$$L_{v}\Pi_{ik}^{i} = (\mathcal{B}_{i}\mu_{k} + \mu_{i}\mu_{k})v^{i} - \mu U_{rik}^{i}v^{r} + N_{rik}^{i}v^{r}$$

Differentiating (2.1d) partially with respect to y^{j} , we get

$$\dot{\partial}_i \mathcal{B}_k v^i = \dot{\partial}_i (\mu_k v^i)$$

Transvecting (4.1) by y^j , using the fact ($\mathcal{B}_r y^i = 0$), (1.5), (2.1d) and putting $\mu = \mu_t y^t$, we get

$$(6.4) U_{rkh}^i v^r = 0,$$

where $\mu \neq 0$.

Taking skew-symmetric part of (6.3), using the commutation formula exhibited by (1.6) for v^i and (6.4), we get

$$(6.5) \dot{\partial}_i(\mu_k v^i) = 0.$$

Transvecting (6.5) by y^k and putting $\mu = \mu_s y^s$, we get

$$(6.6) \mu_i = \dot{\partial}_i \mu.$$

Taking skew-symmetric part of (6.1) and using the commutation formula exhibited by (1.7) for v^i , we get

$$(6.7) N_{rjk}^i v^r = (\mathcal{B}_j \mu_k + \mu_j \mu_k) v^i.$$

In view of (1.19), (6.4) and (6.7), equ. (6.2) becomes

$$(6.8) \mathcal{B}_j \mu_k + \mu_j \mu_k = 0.$$

Using (6.7) in (6.8), we get

$$(6.9) N_{rik}^i v^r = 0.$$

Thus, we see that the condition (6.8) is necessary consequence of a recurrent affine motion. Now, we shall establish that condition (6.8) is sufficient for (2.1d) to be an affine motion. To prove this, let us consider (6.8) holds.

Taking skew-symmetric part of (6.8), we get

$$(6.10) \mathcal{B}_i \mu_k - \mathcal{B}_k \mu_i = 0.$$

Transvecting (4.1) by y^j and using (1.5), we get

$$(6.11) U_{rkh}^i y^j \mathcal{B}_i v^r = 0.$$

In view of (2.1d) and putting $\mu = \mu_i y^j$, equ. (6.11) becomes

$$(6.12) U_{rkh}^{i} v^{r} = 0,$$

where $\mu \neq 0$.

In view of (6.8), (6.9) and (6.12), equ. (6.2) becomes

(6.13)
$$L_{\nu}\Pi_{ik}^{i} = 0.$$

Hence, the transformation considered is an affine motion.

Thus, we conclude

Theorem 6.1. The condition (6.8) is necessary and sufficient for an infinitesimal transformation generated by a recurrent vector $v^i(x^j)$ characterized by (2.1d) to be an affine motion.

7. Torse Forming Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^i(x^j)$ characterized by (2.1e).

Differentiating (2.1e) covariantly with respect to x^{j} in the sense of Berwald, we get

(7.1)
$$\mathcal{B}_i \mathcal{B}_k v^i = (\mathcal{B}_i \mu_k + \mu_i \mu_k) v^i + \rho \mu_k \delta_i^i + \rho_i \delta_k^i,$$

where $\rho_i = \mathcal{B}_i \rho$.

Taking skew-symmetric part of (7.1) and using the commutation formula exhibited by (1.7) for v^i , we get

$$(7.2) N_{rik}^i v^r = (\mathcal{B}_i \mu_k + \mu_i \mu_k) v^i + \rho \mu_k \delta_i^i + \rho_i \delta_k^i.$$

In view of (1.15), (1.19), (2.1e), putting $\mu = \mu_s y^s$, using (7.2) and (1.5), we get

(7.3)
$$-\mu U_{rik}^i v^r + 2N_{rik}^i v^r = 0.$$

Transvecting (4.1) by y^j and using (1.5), we get

$$(7.4) U_{rkh}^i y^j \mathcal{B}_i v^r = 0.$$

In view of (2.1e), putting $\mu = \mu_i y^j$ and (1.5) in (7.4), we get

$$(7.5) \mu U_{rkh}^i v^r = 0.$$

Using (7.5) in (7.3), we get

$$(7.6) N_{rik}^i v^r = 0.$$

In view of (1.15), (7.1),(7.2), (7.5) and (7.6), we get

(7.7)
$$L_v \Pi_{ik}^i = 0.$$

Hence, the transformation considered is an affine motion.

Thus, we conclude

Theorem 7.1. The conditions (7.5) and (7.6) are necessary and sufficient for an infinitesimal transformation generated by a recurrent vector $v^i(x^j)$ characterized by (2.1e) to be an affine motion.

8. Projective Motion of a Recurrent Finsler Space

The infinitesimal transformation (1.10) defines a projective motion if it transforms a system of geodesics of F_n into geodesics $\overline{F_n}$. A necessary and sufficient condition that the infinitesimal transformation (1.10) defines a projective motion [16] which characterized by condition (1.20).

For some homogeneous scalar function P of degree one in y^i . For the homogeneity of P_h , it satisfies

$$(8.1) P_h y^h = P.$$

Also, Lie-derivative of the hv-curvature tensor U^i_{jkh} in such projective motion may calculated by differentiating (1.20) partially with respect to y^j , using the commutation formula exhibited by (1.17) for Π^i_{jk} and in view of remark 1.1., we get

(8.2)
$$L_{\nu}U^{i}_{jkh} = \delta^{i}_{k}P_{jh} + \delta^{i}_{h}P_{jk},$$

where

$$(8.3) P_{il} = \dot{\partial}_i P_l$$

for the homogeneity of P_{il} , it satisfies

(8.4)
$$P_{il}y^l = 0.$$

Now, the projective motion becomes an affine motion, the condition

$$(8.5) L_{\nu}\Pi^{i}_{ik} = 0$$

holds.

proof

Let us consider a Finsler space characterized by (8.5).

In view of (8.5) and (1.20), we get

$$(8.6) \delta_k^i P_h + \delta_h^i P_k = 0.$$

Contracting the indies i and k in (8.6), we get

$$(8.7) (n+1)P_h = 0$$

which implies

(8.8)
$$P_h = 0.$$

Conversely, if (8.8) is true, the equ. (1.20) reduces to $L_{\nu}\Pi_{jk}^{i}=0$. The condition (8.8) is the necessary and sufficient condition for the infinitesimal transformation (1.20), which defines a projective motion to be an affine motion.

Also, the projective motion becomes an affine motion, the condition

$$(8.9) L_v U^i_{ikh} = 0$$

holds.

proof

Let us consider a Finsler space characterized by (8.9).

In view of (8.9) and (8.2), we get

$$(8.10) \delta_k^i P_{hj} + \delta_h^i P_{jk} = 0.$$

Contracting the indies i and k in (8.10), we get

$$(8.11) (n+1)P_{hi} = 0$$

which implies

$$(8.12) P_{hj} = 0.$$

Conversely, if (8.12) is true, the equ. (8.2) reduces to $L_v U^i_{jkh} = 0$. The condition (8.12) is the necessary and sufficient condition for the infinitesimal transformation (8.2), which defines a projective motion to be an affine motion.

Definition 8.1. A recurrent Finsler space characterized by (1.8) in which the infinitesimal transformation (1.19) defines a projective motion, is called *projective recurrent Finsler space* briefly denoted by $UR - P\bar{F}_n$.

Applying Lie- operator to (1.8) and using (8.2), we get

$$(8.13) L_v \mathcal{B}_m U_{ikh}^i = (L_v \lambda_m) U_{ikh}^i + \lambda_m (\delta_k^i P_{hi} + \delta_h^i P_{ik}).$$

Thus, we conclude

Theorem 8.1. In an UR- $P\bar{F}_n$, which admits projective motion, the equ. (8.13) holds.

In view of (8.12) and (8.13), we get

$$(8.14) L_{\nu}\mathcal{B}_{m}U_{ikh}^{i} = (L_{\nu}\lambda_{m})U_{ikh}^{i}.$$

Thus, we conclude

Theorem 8.2. In an UR- $P\bar{F}_n$, if the projective motion becomes an affine motion , the equ. (8.14) is necessarily true.

In view of the commutation formula exhibited by (1.16) for the hv- curvature tensor U_{jkh}^i , (1.19) and (8.9), we

get

$$(8.15) L_v \mathcal{B}_m U^i_{ikh} = 0.$$

Since the projective motion becomes an affine motion in $UR - P\overline{F_n}$, in view of (8.14) and (8.15), we get

$$(8.16)$$
 $L_v \lambda_m = 0$

since \bar{F}_n is non-flat space.

Thus, we conclude

Theorem 8.3. In an UR- $P\bar{F}_n$, if the projective motion becomes an affine motion, the recurrence vector field λ_m satisfies the identity (8.16).

Differentiating (8.16) partially with respect to y^s , we get

$$(8.17) \dot{\partial}_s L_\nu \lambda_m = 0.$$

In view of the commutation formula exhibited by (1.17) for λ_m and (8.17), we get

$$(8.18) L_{\nu}\dot{\partial}_{s}\lambda_{m} = 0$$

since \bar{F}_n is non-flat space.

Thus, we conclude

Theorem 8.4. In an UR- $P\bar{F}_n$, if the projective motion becomes an affine motion, the recurrence vector field λ_m satisfies the identity (8.18).

9. Special Projective Motion of a Recurrent Finsler Space

Let us consider a Finsler space admits a concurrent projective motion characterized by (2.1b).

Differentiating (2.1b) covariantly with respect to x^j in the sense of Berwald, taking skew-symmetric part of the obtained equation and using the commutation formula exhibited by (1.7) for v^i , we get

$$(9.1) N_{hik}^{i} v^{h} = 0.$$

In view of (1.17) and (1.20), we get

$$(9.2) \mathcal{B}_i \mathcal{B}_k v^i - U^i_{rik} v^s \mathcal{B}_s v^r + N^i_{rik} v^r = \delta^i_i P_k + \delta^i_k P_i.$$

Using (2.1b) and (9.1) in (9.2), we get

$$(9.3) -cU_{rkh}^i y^r = \delta_k^i P_h + \delta_h^i P_k.$$

Differentiating (9.3) covariantly with respect to x^m and using the fact $(\mathcal{B}_m y^r = 0)$, we get

$$(9.4) -cy^r \mathcal{B}_m U_{rkh}^i = \delta_k^i \mathcal{B}_m P_h + \delta_h^i \mathcal{B}_m P_k.$$

Using (1.8) and (9.3) in (9.4), we get

$$(9.5) \delta_k^i(\mathcal{B}_m P_h - \lambda_m P_h) + \delta_h^i(\mathcal{B}_m P_k - \lambda_m P_k) = 0.$$

Contracting the indies i and k in (9.5), we get

$$(9.6) \mathcal{B}_m P_h = \lambda_m P_h.$$

Thus, we conclude

Theorem 9.1. In an UR- $P\bar{F}_n$, which admits projective motion, if the vector filed $v^i(x^j)$ spans concurrent field, then the scalar function P is recurrent.

If we adopt the similar process for (2.1c), we get the following theorem

Theorem 9.2. In an UR- $P\bar{F}_n$, which admits projective motion, if the vector filed $v^i(x^j)$ spans special concircular field, then the scalar function P is recurrent.

Let us consider a Finsler space admits a special concircular projective motion characterized by (2.1c).

Differentiating (2.1c) covariantly with respect to x^j in the sense of Berwald, taking skew-symmetric part of the obtained equation and using the commutation formula exhibited by (1.7) for v^i , we get

$$(9.7) N_{hik}^i v^h = \rho_i \delta_k^i,$$

where $\rho_i = \mathcal{B}_i \rho$.

In view of (1.15), (1.20), (2.1c), (9.7) and (1.5), we get

$$(9.8) 2\rho_i \delta_k^i = \delta_i^i P_k + \delta_k^i P_i.$$

Transvecting (9.8) by v^j , we get

$$(9.9) 2\rho_i v^j \delta_k^i = v^i P_k + \delta_k^i P_i v^j.$$

Contracting the indies i and k in (9.9), we get

(9.10)
$$2n\rho_i v^j = (n+1)P_i v^j.$$

Transvecting (9.9) by v^k , we get

$$(9.11) \qquad \rho_i v^j = P_i v^j.$$

In view of (9.10) and (9.11), we get

$$(9.12) P_i v^j = 0 = \rho_i v^j.$$

Using (9.12) in (9.9), we get

$$(9.13) P_k = 0.$$

In view of (9.8) and (9.13), we get

(9.14)
$$\rho_i \delta_k^i = 0.$$

Transvecting (9.14) by y^k , y_i successively and using that fact $(y^i y_i = F^2)$, we get

(9.15)
$$\rho_i = 0$$

i. e. ρ is a covariant constant, a contradiction.

Thus, we conclude

Theorem 9.3. A Finsler space does not admit any special concircular projective motion.

Let us consider a Finsler space admits a recurrent projective motion characterized by (2.1d).

P. N. Pandy [7], proved that, if $v^i(x^j)$ are components of a non-null vector, then the equation

$$(9.16) av^i + by^i = 0$$

implies a = b = 0.

Differentiating (2.1d) covariantly with respect to x^j in the sense of Berwald, taking skew-symmetric part of the obtained equation, using the commutation formula exhibited by (1.7) for v^i and (2.1d), we get

and using (1.7), we get

$$(9.17) N_{hjk}^{i} v^{h} = (\mathcal{B}_{j} \mu_{k} + \mu_{j} \mu_{k}) v^{i}.$$

Transvecting (4.1) by y^j and using (1.5), we get

$$(9.18) U_{rkh}^i y^j \mathcal{B}_i v^r = 0.$$

In view of (2.1d) and putting $\mu = \mu_i y^j$ in (9.18), we get

(9.19)
$$\mu U_{rkh}^{i} v^{r} = 0.$$

In view of (1.15), (2.1d), (9.17), (9.19) and (1.20), we get

$$(9.20) 2(\mathcal{B}_i \mu_k + \mu_i \mu_k) v^i = \delta_i^i P_k + \delta_k^i P_i.$$

Transvecting (9.20) by y^k and y^j successively, using $\mu = \mu_l y^l$, the fact $(\mathcal{B}_k y^j = 0)$ and (8.1), we get

$$(9.21) \{y^{j}(\mathcal{B}_{i}\mu) + \mu^{2}\}v^{i} = Py^{i}.$$

In view of (9.16) and (9.21), we get

(9.22) a)
$$y^j \mathcal{B}_i \mu = -\mu^2$$
 and b) $P = 0$.

Thus, we conclude

Theorem 9.4. If a Finsler space admits a recurrent projective motion, the vector filed $v^i(x^j)$ satisfies (9.22a) and (9.22b).

Transvecting (9.20) by v^j , we get

(9.23)
$$2(\mathcal{B}_{i}\mu_{k} + \mu_{i}\mu_{k})v^{i}v^{j} = v^{i}P_{k} + \delta_{k}^{i}P_{i}v^{j}.$$

In view of (1.12), (2.1d) and putting $\mu = \mu_s y^s$, Lie derivative of the vector μ_k is given by

$$(9.24) L_{\nu}\mu_{k} = v^{j} (\mathcal{B}_{i}\mu_{k} + \mu_{i}\mu_{k} + \mu\dot{\partial}_{i}\mu_{k}).$$

Differentiating (2.1d) partially with respect to y^{j} , we get

$$(9.25) \qquad \dot{\partial}_i \mathcal{B}_k v^i = \dot{\partial}_i (\mu_k v^i).$$

Taking skew-symmetric part of (9.25), using the commutation formula exhibited by (1.6) for v^i , (2.1d) and (9.19), we get

$$(9.26) \qquad \dot{\partial}_i(\mu_k v^i) = 0.$$

Transvecting (9.26) by y^k and putting $\mu = \mu_k y^k$, we get

$$(9.27) \mu_i = \dot{\partial}_i \mu.$$

Transvecting (9.24) by y^k , using (1.13a), (9.27) and putting $\mu = \mu_k y^k$, we get

$$(9.28) L_{\nu}\mu = \nu^{j} (\mathcal{B}_{i}\mu + \mu\mu_{i}).$$

In view of (9.28) and (1.13a), we get

(9.29)
$$\mathcal{B}_{i}\mu + \mu\mu_{i} = 0.$$

Transvecting (9.23) by y^k , using the fact ($\mathcal{B}_i y^k = 0$), putting $\mu = \mu_k y^k$, (8.1) and (9.29), we get

$$(9.30) Pv^i + y^i P_i v^j = 0.$$

In view of (9.16) and (9.30), we get

(9.31) a)
$$P = 0$$
 and b) $P_i v^j = 0$.

Thus, we conclude

Theorem 9.5. The conditions (9.31a) and (9.31b) are necessary and sufficient for a recurrent projective motion to be an affine motion in a Finsler space.

Transvecting (9.23) by y^k , putting $\mu = \mu_k y^k$, using (8.3) and (9.28), we get

$$(9.32) (2L_{\nu}\mu - P)\nu^{i} = P_{i}\nu^{j}\gamma^{i}.$$

In view of (9.16) and (9.32), we get

(9.33) a)
$$2L_{\nu}\mu = P$$
 and b) $P_{i}\nu^{j} = 0$.

Transvecting (9.20) by y^k , putting $\mu = \mu_k y^k$ and (8.1),we get

$$(9.34) 2(\mathcal{B}_i \mu + \mu \mu_i) v^i = \delta_i^i P + P_i y^i.$$

Contracting the indies i and j in (9.34), using (9.29) and (8.1), we get

$$(9.35)$$
 $P = 0.$

Thus, we conclude

Theorem 9.6. The condition (9.35) is necessary and sufficient for a recurrent projective motion to be an affine motion in a Finsler space.

10. Conclusion

- (10.1) Every contra vector generates an affine motion in a Finsler space.
- (10.2) In an UR $-F_n$, if any contra vector $v^i(x^j)$ generates an infinitesimal transformation, it must be orthogonal to the recurrence vector.
- (10.3) In an UBR $-F_n$, if any contra vector $v^i(x^j)$ generates an infinitesimal transformation, then the recurrence tensor a_{lm} satisfies conditions (3.9a) and (3.9b).
- (10.4) If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the transformation is necessarily an affine motion.
- (10.5) If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the hv-curvature tensor U^{i}_{ikh} satisfies (4.2) and (4.3).
- (10.6) A Finsler space does not admit any special concircular affine motion.
- (10.7) In an UR- $P\overline{F}_n$, if the projective motion becomes an affine motion.
- (10.8) In an UR- $P\overline{F}_n$, if the projective motion becomes an affine motion , the recurrence vector field λ_m satisfies the identity (8.16).
- (10.9) In an UR- $P\overline{F}_n$, if the projective motion becomes an affine motion , the recurrence vector field λ_m satisfies the identity (8.18).
- (10.10) In an UR- $P\overline{F}_n$, which admits projective motion, if the vector filed $v^i(x^j)$ spans concurrent field, then the scalar function P is recurrent.
- (10.11) A Finsler space does not admit any special concircular projective motion.
- (10.12) If a Finsler space admits a recurrent projective motion, the vector filed $v^i(x^j)$ satisfies (9.22a) and (9.22b).

11. Recommendations

The authors recommend the research should be continued in the motions.

References

- [1]. **Kumar, A.**" Some Theorems on Affine Motion in a Recurrent Finsler Space". IV, Indian J. Pure Appl. Math., 8, (1977), pp672-684.
- [2]. **Kumar, A.**" On the Existence of Affine Motion in a Recurrent Finsler Space". Indian J. Pure Appl. Math., 8, (1977), pp791-800.
- [3]. **Kumar, A.**" On Some Type of Affine Motion in Birecurrent Finsler Space". II, Indian J. Pure Appl. Math., 8, (1977), pp505-513.
- [4]. **Kumar, A.**, **Shulka H. S.** and **Tripathi R. P''** On the Existence of Projective Affine Motion in a W-Recurrent Finsler Space". Tamkang J. of Math., Vol. 31, No. 1, Spring 2000.
- [5]. Meher, F. M. An SHR-F_n Admitting an Affine Motion II. Tensor N. S., 23, 1973,pp 208-210.
- [6]. **Misra, R. B.**" A Turning Point in the Theory of Recurrent Finsler Manifolds".J. South Gujrat Univ., 6, (1977), pp72-96.
- [7]. Pandey, P.N. Some Problems in Finsler Spaces". D. Sc. Thesis, University of Allahabad, India, 1993.
- [8]. Pandey, P.N. and Dwivedi, V.J. "Projective Motion in an NPR-Finsler Spaces". Tamkang J. Math., 17 (1), 1986,pp 87-98.
- [9]. Pandey, P.N., Qasem, F.Y.A. and Suinta Pal"Certain Types of Affine Motion". Proceeding of the third Conference of International Academy of Physical Sciences, The Indian Press Pvt. Ltd., Allahabad Indian, 2000, pp249-264.
- [10]. **Qasem, F.Y.A.**" On Transformation in Finsler Spaces".D.Phil. Thesis, University of Allahabad, India, 2000.
- [11]. **Qasem, F.Y.A.** and **Saleem, A.A.M.**: On U-Birecurrent Finsler Spaces, Univ. Aden J. Nat. and Appl. Sc., Vol. 14, 2010, pp587-596.
- [12]. **Rund, H.** The differential geometry of Finsler spaces, Springer-verlag, Berlin Göttingen-Heidelberg, 1959; 2nd Edit. in Russian, Nauka, Moscow, 1981.
- [13]. Singh, S. P." On Projective Motion in Finsler Space". Prog. of Math., 36, 2002, pp151-158.
- [14]. **Singh, S. P.**" Projective Motion in Birecurrent Finsler Space". Differential Geometry- Dynamical Systems, Vol. 12, 2010,pp 221-227.
- [15]. **Takano, K.** and **Imai, T.**" On Some Types of Affine Motion in Birecurrent Space'. Tensor N.S., 23, 1972, pp309-313.
- [16]. **Yano, K.**"The Theory of Lie-Derivatives and its Applications". North Holland publishing Co., Amsterdam, 1957, pp197-201.