On Certain Types of Affine Motion

Fahmi Y. A. Qasem ${ }^{\mathrm{a}^{*}}$, Abdalstar A. M. Saleem ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar , Aden, Yemen
${ }^{b}$ Department of Mathematics , Faculty of Education-Yafea, University of Aden
${ }^{a}$ Email: Fahmiyassen@gmail.com
${ }^{b}$ Email: Abdulsstar@yahoo.com

Abstract

In the present paper, the affine motion and the projective motion generated by recurrent in a general Finsler space is studied, the necessary and sufficient conditions for this projective motion to be affine motion are obtained. projective motion is studied in recurrent Finsler space.

Keywords: Finsler space; affine motion; projective motion; hv-curvature tensor $U_{j k h}^{i}$; U- recurrent space; Ubirecurrent space; projective recurrent space.

1. Introduction

K. Takano and T. Imai [15] studied certain types of affine motion generated by contra, concurrent, special concircular, recurrent, concircular, torse forming and birecurrent vector fields in a non-Riemannian space of recurrent curvature and ended with some remarks on the affine motion in a space with recurrent curvature. K. Takano and T. Imai [15], P. N. Pandey and V. J. Dwivedi [8] further wrote a series of three papers on the existence affine motion in a non-Riemannian space of recurrent curvature and obtained various interesting results. K. Takan and T. Imai [15] and S. P. Singh [14] discussed the affine motion in a birecurrent nonRiemannian space.

[^0]Several results obtained by these authors were extended to Finsler spaces of recurrent curvature by R. B. Misra [6], F. M. Meher [5], A. Kumar ([1], [2], [3]), A. Kumar, H. S. Shukla and R. P. Tripathi [4], P. N. Pandey, F. Y. A. Qasem and Suinta Pal [9], S. P. Singh [13] and others. K. Yano [16] defined the normal projective connection coefficients $\Pi_{j k}^{i}$ by

$$
\begin{equation*}
\Pi_{j k}^{i}=G_{j k}^{i}-y^{i} G_{j k r}^{r} \tag{1.1}
\end{equation*}
$$

The connection coefficients $\Pi_{j k}^{i}$ is positively homogeneous of degree zero in y^{i} 's and symmetric in their lower indices and the normal projective tensor $N_{j k h}^{i}$ is defined as follows [16]:

$$
\begin{equation*}
N_{j k h}^{i}=\Pi_{j k h}^{i}+\Pi_{r j h}^{i} \Pi_{k s}^{r} y^{s}+\Pi_{r h}^{i} \Pi_{k j}^{r}-k \mid h, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Pi_{j k h}^{i}=\dot{\partial}_{j} \Pi_{k h}^{i} \tag{1.3}
\end{equation*}
$$

$\Pi_{j k h}^{i}$ constitutes the components of a tensor.

Remark 1.1. K. Yano [16] denoted the tensor $\prod_{j k h}^{i}$ by the curvature tensor $U_{j k h}^{i}$.

The curvature tensor $U_{j k h}^{i}$ is defined by

$$
\begin{equation*}
U_{j k h}^{i}=G_{j k h}^{i}-\frac{1}{n+1}\left(\delta_{j}^{i} G_{j k r}^{r}+y^{i} G_{j k h r}^{r}\right) \tag{1.4}
\end{equation*}
$$

is called hv-curvature tensor, where $G_{j k h}^{i}$ is connection of hv-curvature tensor. Also this tensor satisfy the following:

$$
\begin{equation*}
U_{j k h}^{i} y^{j}=0 \tag{1.5}
\end{equation*}
$$

We also have the following commutation formulae [12]

$$
\begin{equation*}
\left(\dot{\partial}_{j} \mathcal{B}_{k}-\mathcal{B}_{k} \dot{\partial}_{j}\right) X^{i}=U_{j k h}^{i} X^{h}-\left(\dot{\partial}_{r} X^{i}\right) U_{j k h}^{r} y^{h} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{k} \mathcal{B}_{h} T_{j}^{i}-\mathcal{B}_{h} \mathcal{B}_{k} T_{j}^{i}=T_{j}^{r} \mathrm{~N}_{r k h}^{i}-T_{r}^{i} \mathrm{~N}_{j k h}^{r}-\left(\dot{\partial}_{r} T_{j}^{i}\right) \mathrm{N}_{s k h}^{r} y^{s} . \tag{1.7}
\end{equation*}
$$

A Finsler space is called recurrent Finsler space and birecurrent Finsler space, respectively, denoted them by $U R-F_{n}$ and $U B R-F_{n}$, respectively, if it's hv- curvature tensor $U_{j k h}^{i}$ satisfies ([10], [11])

$$
\begin{equation*}
\mathcal{B}_{m} U_{j k h}^{i}=\lambda_{m} U_{j k h}^{i}, \quad U_{j k h}^{i} \neq 0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{l} \mathcal{B}_{m} U_{j k h}^{i}=a_{m l} U_{j k h}^{i}, \quad U_{j k h}^{i} \neq 0, \tag{1.9}
\end{equation*}
$$

where λ_{m} and $a_{l m}$ are non-zero covariant vector and tensor fields.

Let us consider a transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}\left(x^{j}\right) \tag{1.10}
\end{equation*}
$$

where ε is an infinitesimal constant and $v^{i}\left(x^{j}\right)$ is called contravariant vector filed independent of y^{i}. The transformation represented by (1.10) is called an infinitesimal transformation. Also this transformation gives rise to a process of differentiation called

Lie- differentiation.

Let X^{i} be an arbitrary contravariant vector filed. Its Lie-derivative with respect to the above infinitesimal transformation is given by ([12], [16])

$$
\begin{equation*}
L_{v} X^{i}=v^{r} \mathcal{B}_{r} X^{i}-X^{r} \mathcal{B}_{r} v^{i}+\left(\dot{\partial}_{r} X^{i}\right) \mathcal{B}_{s} v^{r} y^{s} \tag{1.12}
\end{equation*}
$$

where the symbol L_{v} stands for the Lie- differentiation. In view of (1.12), Lie-derivatives of y^{i} and v^{i} with respect to above infinitesimal transformation vanish, i.e.
a) $L_{v} y^{i}=0$
and
b) $L_{v} v^{i}=0$.

Lie-derivative an of arbitrary tensor T_{j}^{i} with respect to the above infinitesimal transformation is given by

$$
\begin{equation*}
L_{v} T_{j}^{i}=v^{r} \mathcal{B}_{r} T_{j}^{i}-T_{j}^{r} \mathcal{B}_{r} v^{i}+T_{r}^{i} \mathcal{B}_{j} v^{r}+\left(\dot{\partial}_{r} T_{j}^{i}\right) \mathcal{B}_{s} v^{r} y^{s} . \tag{1.14}
\end{equation*}
$$

Lie-derivative of the normal projective connection parameters $\Pi_{j k}^{i}$ is given by [16]

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=\mathcal{B}_{j} \mathcal{B}_{k} v^{i}-U_{r j k}^{i} y^{s} \mathcal{B}_{s} v^{r}+N_{r j k}^{i} v^{r} . \tag{1.15}
\end{equation*}
$$

The commutation formulae for the operators $\mathcal{B}_{k}, \dot{\partial}_{j}$ and L_{v} are given by

$$
\begin{equation*}
\left(L_{v} \mathcal{B}_{k}-\mathcal{B}_{k} L_{v}\right) X^{i}=X^{h} L_{v} \Pi_{k h}^{i}-\left(\dot{\partial}_{r} X^{r}\right) L_{v} \Pi_{k h}^{i} y^{h} \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\dot{\partial}_{j} L_{v}-L_{v} \dot{\partial}_{j}\right) X^{i}=0 . \tag{1.17}
\end{equation*}
$$

where X^{i} is a contravariant vector filed.

The necessary and sufficient condition for the transformation (1.10) to be a motion, affine motion and projective motion are respectively given by

$$
\begin{equation*}
L_{v} g_{i j}=0 \tag{1.18}
\end{equation*}
$$

$$
\begin{equation*}
L_{v} \Pi_{k h}^{i}=0 \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j}, \tag{1.20}
\end{equation*}
$$

where P_{j} is defined as

$$
\begin{equation*}
P_{j}=\dot{\partial}_{j} P \tag{1.21}
\end{equation*}
$$

P being a scalar, positively homogeneous of degree one in y^{i}.

It is well know that every motion is affine motion and every affine motion is a projective motion. A projective motion need not be affine motion.

2. Affine motion

Let an infinitesimal transformation (1.10) be generated by a vector filed $v^{i}\left(x^{j}\right)$.The
infinitesimal transformation is an affine motion if and if Lie - derivative of the normal
projective connection parameters $\Pi_{j k}^{i}$ with respect to infinitesimal transformation (1.10) vanishes identically, i.e. $L_{v} \Pi_{j k}^{i}=0$.

The vector filed $v^{i}\left(x^{j}\right)$ is called contra, concurrent, special concircular, recurrent and torse forming according as it satisfies
a) $\mathcal{B}_{k} v^{i}=0$,
b) $\mathcal{B}_{k} v^{i}=c \delta_{k}^{i}, \quad$ c being a constant,
c) $\mathcal{B}_{k} v^{i}=\rho \delta_{k}^{i}, \quad \rho$ is not a constant,
d) $\mathcal{B}_{k} v^{i}=\mu_{k} v^{i}$
and
e) $\mathcal{B}_{k} v^{i}=\mu_{k} v^{i}+\rho \delta_{k}^{i}$,
respectively. The affine motion generated by above vectors is called contra affine motion, concurrent affine motion, special concircular affine motion, recurrent affine motion and torse forming affine motion, respectively.

3. Contra Affine Motion

Let us consider an infinitesimal transformation generated by contra vector $v^{i}\left(x^{j}\right)$ characterized by (2.1a).

Differentiating (2.1a) covariantly with respect to x^{j} in the sense of Berwald, we get
(3.1) $\quad \mathcal{B}_{j} \mathcal{B}_{k} v^{i}=0$.

Taking skew-symmetric part of (3.1), using the commutation formula exhibited by (1.7) for v^{i}, we get
(3.2) $\quad N_{h j k}^{i} v^{h}=0$.

Using (3.1), (2.1a) and (3.2) in (1.15), we get

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=0 \tag{3.3}
\end{equation*}
$$

Hence the infinitesimal transformation considered is an affine motion.

Thus, we conclude

Theorem 3.1. Every contra vector generates an affine motion in a Finsler space.

Thus, we conclude

Corollary 3.1. Every contra vector generates a projective motion.

Theorem 3.2. In an $U R-F_{n}$, if any contra vector $v^{i}\left(x^{j}\right)$ generates an infinitesimal transformation, it must be orthogonal to the recurrence vector.
proof

Let us consider an $U R-F_{n}$ and a contra vector $\mathrm{v}^{\mathrm{i}}\left(\mathrm{x}^{\mathrm{j}}\right)$ characterized by (1.8) and (2.1a), respectively. Then, the hv-curvature tensor $U_{j k h}^{i}$ satisfies $L_{v} U_{h j k}^{i}=0$.

In view of (1.14) and (2.1a), we get

$$
\begin{equation*}
L_{v} U_{j k h}^{i}=v^{r} \mathcal{B}_{r} U_{j k h}^{i} . \tag{3.4}
\end{equation*}
$$

Differentiating (3.3) partially with respect to y^{h}, we get

$$
\begin{equation*}
\dot{\partial}_{h} L_{v} \Pi_{j k}^{i}=0 \tag{3.5}
\end{equation*}
$$

Taking skew-symmetric part of (3.5), using the commutation formula exhibited by (1.17) for $\Pi_{j k}^{i}$, (3.5) in view of remark 1.1., we get

$$
\begin{equation*}
L_{v} U_{h j k}^{i}=0 . \tag{3.6}
\end{equation*}
$$

In view of (3.4) and (3.6), we get

$$
\begin{equation*}
v^{r} \mathcal{B}_{r} U_{j k h}^{i}=0 . \tag{3.7}
\end{equation*}
$$

Transvecting (1.8) by v^{m} and using (3.7), we get

$$
\begin{equation*}
v^{m} \lambda_{m}=0, \tag{3.8}
\end{equation*}
$$

where $U_{j k h}^{i} \neq 0$.

Thus, we see that the contra vector $\mathrm{v}^{\mathrm{i}}\left(\mathrm{x}^{\mathrm{j}}\right)$ is orthogonal to the recurrence vector λ_{m}.

Theorem 3.3. In an $U B R-F_{n}$, if any contra vector $v^{i}\left(x^{j}\right)$ generates an infinitesimal transformation, then the recurrence tensor $a_{l m}$ satisfies
a) $a_{m l} v^{m}=0$
and
b) $v^{m} a_{l m}=0$.
proof

Let us consider an $U B R-F_{n}$ and a contra vector $\mathrm{v}^{\mathrm{i}}\left(\mathrm{x}^{\mathrm{j}}\right)$ characterized by (1.9) and (2.1a), respectively. Then, the hv-curvature tensor $U_{j k h}^{i}$ satisfies $L_{v} U_{h j k}^{i}=0$.

Differentiating (3.7) covariantly with respect to x^{l} in the sense of Berwald, using (2.1a) and (1.9), we get

$$
\begin{equation*}
a_{m l} v^{m}=0, \tag{3.10}
\end{equation*}
$$

where $U_{j k h}^{i} \neq 0$, it's the equ. (3.9a).

Taking skew-symmetric part of (3.10), we get

$$
\begin{equation*}
\left(a_{m l}-a_{l m}\right) v^{m}=0, \tag{3.11}
\end{equation*}
$$

where $U_{j k h}^{i} \neq 0$.

Using (3.9a) in (3.11), we get
(3.12) $\quad a_{l m} v^{m}=0$
which its equ. (3.9b).

4. Concurrent Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1b).

Differentiating (2.1b) covariantly with respect to x^{j} in the sense of Berwald, we get (3.1). Taking skewsymmetric part of (3.1), using the commutation formula exhibited by (1.7) for v^{i}, we get (3.2). Using (3.1), (2.1a) and (3.2) in (1.15), we get (3.3). Hence the infinitesimal transformation considered is an affine motion. Thus, we conclude

Theorem 4.1. If a Finsler space admits an infinitesimal transformation generated by a concurrent vector , then the transformation is necessarily an affine motion.

In view of (3.6) and (1.14), we get

$$
\begin{align*}
& v^{r} \mathcal{B}_{r} U_{j k h}^{i}-U_{j k h}^{r} \mathcal{B}_{r} v^{i}+U_{r k h}^{i} \mathcal{B}_{j} v^{r}+U_{j r h}^{i} \mathcal{B}_{k} v^{r}+U_{j k r}^{i} \mathcal{B}_{h} v^{r} \tag{4.1}\\
& \quad+\left(\dot{\partial}_{r} U_{j k h}^{i}\right) \mathcal{B}_{s} v^{r} y^{s}=0 .
\end{align*}
$$

Using (2.1b) in (4.1), we get

$$
\begin{equation*}
v^{m} \mathcal{B}_{m} \mathrm{U}_{j k h}^{i}+2 c U_{j k h}^{i}=0 . \tag{4.2}
\end{equation*}
$$

Differentiating (4.2) covariantly with respect to x^{l} in the sense of Berwald and using (2.1b), we get

$$
\begin{equation*}
v^{m} \mathcal{B}_{l} \mathcal{B}_{m} U_{j k h}^{i}+3 c \mathcal{B}_{l} U_{j k h}^{i}=0 . \tag{4.3}
\end{equation*}
$$

Thus, we conclude

Theorem 4.2. If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the $h v$-curvature tensor $U_{j k h}^{i}$ satisfies (4.2) and (4.3).

If the space an $U R-F_{n}$, which is characterized by (1.8), is symmetric and denoted by $S U R-F_{n}$.Thus, the $S U R-F_{n}$ is characterized by

$$
\begin{equation*}
\mathcal{B}_{m} U_{j k h}^{i}=0 . \tag{4.4}
\end{equation*}
$$

In view of (4.2) and (4.4), we get $c \mathrm{U}_{j k h}^{i}=0$, which implies $U_{j k h}^{i}=0$ for $c \neq 0$.

Thus, we see that a symmetric recurrent space admitting an infinitesimal transformation generated by a concurrent vector is necessarily flat ${ }^{*}$.

Thus, we conclude

Corollary 4.1. A non-flat $S U R-F_{n}$ does not admit any infinitesimal transformation generated by a concurrent vector.

If the space $U B R-F_{n}$, which is characterized by (1.9), is bisymmetric and denoted by
$S U B R-F_{n}$. Thus, the $S U B R-F_{n}$ is characterized by

$$
\begin{equation*}
\mathcal{B}_{l} \mathcal{B}_{m} \mathrm{U}_{j k h}^{i}=0 \tag{4.5}
\end{equation*}
$$

In view of (4.2), (4.3) and (4.5), we get $c U_{j k h}^{i}=0$, which implies $U_{j k h}^{i}=0$ for $c \neq 0$. Thus, we see that a bisymmetric space admitting an infinitesimal transformation generated by a concurrent vector is necessarily flat.

Thus, we conclude

Corollary 4.2. A non-flat $S U B R-F_{n}$ does not admit any infinitesimal transformation generated by a concurrent vector.

5. Special Concircular Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1c).

Hence, the infinitesimal transformation considered is an affine motion, we get $L_{v} \Pi_{j k}^{i}=0$.

In view of (1.15), (1.19), (2.1c), (1.5) and (3.2), we get

$$
\begin{equation*}
\mathcal{B}_{j} \rho \delta_{k}^{i}=0 . \tag{5.1}
\end{equation*}
$$

Transvecting (5.1) by y^{k} and using the fact $\left(\mathcal{B}_{j} y^{k}=0\right)$, we get

$$
\begin{equation*}
y^{i} \mathcal{B}_{j} \rho=0 . \tag{5.2}
\end{equation*}
$$

Transvecting (5.2) by y_{i} and using the fact $\left(y^{i} y_{i}=F^{2}\right)$, we get

$$
\begin{equation*}
F^{2} \mathcal{B}_{j} \rho=0 \tag{5.3}
\end{equation*}
$$

which implies $\mathcal{B}_{j} \rho=0$, a contradiction

Thus, we conclude

Theorem 5.1. A Finsler space does not admit any special concircular affine motion

A Finsler space with vanishing hv-curvature tensor is called flat.

6. Recurrent Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1d)

Differentiating (2.1d) covariantly with respect to x^{j} in the sense of Berwald and using (2.1d), we get

$$
\begin{equation*}
\mathcal{B}_{j} \mathcal{B}_{k} v^{i}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i} . \tag{6.1}
\end{equation*}
$$

In view of (1.15), (6.1), (2.1d) and putting $\mu=\mu_{h} y^{h}$, we get

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i}-\mu U_{r j k}^{i} v^{r}+N_{r j k}^{i} v^{r} \tag{6.2}
\end{equation*}
$$

Differentiating (2.1d) partially with respect to y^{j}, we get

$$
\begin{equation*}
\dot{\partial}_{j} \mathcal{B}_{k} v^{i}=\dot{\partial}_{j}\left(\mu_{k} v^{i}\right) \tag{6.3}
\end{equation*}
$$

Transvecting (4.1) by y^{j}, using the fact ($\mathcal{B}_{r} y^{i}=0$), (1.5), (2.1d) and putting $\mu=\mu_{t} y^{t}$, , we get

$$
\begin{equation*}
U_{r k h}^{i} v^{r}=0, \tag{6.4}
\end{equation*}
$$

where $\mu \neq 0$.

Taking skew-symmetric part of (6.3), using the commutation formula exhibited by (1.6) for v^{i} and (6.4), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(\mu_{k} v^{i}\right)=0 . \tag{6.5}
\end{equation*}
$$

Transvecting (6.5) by y^{k} and putting $\mu=\mu_{s} y^{s}$, we get

$$
\begin{equation*}
\mu_{j}=\dot{\partial}_{j} \mu \tag{6.6}
\end{equation*}
$$

Taking skew-symmetric part of (6.1) and using the commutation formula exhibited by (1.7) for v^{i}, we get

$$
\begin{equation*}
N_{r j k}^{i} v^{r}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i} \tag{6.7}
\end{equation*}
$$

In view of (1.19), (6.4) and (6.7), equ. (6.2) becomes

$$
\begin{equation*}
\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}=0 \tag{6.8}
\end{equation*}
$$

Using (6.7) in (6.8), we get

$$
\begin{equation*}
N_{r j k}^{i} v^{r}=0 \tag{6.9}
\end{equation*}
$$

Thus, we see that the condition (6.8) is necessary consequence of a recurrent affine motion. Now, we shall establish that condition (6.8) is sufficient for (2.1d) to be an affine motion. To prove this, let us consider (6.8) holds.

Taking skew-symmetric part of (6.8), we get

$$
\begin{equation*}
\mathcal{B}_{j} \mu_{k}-\mathcal{B}_{k} \mu_{j}=0 \tag{6.10}
\end{equation*}
$$

Transvecting (4.1) by y^{j} and using (1.5), we get

$$
\begin{equation*}
U_{r k h}^{i} y^{j} \mathcal{B}_{j} v^{r}=0 \tag{6.11}
\end{equation*}
$$

In view of (2.1d) and putting $\mu=\mu_{j} y^{j}$, equ. (6.11) becomes
(6.12) $\quad U_{r k h}^{i} v^{r}=0$,
where $\mu \neq 0$.

In view of (6.8), (6.9) and (6.12), equ. (6.2) becomes
(6.13) $\quad L_{v} \Pi_{j k}^{i}=0$.

Hence, the transformation considered is an affine motion.

Thus, we conclude

Theorem 6.1. The condition (6.8) is necessary and sufficient for an infinitesimal transformation generated by a recurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1d) to be an affine motion.

7. Torse Forming Affine Motion

Let us consider an infinitesimal transformation generated by concurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1e).

Differentiating (2.1e) covariantly with respect to x^{j} in the sense of Berwald, we get

$$
\begin{equation*}
\mathcal{B}_{j} \mathcal{B}_{k} v^{i}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i}+\rho \mu_{k} \delta_{j}^{i}+\rho_{j} \delta_{k}^{i}, \tag{7.1}
\end{equation*}
$$

where $\rho_{j}=\mathcal{B}_{j} \rho$.

Taking skew-symmetric part of (7.1) and using the commutation formula exhibited by (1.7) for v^{i}, we get
(7.2) $\quad N_{r j k}^{i} v^{r}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i}+\rho \mu_{k} \delta_{j}^{i}+\rho_{j} \delta_{k}^{i}$.

In view of (1.15), (1.19), (2.1e), putting $\mu=\mu_{s} y^{s}$, using (7.2) and (1.5), we get

$$
\begin{equation*}
-\mu U_{r j k}^{i} v^{r}+2 N_{r j k}^{i} v^{r}=0 \tag{7.3}
\end{equation*}
$$

Transvecting (4.1) by y^{j} and using (1.5), we get
(7.4) $\quad U_{r k h}^{i} y^{j} \mathcal{B}_{j} v^{r}=0$.

In view of (2.1e), putting $\mu=\mu_{j} y^{j}$ and (1.5) in (7.4), we get
(7.5) $\quad \mu U_{r k h}^{i} v^{r}=0$.

Using (7.5) in (7.3), we get

$$
\begin{equation*}
N_{r j k}^{i} v^{r}=0 \tag{7.6}
\end{equation*}
$$

In view of (1.15), (7.1),(7.2), (7.5) and (7.6), we get

$$
\begin{equation*}
L_{v} \Pi_{j k}^{i}=0 \tag{7.7}
\end{equation*}
$$

Hence, the transformation considered is an affine motion.

Thus, we conclude

Theorem 7.1. The conditions (7.5) and (7.6) are necessary and sufficient for an infinitesimal transformation generated by a recurrent vector $v^{i}\left(x^{j}\right)$ characterized by (2.1e) to be an affine motion.

8. Projective Motion of a Recurrent Finsler Space

The infinitesimal transformation (1.10) defines a projective motion if it transforms a system of geodesics of F_{n} into geodesics $\overline{F_{n}}$. A necessary and sufficient condition that the infinitesimal transformation (1.10) defines a projective motion [16] which characterized by condition (1.20).

For some homogeneous scalar function P of degree one in y^{i}. For the homogeneity of P_{h}, it satisfies

$$
\begin{equation*}
P_{h} y^{h}=P . \tag{8.1}
\end{equation*}
$$

Also, Lie-derivative of the hv-curvature tensor $U_{j k h}^{i}$ in such projective motion may calculated by differentiating (1.20) partially with respect to y^{j}, using the commutation formula exhibited by (1.17) for $\Pi_{j k}^{i}$ and in view of remark 1.1., we get

$$
\begin{equation*}
L_{v} U_{j k h}^{i}=\delta_{k}^{i} P_{j h}+\delta_{h}^{i} P_{j k} \tag{8.2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j l}=\dot{\partial}_{j} P_{l} \tag{8.3}
\end{equation*}
$$

for the homogeneity of $P_{j l}$, it satisfies
(8.4) $\quad P_{j l} y^{l}=0$.

Now, the projective motion becomes an affine motion, the condition
(8.5) $\quad L_{v} \Pi_{j k}^{i}=0$
holds.
proof

Let us consider a Finsler space characterized by (8.5).

In view of (8.5) and (1.20), we get

$$
\begin{equation*}
\delta_{k}^{i} P_{h}+\delta_{h}^{i} P_{k}=0 \tag{8.6}
\end{equation*}
$$

Contracting the indies i and k in (8.6), we get

$$
\begin{equation*}
(n+1) P_{h}=0 \tag{8.7}
\end{equation*}
$$

which implies
(8.8) $\quad P_{h}=0$.

Conversely, if (8.8) is true, the equ. (1.20) reduces to $L_{v} \Pi_{j k}^{i}=0$. The condition (8.8) is the necessary and sufficient condition for the infinitesimal transformation (1.20), which defines a projective motion to be an affine motion.

Also, the projective motion becomes an affine motion, the condition

$$
\begin{equation*}
L_{v} U_{j k h}^{i}=0 \tag{8.9}
\end{equation*}
$$

holds.
proof

Let us consider a Finsler space characterized by (8.9).

In view of (8.9) and (8.2), we get

$$
\begin{equation*}
\delta_{k}^{i} P_{h j}+\delta_{h}^{i} P_{j k}=0 . \tag{8.10}
\end{equation*}
$$

Contracting the indies i and k in (8.10), we get

$$
\begin{equation*}
(n+1) P_{h j}=0 \tag{8.11}
\end{equation*}
$$

which implies
(8.12) $\quad P_{h j}=0$.

Conversely, if (8.12) is true, the equ. (8.2) reduces to $L_{v} U_{j k h}^{i}=0$. The condition (8.12) is the necessary and sufficient condition for the infinitesimal transformation (8.2), which defines a projective motion to be an affine motion.

Definition 8.1. A recurrent Finsler space characterized by (1.8) in which the infinitesimal transformation (1.19) defines a projective motion, is called projective recurrent Finsler space briefly denoted by $U R-P \bar{F}_{n}$.

Applying Lie- operator to (1.8) and using (8.2), we get

$$
\begin{equation*}
L_{v} \mathcal{B}_{m} U_{j k h}^{i}=\left(L_{v} \lambda_{m}\right) U_{j k h}^{i}+\lambda_{m}\left(\delta_{k}^{i} P_{h j}+\delta_{h}^{i} P_{j k}\right) . \tag{8.13}
\end{equation*}
$$

Thus, we conclude

Theorem 8.1. In an $U R-P \bar{F}_{n}$, which admits projective motion, the equ. (8.13) holds.

In view of (8.12) and (8.13), we get

$$
\begin{equation*}
L_{v} \mathcal{B}_{m} U_{j k h}^{i}=\left(L_{v} \lambda_{m}\right) U_{j k h}^{i} . \tag{8.14}
\end{equation*}
$$

Thus, we conclude

Theorem 8.2. In an $U R-P \bar{F}_{n}$, if the projective motion becomes an affine motion , the equ. (8.14) is necessarily true.

In view of the commutation formula exhibited by (1.16) for the hv- curvature tensor $U_{j k h}^{i}$, (1.19) and (8.9), we
get
(8.15) $\quad L_{v} \mathcal{B}_{m} U_{j k h}^{i}=0$.

Since the projective motion becomes an affine motion in $U R-P \bar{F}_{n}$, in view of (8.14) and (8.15), we get
(8.16) $\quad L_{v} \lambda_{m}=0$
since \bar{F}_{n} is non- flat space.

Thus, we conclude

Theorem 8.3. In an UR-P \bar{F}_{n}, if the projective motion becomes an affine motion, the recurrence vector field λ_{m} satisfies the identity (8.16).

Differentiating (8.16) partially with respect to y^{s}, we get

$$
\begin{equation*}
\dot{\partial}_{s} L_{v} \lambda_{m}=0 . \tag{8.17}
\end{equation*}
$$

In view of the commutation formula exhibited by (1.17) for λ_{m} and (8.17), we get

$$
\begin{equation*}
L_{v} \dot{\partial}_{s} \lambda_{m}=0 \tag{8.18}
\end{equation*}
$$

since \bar{F}_{n} is non- flat space.

Thus, we conclude

Theorem 8.4. In an $U R-P \bar{F}_{n}$, if the projective motion becomes an affine motion, the recurrence vector field λ_{m} satisfies the identity (8.18).

9. Special Projective Motion of a Recurrent Finsler Space

Let us consider a Finsler space admits a concurrent projective motion characterized by (2.1b).

Differentiating (2.1b) covariantly with respect to x^{j} in the sense of Berwald, taking skew-symmetric part of the obtained equation and using the commutation formula exhibited by (1.7) for v^{i}, we get
(9.1) $\quad N_{h j k}^{i} v^{h}=0$.

In view of (1.17) and (1.20), we get

$$
\begin{equation*}
\mathcal{B}_{j} \mathcal{B}_{k} v^{i}-U_{r j k}^{i} y^{s} \mathcal{B}_{s} v^{r}+N_{r j k}^{i} v^{r}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j} \tag{9.2}
\end{equation*}
$$

Using (2.1b) and (9.1) in (9.2), we get

$$
\begin{equation*}
-c U_{r k h}^{i} y^{r}=\delta_{k}^{i} P_{h}+\delta_{h}^{i} P_{k} \tag{9.3}
\end{equation*}
$$

Differentiating (9.3) covariantly with respect to x^{m} and using the fact ($\mathcal{B}_{m} y^{r}=0$), we get
(9.4) $\quad-c y^{r} \mathcal{B}_{m} U_{r k h}^{i}=\delta_{k}^{i} \mathcal{B}_{m} P_{h}+\delta_{h}^{i} \mathcal{B}_{m} P_{k}$.

Using (1.8) and (9.3) in (9.4), we get

$$
\begin{equation*}
\delta_{k}^{i}\left(\mathcal{B}_{m} P_{h}-\lambda_{m} P_{h}\right)+\delta_{h}^{i}\left(\mathcal{B}_{m} P_{k}-\lambda_{m} P_{k}\right)=0 . \tag{9.5}
\end{equation*}
$$

Contracting the indies i and k in (9.5), we get

$$
\begin{equation*}
\mathcal{B}_{m} P_{h}=\lambda_{m} P_{h} \tag{9.6}
\end{equation*}
$$

Thus, we conclude

Theorem 9.1. In an $U R-P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans concurrent field, then the scalar function P is recurrent.

If we adopt the similar process for (2.1c), we get the following theorem

Theorem 9.2. In an UR- $P \bar{F}_{n}$, which admits projective motion, if the vector filed $v^{i}\left(x^{j}\right)$ spans special concircular field, then the scalar function P is recurrent.

Let us consider a Finsler space admits a special concircular projective motion characterized by (2.1c).

Differentiating (2.1c) covariantly with respect to x^{j} in the sense of Berwald, taking skew-symmetric part of the obtained equation and using the commutation formula exhibited by (1.7) for v^{i}, we get

$$
\begin{equation*}
N_{h j k}^{i} v^{h}=\rho_{j} \delta_{k}^{i}, \tag{9.7}
\end{equation*}
$$

where $\rho_{j}=\mathcal{B}_{j} \rho$.

In view of (1.15), (1.20) , (2.1c), (9.7) and (1.5), we get

$$
\begin{equation*}
2 \rho_{j} \delta_{k}^{i}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j} \tag{9.8}
\end{equation*}
$$

Transvecting (9.8) by v^{j}, we get

$$
\begin{equation*}
2 \rho_{j} v^{j} \delta_{k}^{i}=v^{i} P_{k}+\delta_{k}^{i} P_{j} v^{j} \tag{9.9}
\end{equation*}
$$

Contracting the indies i and k in (9.9), we get

$$
\begin{equation*}
2 n \rho_{j} v^{j}=(n+1) P_{j} v^{j} \tag{9.10}
\end{equation*}
$$

Transvecting (9.9) by v^{k}, we get
(9.11) $\quad \rho_{j} v^{j}=P_{j} v^{j}$.

In view of (9.10) and (9.11), we get
(9.12) $\quad P_{j} v^{j}=0=\rho_{j} v^{j}$.

Using (9.12) in (9.9), we get
(9.13) $\quad P_{k}=0$.

In view of (9.8) and (9.13), we get
(9.14) $\quad \rho_{j} \delta_{k}^{i}=0$.

Transvecting (9.14) by y^{k}, y_{i} successively and using that fact $\left(y^{i} y_{i}=F^{2}\right)$, we get
(9.15) $\quad \rho_{j}=0$
i. e. ρ is a covariant constant, a contradiction.

Thus, we conclude

Theorem 9.3. A Finsler space does not admit any special concircular projective motion.

Let us consider a Finsler space admits a recurrent projective motion characterized by (2.1d).
P. N. Pandy [7], proved that, if $v^{i}\left(x^{j}\right)$ are components of a non-null vector, then the equation
(9.16) $a v^{i}+b y^{i}=0$
implies $\mathrm{a}=\mathrm{b}=0$.

Differentiating (2.1d) covariantly with respect to x^{j} in the sense of Berwald, taking skew-symmetric part of the obtained equation, using the commutation formula exhibited by (1.7) for v^{i} and (2.1d), we get
and using (1.7), we get

$$
\begin{equation*}
N_{h j k}^{i} v^{h}=\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i} \tag{9.17}
\end{equation*}
$$

Transvecting (4.1) by y^{j} and using (1.5), we get

$$
\begin{equation*}
U_{r k h}^{i} y^{j} \mathcal{B}_{j} v^{r}=0 \tag{9.18}
\end{equation*}
$$

In view of (2.1d) and putting $\mu=\mu_{j} y^{j}$ in (9.18), we get
(9.19) $\quad \mu U_{r k h}^{i} v^{r}=0$.

In view of (1.15), (2.1d), (9.17), (9.19) and (1.20), we get

$$
\begin{equation*}
2\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i}=\delta_{j}^{i} P_{k}+\delta_{k}^{i} P_{j} \tag{9.20}
\end{equation*}
$$

Transvecting (9.20) by y^{k} and y^{j} successively, using $\mu=\mu_{l} y^{l}$, the fact $\left(\mathcal{B}_{k} y^{j}=0\right)$ and (8.1), we get
(9.21) $\quad\left\{y^{j}\left(\mathcal{B}_{j} \mu\right)+\mu^{2}\right\} v^{i}=P y^{i}$.

In view of (9.16) and (9.21), we get
a) $y^{j} \mathcal{B}_{j} \mu=-\mu^{2} \quad$ and
b) $P=0$.

Thus, we conclude

Theorem 9.4. If a Finsler space admits a recurrent projective motion, the vector filed $v^{i}\left(x^{j}\right)$ satisfies (9.22a) and (9.22b).

Transvecting (9.20) by v^{j}, we get

$$
\begin{equation*}
2\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}\right) v^{i} v^{j}=v^{i} P_{k}+\delta_{k}^{i} P_{j} v^{j} \tag{9.23}
\end{equation*}
$$

In view of (1.12), (2.1d) and putting $\mu=\mu_{s} y^{s}$, Lie derivative of the vector μ_{k} is given by

$$
\begin{equation*}
L_{v} \mu_{k}=v^{j}\left(\mathcal{B}_{j} \mu_{k}+\mu_{j} \mu_{k}+\mu \dot{\partial}_{j} \mu_{k}\right) \tag{9.24}
\end{equation*}
$$

Differentiating (2.1d) partially with respect to y^{j}, we get

$$
\begin{equation*}
\dot{\partial}_{j} \mathcal{B}_{k} v^{i}=\dot{\partial}_{j}\left(\mu_{k} v^{i}\right) \tag{9.25}
\end{equation*}
$$

Taking skew-symmetric part of (9.25), using the commutation formula exhibited by (1.6) for v^{i}, (2.1d) and (9.19), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(\mu_{k} v^{i}\right)=0 . \tag{9.26}
\end{equation*}
$$

Transvecting (9.26) by y^{k} and putting $\mu=\mu_{k} y^{k}$, we get

$$
\begin{equation*}
\mu_{j}=\dot{\partial}_{j} \mu \tag{9.27}
\end{equation*}
$$

Transvecting (9.24) by y^{k}, using (1.13a), (9.27) and putting $\mu=\mu_{k} y^{k}$, we get

$$
\begin{equation*}
L_{v} \mu=v^{j}\left(\mathcal{B}_{j} \mu+\mu \mu_{j}\right) \tag{9.28}
\end{equation*}
$$

In view of (9.28) and (1.13a), we get

$$
\begin{equation*}
\mathcal{B}_{j} \mu+\mu \mu_{j}=0 \tag{9.29}
\end{equation*}
$$

Transvecting (9.23) by y^{k}, using the fact $\left(\mathcal{B}_{j} y^{k}=0\right)$, putting $\mu=\mu_{k} y^{k}$, (8.1) and (9.29), we get
(9.30) $\quad P v^{i}+y^{i} P_{j} v^{j}=0$.

In view of (9.16) and (9.30), we get
(9.31)
a) $P=0$
and
b) $P_{j} v^{j}=0$.

Thus, we conclude

Theorem 9.5. The conditions (9.31a) and (9.31b) are necessary and sufficient for a recurrent projective motion to be an affine motion in a Finsler space.

Transvecting (9.23) by y^{k}, putting $\mu=\mu_{k} y^{k}$, using (8.3) and (9.28), we get

$$
\begin{equation*}
\left(2 L_{v} \mu-P\right) v^{i}=P_{j} v^{j} y^{i} . \tag{9.32}
\end{equation*}
$$

In view of (9.16) and (9.32), we get
a) $2 L_{v} \mu=P$ and
b) $P_{j} v^{j}=0$.

Transvecting (9.20) by y^{k}, putting $\mu=\mu_{k} y^{k}$ and (8.1), we get
(9.34) $\quad 2\left(\mathcal{B}_{j} \mu+\mu \mu_{j}\right) v^{i}=\delta_{j}^{i} P+P_{j} y^{i}$.

Contracting the indies i and j in (9.34), using (9.29) and (8.1), we get

$$
\begin{equation*}
P=0 \tag{9.35}
\end{equation*}
$$

Thus, we conclude

Theorem 9.6. The condition (9.35) is necessary and sufficient for a recurrent projective motion to be an affine motion in a Finsler space.

10. Conclusion

(10.1) Every contra vector generates an affine motion in a Finsler space.
(10.2) In an $U R-F_{n}$, if any contra vector $v^{i}\left(x^{j}\right)$ generates an infinitesimal transformation, it must be orthogonal to the recurrence vector.
(10.3) In an $U B R-F_{n}$, if any contra vector $v^{i}\left(x^{j}\right)$ generates an infinitesimal transformation, then the recurrence tensor a_{lm} satisfies conditions (3.9a) and (3.9b).
(10.4) If a Finsler space admits an infinitesimal transformation generated by a concurrent vector , then the transformation is necessarily an affine motion.
(10.5) If a Finsler space admits an infinitesimal transformation generated by a concurrent vector, then the hvcurvature tensor $\mathrm{U}_{\mathrm{jkh}}^{\mathrm{i}}$ satisfies (4.2) and (4.3).
(10.6) A Finsler space does not admit any special concircular affine motion.
(10.7) In an UR- $\mathrm{P} \overline{\mathrm{F}}_{\mathrm{n}}$, if the projective motion becomes an affine motion.
(10.8) In an UR- $\mathrm{P} \overline{\mathrm{F}}_{\mathrm{n}}$, if the projective motion becomes an affine motion, the recurrence vector field λ_{m} satisfies the identity (8.16).
(10.9) In an UR- $\overline{\mathrm{F}}_{\mathrm{n}}$, if the projective motion becomes an affine motion, the recurrence vector field λ_{m} satisfies the identity (8.18).
(10.10) In an UR- $\mathrm{P} \overline{\mathrm{F}}_{\mathrm{n}}$, which admits projective motion, if the vector filed $\mathrm{v}^{\mathrm{i}}\left(\mathrm{x}^{\mathrm{j}}\right)$ spans concurrent field, then the scalar function P is recurrent.
(10.11) A Finsler space does not admit any special concircular projective motion.
(10.12) If a Finsler space admits a recurrent projective motion, the vector filed $\mathrm{v}^{\mathrm{i}}\left(\mathrm{x}^{\mathrm{j}}\right)$ satisfies (9.22a) and (9.22b).

11. Recommendations

The authors recommend the research should be continued in the motions.

References

[1]. Kumar, A." Some Theorems on Affine Motion in a Recurrent Finsler Space". IV, Indian J. Pure Appl. Math., 8, (1977), pp672-684.
[2]. Kumar, A." On the Existence of Affine Motion in a Recurrent Finsler Space". Indian J. Pure Appl. Math., 8, (1977), pp791-800.
[3]. Kumar, A.' On Some Type of Affine Motion in Birecurrent Finsler Space". II, Indian J. Pure Appl. Math., 8, (1977), pp505-513.
[4]. Kumar, A., Shulka H. S. and Tripathi R. P' On the Existence of Projective Affine Motion in a WRecurrent Finsler Space".Tamkang J. of Math., Vol. 31, No. 1, Spring 2000.
[5]. Meher, F. M." An SHR-F ${ }_{n}$ Admitting an Affine Motion II". Tensor N. S., 23, 1973,pp 208-210.
[6]. Misra, R. B." A Turning Point in the Theory of Recurrent Finsler Manifolds".J. South Gujrat Univ., 6, (1977), pp72-96.
[7]. Pandey, P.N." Some Problems in Finsler Spaces". D. Sc. Thesis, University of Allahabad, India, 1993.
[8]. Pandey, P.N. and Dwivedi, V.J."Projective Motion in an NPR-Finsler Spaces". Tamkang J. Math., 17 (1), 1986,pp 87-98.
[9]. Pandey, P.N., Qasem, F.Y.A. and Suinta Pal'Certain Types of Affine Motion".Proceeding of the third Conference of International Academy of Physical Sciences, The Indian Press Pvt. Ltd., Allahabad Indian, 2000, pp249-264.
[10]. Qasem, F.Y.A." On Transformation in Finsler Spaces".D.Phil. Thesis, University of Allahabad, India, 2000.
[11]. Qasem, F.Y.A. and Saleem, A.A.M.: On U-Birecurrent Finsler Spaces, Univ. Aden J. Nat. and Appl. Sc., Vol. 14, 2010, pp587-596.
[12]. Rund, H. The differential geometry of Finsler spaces, Springer-verlag, Berlin Göttingen-Heidelberg, 1959; $2^{\text {nd }}$ Edit. in Russian, Nauka, Moscow, 1981.
[13]. Singh, S. P." On Projective Motion in Finsler Space". Prog. of Math., 36, 2002, pp151-158.
[14]. Singh, S. P." Projective Motion in Birecurrent Finsler Space". Differential Geometry- Dyhamical Systems, Vol. 12, 2010,pp 221-227.
[15]. Takano, K. and Imai, T." On Some Types of Affine Motion in Birecurrent Space'. Tensor N.S., 23, 1972, pp309-313.
[16]. Yano, K."The Theory of Lie-Derivatives and its Applications". North - Holland publishing Co., Amsterdam, 1957, pp197-201.

[^0]: * Corresponding author.

