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Abstract 

In this study, kernel smoothing method is considered in the estimation of nonparametric regression models.  A 

crucial step in the implementation of this method is to select a proper bandwidth (smoothing parameter). In an 

attempt to address the specification of amount of smoothing, this article provides a comparative study of 

different methods (or criteria) for choosing the smoothing parameter. Given the need of automatic data-driven 

smoothing parameter selectors for applied statistics, this study is focused to explain and compare these methods. 

In this context, we generalized the selection methods used in the smoothing spline method for kernel smoothing. 

In order to explore and compare the performance of these methods, a simulation study is performed for data sets 

with different sample sizes. As a result of simulation, the appropriate selection criteria are provided for a 

suitable smoothing parameter selection. 
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1. Introduction  

Kernel smoothing is one of the most popular methods used for the estimation of the nonparametric regression 

models. The most important matter in the implementation of this method is to specify an appropriate “bandwidth 

( λ )”.  A central question in this article is how to choose the optimum bandwidth λ for nonparametric 

regression using Kernel smoothing. In this article, the amount of smoothing is determined by means of 

bandwidth selection methods, Cross-validation (CV), generalized cross-validation (GCV), improved version of 

Akaike information criterion (AICc), Mallows’Cp, risk estimation using classical pilots (RECP), restricted 

maximum likelihood (REML), Rice’s T and a model selector of Shibata (SH).  The essential purpose of this 

article is to provide a comparative study for the performance of eight selection methods. To accomplish this, 

simulation experiments were conducted to find out which selection methods have good performance about 

smoothing parameter selection. Turbo C program is used for the realization of this simulation study. Mean 

squares error (MSE) is taken as a criterion of the performance measures for assessing the quality of the kernel 

smoothing estimator.  

This paper is mainly concerned with the selection of bandwidth (or penalty parameter) through Monte Carlo 

simulation study. Bandwidth parameters play a crucial role in this procedure. These parameters are said to 

control the tradeoff between fidelity to data and smoothness: too low values of bandwidth parameter overfit the 

data, whereas too high values oversmooth. In the literature, different selection methods are components of 

various studies for an appropriate smoothing parameter. Indeed, to a considerable extent, [1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14, 15, 16, 17, 18] supplement on the selection of the smoothing parameter. 

The rest of this article is organized as follows. The second section presents the kernel smoothing method for 

nonparametric regression. The section 3 discusses the CV, GCV, AICc), Mallows Cp, RECP, REML, Rice’s T 

and SH methods for selecting the penalty parameter. Section 4 indicates the Monte Carlo simulation 

experiments and Section 5 gives the conclusions and recommendations. 

2. Kernel Smoothing for Nonparametric Regression 

Nonparametric regression model including a predictor variable and a response variable is defined as 

( )i i iy f x ε= +                                                                                                                                                    (1) 

where  iy ’s are observation values of  the response variable,  ix ’s are observation values of  the predictor 

variable,   iε ’s are  independent error terms with zero mean and common variance 2σ , and  f is an unknown 

smooth function. 

Generally speaking a kernel smoothing defines a set of weights { }( ), 1,2,...,iw x i n= for each x  and defines 
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ˆ ( ) ( )
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if x w x y
=

=∑                                                                                                                                              (2) 

The function  ˆ ( )f x  in equation (2) is also called as 'linear smoother' for appropriately defined weights ( )iw x . 

This linear representation leads to many nice statistical and computational properties. Also, because we think 

that points that are close together are similar, a kernel smoothing usually defines weights that decrease in a 

smooth fashion as one moves away from the target point. 

Nadaraya and Watson estimator is considered in kernel smoothing. In this method, a x  point is found in 

description area of the average function  ( )f x  and determined a smoothing window around of this point. The 

most commonly used smoothing window is displayed as simply the ( , )x xλ λ− +  range. Kernel estimate is a 

weighted mean of the observations in the smoothing window, and is indicated as follows: 

1 1

ˆ ( )
n n

ji

i j
i

x xx xf x K y Kλ λ λ= =

− − =   
   

∑ ∑                                                                                           (3) 

where λ  corresponds to the radius of smoothing window and known as a smoothing parameter,  n  is the 

number of observations and K is the selected kernel function. Kernel smoothing can be displayed in the 

following way [19]: 

1 1 1

ˆ ( ) ( )
n n n

ji
i i i

i j i

x xx xf x K K y w x yλ λ λ= = =

 − − = =   
    

∑ ∑ ∑                                                                            (4) 

where the weights  ( )iw x  depend on the  ix x−  distance and assigned to iy   from  .i observation in equation 

(4), so the weight w of  .i  observation; ix x−  as defined a function of  ix x−  distance. Regression function is 

estimated in  x  point as a weight average of dependent variable  iy  with the help of weights ( )iw x   depending 

on x  and coefficients   ( )iw x as follows  

1 1
( ) ( ) ( )

n n
ji

i
j j

x xx xw x K K K u K u
λ λ= =

− − = =  
   

∑ ∑                                                                             (5) 

Notice that
1

( ) 1
n

i
i

w x
=

=∑ . The kernel is a continuous, bounded and symmetric real valued function K which 

satisfies the following characteristics: 

• ( ) 0K u for all values of u≥  

• ( ) 1K u du
+∞

−∞

=∫  
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• ( ) ( )K u K u− =  

These features are also characteristics of a symmetric probability density function. Some of the kernel functions 

used in the application are provided in Table 1. 

Given the all functions provide the properties above of the kernel functions in Table 1. Selection of the kernel 

function is less important than selection of smoothing parameter [6]. 

Table 1: Alternative kernel functions 

Kernel  Explicit Form 

Gaussian  21 1( ) exp( ), [ , ]
22

K u u u
p

= − ∈ −∞ ∞  

Uniform  1( ) , [ 1,1]
2

K u u= ∈ −  

Triangular ( ) (1 ), [ 1,1]K u u u= − ∈ −  

Epanechnikov 23( ) (1 ), [ 1,1]
4

K u u u= − ∈ −  

Quartic 2 215( ) (1 ) , [ 1,1]
16

K u u u= − ∈ −  

Triweight 2 335( ) (1 ) , [ 1,1]
32

K u u u= − ∈ −  

In addition, the matrix and vector form of the model (6), ˆ =f W yλ  is given by 

1 11 1

1

1

. . .
. . .
. . .
. . .
. . .

n

i i in

n nnn

w w

w w

w w

 ′
  
  
  ′  = = 
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w

                                                                                                                           

(6) 

The Kernel estimate of the function f   in model (1) for any point ix  is expressed as 

1

ˆˆ ( ) , 1, 2,...,
n

i i ij j j
j

y f x w y y i n
=

′= = = =∑ w                                                                                              (7) 

The kernel estimation of the non-parametric regression expressed in model (1) is also given in the following 
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way [16]:  

1 11 1 1

1x1 x x1

( )
ˆ

( )
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n n nn nn n n n

f x w w y

f x w w y
λ

     
     = = = =     
          

f W


    



y                                                 (8) 

3. The Bandwidth Selection Methods 

Selecting a proper bandwidth λ is a crucial step in estimating ( )f x  . As λ varies from 0 to + ∞ , the solution 

varies from interpolation to a linear model [20]. Thus, the parameter  λ  controls the smoothness of the function 

estimate and greatly affects its appearance. Also, the parameter  λ  provides a compromise between variance 

and bias of ˆ ( )λf x  . Each data set with the same λ   value is not expected to work equally well [8]. Therefore, 

smoothing parameter 0>λ   has a major impact on the quality of ˆ ( )λf x  .  In this article, the different 

selection methods have been introduced for the selection of the a proper λ  .  

In this paper, it is discussed various bandwidth selection methods in the literature. Most of these methods are 

implemented in our simulation study. The positive value λ   that minimizes any selection methods is selected as 

an appropriate smoothing parameter. The selection criteria used in our simulation study are classified as follows:  

Cross Validation (CV): The basic idea of CV is to leave the points { } 1
,

=

n
i i i

x y   out one at a time and to select 

the smoothing parameter λ  that minimizes the residual sum of squares and to estimate squared residual for a 

smooth function at ix based on the remaining (n-1) points. The CV score function to be minimized is given by

{ }
2

2
1 1

1 1

ˆ ( )ˆ( ) ( )
1

n n
i i i

i i i
i i ii

y f xCV n y f x n λλ − − −

= =

 − = − =  −  
∑ ∑ W

                                  (9) 

where f̂λ  is the fit (kernel smoother) for n pairs of measurements { } 1
,

=

n
i i i

x y   with smoothing parameterλ  ,   

( )ˆ −ifλ is the fit calculated by leaving out the ith data point and iiW  is the ith diagonal element of smoother 

matrix  W  in equation (6).  

Generalized Cross Validation (GCV):  GCV is a modified form of the CV which is a popular criterion for 

choosing the smoothing parameter. The GCV score is constructed by analogy to CV score obtained from 

dividing to the factors 1 ii−W of the ordinary residuals. The main idea of GCV is to replace the factors  

1 ii−W  in equation (9) with the average score 11 ( )n tr λ
−− W  . Thus, by summing of the squared residual 

corrected and factor { }211 ( )n tr λ
−− W  , by the anology ordinary cross validation, the GCV score function is 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No  1, pp 47-61 

52 
 

obtained as fallow  [14]. 

{ } { }22 2 2 2 21 1 ˆ( ) ( ) 2 ( ) 2 ( )λ λ λ λλ σ σ σ σ= − + + = − + +W W WCp I y tr y f tr
n n

   (10) 

Mallows’Cp Criterion: This criterion is known as unbiased risk estimate (UBR) in smoothing spline literature. 

This type of estimate was suggested by [21] in regression case, and applied to smoothing spline by [1]. When  
2σ  is known, an unbiased estimate of the residual sum of squares is given by Cp criterion: 

{ } { }22 2 2 2 21 1 ˆ( ) ( ) 2 ( ) 2 ( )λ λ λ λλ σ σ σ σ= − + + = − + +W W WCp I y tr y f tr
n n

                (11) 

Unless  2σ   is known, in practise an estimate for  2σ  is estimated by 

{ }2 22

1

ˆˆ ( ) ( ) ( ) ( )
n

i i
i

y f x tr I I y tr Iλ λ λ λσ
=

= − − = − −∑ W W W                                                          (12) 

where λ̂  is pre-chosen with any of the CV, GCV or  cAIC  criteria ( λ̂  is an estimate of  λ ) [13]. 

Improved Version of Akaike Information ( cAIC ): An improved version of a criterion based on the classical 

Akaike information criterion (AIC), cAIC criterion, is used for choosing the smoothing parameter for 

nonparametric smoothers [7]. This improved criterion is defined as  

{ }2( ) 2 ( ) 1
( ) log 1

( ) 2c

I y tr
AIC

n n tr
λ λ

λ

λ
− +

= + +
− −

W W
W

                                                                                   (13) 

As can be seen from the equation (13), this criterion is easy to apply for choosing of smoothing parameter. 

Risk Estimation Using Classical Pilots (RECP): Risk function measures the distance between the actual 

regression function ( f ) and its estimation ( ˆ
λf  ). Actually, a good estimate must contain minumum risk. A 

direct computation leads to the the bias-variance decomposition for ˆ( )λf, fR  : 

{ }2 2 21 1ˆ ˆ( , ) ( ) ( )R f f E f f I f tr
n nλ λ λ λ λσ ′= − = − +W W W                                                            (14) 

It is straight forward to show that { }ˆ( ) ( )λf, f = pR E C λ  . Because the risk ˆ( )λf, fR  is unknown quantity, 

so-called risk is now estimated by computable quantity ˆ ˆ( )
pλ λf , fR . The obtained expression for ˆ ˆ( )

pλ λf , fR   

is 
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{ }2 2
21 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

p
R E I tr

n n λ λ λ λσ ′= = − +W W W
p p pλ λ λ λ λf , f f - f f                                              (15) 

where  2ˆ
pλ

σ  and  ˆ
pλ

f  are the appropriate pilot estimates for 2σ  and f , respectively. The pilot pλ  selected 

by classical methods is used for computation of the pilot estimates [9, 12]. 

Restricted Maximum Likelihood (REML): The REML method proceeds by optimizing a function of λ  . 

When  λ  is estimated by REML, the REML error variance estimate agrees with the smoothing theoretic 

variance estimate. The REML score can be expressed as 

2( ) ( ) ( )REML I y tr Iλ λλ = − −W W                                                              (16) 

The rigth term of Equation (16) equals ˆ / ( )λ− −y y Wn tr  , estimate of 2σ  that is based on viewing 

( )λWtr   as the degrees of freedom of the smoother freedom of the smoother [22]. 

The REML and GCV, viewed as functions of λ , share a similar form and yield identical values. Also, they can 

be presented within a common framework that reveals some interesting connections between them. More 

specifically, the derivatives of GCV and REML criteria with respect to λ  can be determined quite naturally in a 

common form [18].  

Rice’s T Criterion: On the basis of other criteria that are not very popular as a selection criterion in the 

literature. Rice’s T criterion is defined as follows 

2 11( ) ( ) /(1 2 ( ))T I y n tr
n λ λλ −= − −W W                                                                                         (17) 

The positive value λ  that minimizes the equation (17) is selected as smoothing parameter. 

A Model Selector of Shibata (SH) Criterion: This model is very popular in the literature, such as the above 

criterion T. Addition to other selection criteria gives poor results. Shibata criterion is expressed by 

2 11( ) ( ) (1 2 ( ))SH I y n tr
n λ λλ −= − −W W                                                                                               (18) 

The positive value λ  that minimizes expression  ( )SH λ  is selected as smoothing parameter. 

4. Monte Carlo Simulation Study 

This section reports the results of a Monte Carlo simulation study. This study is conducted to evaluate the 
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performances of the eight selection methods. By using TURBO C program, we generated the samples sized n = 

50, 75 and 100. The number of replications was 500 for each of the samples. According to selection criteria,   

f̂ functions are estimated by using the 'kernel smoothing' based on the Gaussian kernel function. In order to 

evaluate  ˆ
λf  computed according to each of the selection criterion we used the MSE given by 

{ }
2n

i i
i=1

1 ˆ( ) ( )MSE f x f x
n λ= −∑  and ˆ ˆ( ) ( )i if xλ λ= f )                                                             (19) 

where i( )f x   is value at knots  ix  of  the appropriate function  f  defined in Table 2. 

To find out if the difference between the MSE median values of any two selection methods is significant or not, 

the paired Wilcoxon tests were assessed. In this way, methods which complement the best smoothing parameter 

were determined by evaluating so-called selection methods. 

4.1. Creating data and the experimental setup 

The data sets used for sampling in the simulation experiment are obtained from models in Table 2. The 

simulation study is performed by TURBO C program and through SPSS (2010) program [23]. The experimental 

setup is designed as follows: 

The experimental setup applied at this stage was designed to study the effects of four regression functions under 

the noise level factor. Thus four different cases are considered in the simulation experiments. The Monte Carlo 

simulations also examine the performance of the selection criteria as they relate to the sample size, the pattern of 

predictor values, the true regression function and the true standard deviation of the errors. 

According to the each of selection criteria, MSE values are calculated by considering kernel estimators. Paired 

Wilcoxon test is applied to test whether MSE values considered as the performance measure of any two methods 

are significant or not. To see the performance of the selection methods for each set of experiments, factor level   

is changed six times (r = 1, 2, 3, 4, 5, 6).  

Table 2: Simulation setup 

Case General Form Regression Function 

1 1( ) σ ε= +ir i r iy f x  1( ) sin(15 )f x xp=  

2 2 ( ) σ ε= +ir i r iy f x  { } { }2 2
2 ( ) 0.3exp 64( 0.25) 0.7exp 256( 0.75)f x x x= − − + − −  

3 3 ( ) σ ε= +ir i r iy f x  3 ( ) 10exp( 10 )f x x= −  

4 4 ( ) σ ε= +ir i r iy f x  (9 4 ) 5

4 (9 4 ) 5

2 (1 2 )( ) (1 ) sin
2

r

rf x x x
x
p −

−

 +
= −  + 

 

20.02 0.04( 1) , 1, 2,3, 4,5,6r r rσ = + − =     and  (0,1) , (0,1), 1,...,~ ~ix U N i nε =  
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4.2. Experimental evaluations 

For each simulated data set paired Wilcoxon tests were applied to test whether the difference between the 

median MSE values of any two methods is significant or not. The significance level used was 5 %. The selection 

methods were also ranked as follows: If median MSE value of a method is significantly less than the remaining 

five, it will be assigned a rank 1. If median MSE value of a method is significantly larger than one but less than 

the remaining four, it will be assigned to a rank 2, and similarly to ranks 3-8. Methods having non-significantly 

different median values will share the same averaged rank, on the other hand, method or methods having the 

smallest rank will be superior. 

Table 3: Wilcoxon signed ranks test results for n=100, case 3 and r = 1 

 GCV-CV CP-CV AIC-CV SH-CV T-CV ML-CV RECP-CV 

Z 0.00 (a) 0.00 (a) 0.00 (a) -1.34(b)  0.00 (a) 0.00 (a)    0.00 (a) 

P –value 1.00 1.00 1.00 0.18 1.00 1.00    1.00 

 CP-GCV AIC-

GCV 

SH-GCV T-GCV ML-GCV RECP-GCV AIC-CP 

Z 0.00 (a) 0.00 (a) -1.34 (b) 0.00 (a) 0.00 (a) 0.00 (a)   0.00 (a) 

P value 1.00 1.00 0.18 1.00 1.00 1.00 1.00 

 SH- CP T- CP ML- CP RECP- CP SH-AIC T-AIC  ML-AIC 

Z -1.34 (a) 0.00 (b) 0.00 (b) 0.00 (b) -1.34 (a) 0.00 (b)      0.00 (b) 

P -value 0.18 1.00 1.00 1.00 1.00 1.00     1.00 

 RECP-AIC T-SH ML-SH RECP-SH ML-T RECP-T RECP-ML 

Z 0.00 (a) -1.34 (b) -1.34 (b) -1.34 (b) 0.00 (a) 0.00 (a)      0.00 (a) 

P -value 1.00    0.18    0.18     0.18    1.00   1.00   1.00 

a. The sum of negative ranks equals the sum of positive ranks. 

b. Based on positive ranks  

Table 3 shows the paired Wilcoxon test results obtained from 500 repeated simulation experiments for n = 100, 

case 3 and r = 1.  In addition, for n = 100, case 3 and r = 5 Wilcoxon test results obtained from the same 

simulation experiments are indicated in Table 4.  

These binary comparisons are performed by using MSE median values for each case and each factor level. 

There are twenty-eight binary comparisons for each case and factor level (see Table 3). Thus, since a case 

consists of the six factor levels, binary comparisons carried out are 28x6 = 168. Total binary comparisons 

performed are 4x168 = 672 for four cases. This number is also equivalence to the number of experiments which 

are carried out in simulation. These binary comparisons are tested by the hypotheses, 

0 1: 0 and : 0H M H M= ≠                                                                                                                                 (20) 
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The hypotheses expressed in (20) are finalized by p-values.  

Table 4: Wilcoxon signed ranks test results for n=100, case 3 and r = 5 

 GCV-CV CP-CV AIC-CV SH-CV T-CV ML-CV RECP-CV 

Z -1.68 (a) -5.64 (a) -8.33 (a) -8.68 (a) -8.15 (a) -8.68 (b) -8.68 (b) 

P -value 0.09  0.00   0.00 0.00 0.00 0.00 1.00 

 CP-GCV AIC-GCV SH-GCV T-GCV 
ML-

GCV 
RECP-GCV AIC-CP 

Z -5.37 (a) -8.374 (a) -8.68 (a) -8.10 (a) -8.68 (b) -8.68 (b) -6.51 (a) 

P value 0.000 0.000 0.00 0.00 0.00 0.00 0.00 

 SH-CP T-CP ML-CP RECP-CP SH-AIC T-AIC ML-AIC 

Z -8.68 (a) -6.09 (a) -8.68 (b) -8.68 (b) -8.68 (a) -2.36 (b) -8.68 (b) 

P -value 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

 RECP-AIC T-SH ML-SH RECP-SH ML-T RECP-T RECP-ML 

Z -8.68 (a) -8.68 (a) -8.68 (a) -8.68(a) -8.68 (a) -8.68 (a) -8.68 (a) 

P -value     0.00  0.00  0.00    0.00  0.00   0.00 0.00 

a. The sum of negative ranks equals the sum of positive ranks. 

b. Based on positive ranks  

As can be seen from Table 2,  totally, 72 numerical experiments (or configurations) are conducted by 

considering 4 cases, 6 factor levels and 3 samples, For this reason,  it is not possible to display here all these 

configurations. Therefore, some configurations are given in Figures 1-3 for different samples sized n.   

r=1 r=3 r=6 

   

Figure 1: Simulation results correspond to case 1 for n = 50 

These Figures display the boxplots of the   values for, from left to right, AIC, CP, CV, GCV, RECP, REML, SH 

and T. The numbers below the boxplots are the paired Wilcoxon test rankings. Comparison results presented in 
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Figures 1-3 indicate that RECP maintains its superiority over the other selection methods. Also, for 72 different 

simulation experiments, the averaged ranking values of the selection methods according to Wilcoxon tests are 

tabulated in Tables 3 and 4. 

   r=1 r=3 r=6 

   

Figure 2: Simulation results correspond to case 2 for n =75 

   r=1 r=3 r=6 

  
 

Figure 3: Simulation results correspond to case 4 for n =100 

According to the results in Table 5, for small sized samples (for n=50), RECP has had the best empirical 

performance for all cases. Furthermore, REML and Cp have shared a better performance after RECP criterion. 

In accordance with the overall Wilcoxon test rankings in Table 5, RECP and REML have also displayed a good 

performance. As shown in Table 5, AICc, SH and T methods produced the similar results under all experimental 

cases. For small samples, it is observed that T has produced the worst performance. 

According to the results in Table 5, for medium sized samples (for n=75), RECP has also demonstrated the best 

empirical performance for all cases. Furthermore, REML and CV have shared a better performance after RECP 

criterion. In accordance with the overall Wilcoxon test rankings in Table 5, RECP has also displayed a highly 
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good performance. As shown in Table 5, AICc, and SH methods produced the similar results under all 

experimental cases. For small samples, it is observed that SH has produced the worst performance. 

Table 5: Averaged Wilcoxon test ranking values for the eight selection methods 

For n=50 

Criteria Case 1 Case 2 Case 3 Case 4 Overall 

CV 4.333 3.417 4.250 3.333 3.830 

GCV 5.250 4.250 4.583 4.417 4.620 

Cp 3.083 4.333 3.000 4.250 3.670 

AICc 6.000 6.750 6.167 6.833 6.440 

SH 6.833 6.750 6.667 8.000 7.060 

T 6.333 6.500 7.333 6.167 6.580 

REML 2.417 2.250 2.333 2.000 2.250 

RECP 1.750* 1.417* 1.667* 1.000* 1.460* 

For n=75 

CV 3.750 4.500 4.167 3.333 3.940 

GCV 3.750 4.500 4.167 3.833 4.060 

Cp 4.750 3.000 3.500 5.500 4.190 

AICc 5.750 6.500 6.000 5.333 5.890 

SH 7.417 8.000 7.417 8.000 7.710 

T 5.750 6.500 6.333 7.000 6.390 

REML 2.750 2.000 2.833 2.000 2.390 

RECP 2.083* 1.000* 1.583* 1.000* 1.420* 

For n=100 

CV 3.750 3.167 3.750 3.000 3.420 

GCV 3.976 4.000 3.917 4.000 3.960 

Cp 4.917 5.500 4.667 5.250 5.080 

AICc 5.583 5.500 5.917 5.830 5.710 

SH 7.417 8.000 7.417 8.000 7.710 

T 5.583 6.833 6.333 6.917 6.420 

REML 2.750 2.000 2.417 2.000 2.290 

RECP 2.083* 1.000* 1.583* 1.000* 1.420* 

(*): Indicates the selection methods having the best rankings  

 

According to Table 5, for large sized samples (for n=100), RECP criterion has had the best empirical 

performance. Generally it is shown that REML, GCV and CV criteria have shared a good performance after 

RECP. According to the overall Wilcoxon test rankings in Table 5, RECP, REML, GCV and CV criteria can be 

ranked in terms of the performance. As shown in Table 5, generally, CV and GCV gave the similar results. SH 
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has also produced the worst performance for large samples. 

5. Conclusions and Recommendations 

The Monte Carlo simulation results confirmed that RECP has a good performance and can give slightly better 

estimates than the other selection methods for nonparametric models. The RECP method also outperforms the 

others in terms of the observed MSE.  Generally, SH and T methods produced not good performance in all 

factors. The scores in Table 6 are obtained by taking the means of the averaged Wilcoxon test ranking values tie 

with each of the selection methods in Table 5.  

Table 6: Means of the averaged Wilcoxon test ranking values for the selection methods 

 Criteria Case 1 Case 2 Case 3 Case 4 Average 

CV 3.940 3.694 4.055 3.222 3.727 

GCV 4.305 4.250 4.222 4.083 4.215 

Cp 4.249 4.277 3.722 5.000 4.312 

AICc 5.777 6.250 6.027 5.998 6.013 

SH 7.222 7.583 7.166 8.000 7.492 

T 5.888 6.611 6.666 6.694 6.464 

REML 2.638 2.083 2.527 2.000 2.312 

RECP 1.972* 1.138* 1.611* 1.000* 1.430* 

(*): Indicates the selection methods having the best rankings 

Finally, by considering the simulation results and evaluations given above, the following suggestions have to be 

taken into account:  

• For small, medium, large samples, RECP is recommended as being the best selection criterion;  

• REML is also recommended as second selection criterion after RECP; 

• The two selection methods, CV and GCV criteria have produced very similar results according to all 

regression functions. Cp criterion has given also similar results with these two criteria for small 

samples. However, as sample size is increased, Cp is getting a form different from these two criteria;  

• SH and T criteria have produced the worst empirical performance for all the simulation experiments.  

In this case, according to the above results, we can make the following suggestions: In all regression models and 

the general means, use the RECP criterion because of its superior empirical performance; otherwise use one of 

the REML criteria whose empirical performance is very close to RECP. The other four selection criteria, CV, 

GCV, Cp and AICc, give a good performance after the RECP and REML. 
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