

International Journal of Sciences: Basic and Applied Research (IJSBAR)

International Journal of
Sciences:
Basic and Applied
Research
ISSN 2307-4531
(Print & Online)
Published by:
James B.

ISSN 2307-4531 (Print & Online)

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

On Study K^h - Generalized Birecurrent Finsler Space

Fahmi Y. A. Qasem^{a*}, Amani M. A. Hanballa^b

^aDepartment of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar, Aden, Yemen

^bDepartment of Mathematics, Community College, Dar- Saad, Aden, Yemen

^aEmail: Fahmiyassen1@gmail.com

^bEmail: ahanballa@yahoo.com

Abstract

In the present paper, a Finsler space F_n whose Cartan's fourth curvature tensor K^i_{jkh} satisfies $K^i_{jkh|\ell|m} = \lambda_\ell \, K^i_{jkh|m} + b_{\ell m} \, K^i_{jkh}$, $K^i_{jkh} \neq 0$, where λ_ℓ and $b_{\ell m}$ are non-zero covariant vector field and covariant tensor field of second order, respectively, is introduced and such space is called as K^h -generalized birecurrent Finsler space and denoted briefly by K^h -GBR- F_n , we obtained some generalized birecurrent in this space. Also we introduced Ricci generalized birecurrent space.

Keywords: Finsler space; Ricci generalized birecurrent space; generalized birecurrent tensors.

1. Introduction

H. S. Ruse [8] introduced and studied a three dimensional space as space of recurrent curvature. The recurrent of an n-dimensional space was extended to Finsler space by A. Moor [1,2,3] for the first time. Due to different connections of Finsler space, the recurrence of different cuvature tensors have been discussed by R.S. Mishra and H. D. Pande [15] and P. N. Pandey [14]. S. Dikshit [16], discussed a Finsler space in which Cartan's third curvature tensor R_jkh^(i) is birecurrent. M. A. H. Alqufail, F. Y. A. Qasem and M. A. A. Ali [11] discussed a Finsler space in which Cartan's fourth curvature tensor K_jkh^(i) is birecurrent.

^{*} Corresponding author.

F. Y. A. Qasem [4] discussed a Finsler space in which Cartan's third curvature tensor R_jkh^(i) is generalized and special generalized birecurrent of the first and second kind. F. Y. A. Qasem and A. A. M. Saleem [5,6] discussed a Finsler space for which the h-curvature tensor U_jkh^(i) and Weyl's projective curvature tensor

W_jkh^(i) are generalized birecurrent. N. S. H. Hussein [13] introduced the K^h- recurrent space. Thus, the K^h- recurrent space characterized by (1.1) $K^i_{jkh|\ell} = \lambda_\ell \, K^i_{jkh}$, $K^i_{jkh} \neq 0$,

where the non-zero covariant vector field λ_{ℓ} being the recurrence vector field.

M. A. A. Ali [12] discussed the Kh- birecurrent space. Thus, the Kh- birecurrent space is characterized by

(1.2)
$$K^{i}_{ikh|\ell|m} = a_{\ell m} K^{i}_{ikh}, \qquad K^{i}_{ikh} \neq 0,$$

where $a_{\ell m}$ is non-zero covariant tensor field of second order is called the birecurrence tensor field.

the metric tensor g_{ij} and its associate metric tensor g^{ij} are covariant constant with respect to the h- covariant derivative

$$(1.3) \hspace{1cm} \text{a)} \hspace{0.2cm} g_{ij|k} = 0 \hspace{0.2cm} \text{and} \hspace{0.2cm} b) \hspace{0.2cm} g_{|k}^{ij} = 0 \hspace{0.2cm}.$$

The h -covariant derivative of the vector y i, vanish identically, i. e.

(1.4)
$$y_{lk}^{i} = 0.$$

The associate tensor K_{ijkh} of the curvature tensor K_{jkh}^{i} is given by

$$(1.5) K_{ijkh} := g_{rj} K_{ikh}^r.$$

The Ricci tensor K jk and the curvature scalar K are given by

$$(1.6) \hspace{1cm} \text{a)} \hspace{0.2cm} K_{jki}^{\hspace{0.2cm} i} = \hspace{0.2cm} K_{jk} \hspace{0.2cm} \text{and} \hspace{0.2cm} \text{b)} \hspace{0.2cm} g^{jk} \hspace{0.2cm} K_{jk} = K.$$

The curvature tensor K^i_{jkh} satisfies the relation

(1.7)
$$K_{ikh}^{i} y^{j} = H_{kh}^{i},$$

The associate tensor R_{ijkh} of the curvature tensor R_{ikh}^{i} is given by

$$(1.8) R_{ijkh} := g_{rj}R_{ikh}^{r}$$

The Ricci tensor R_{jk} , the deviation tensor R_h^r and the curvature scalar R are given by

$$(1.9) \hspace{1cm} a) \hspace{0.2cm} R^i_{jki} = R_{jk}, \hspace{0.2cm} b) \hspace{0.2cm} R^r_{ikh} \hspace{0.2cm} g^{ik} = R^r_k \hspace{0.2cm} and \hspace{0.2cm} c) \hspace{0.2cm} g^{jk} R_{jk} = R.$$

Berwald constructed the curvature tensor H^i_{jkh} and the h(v)-torsion tensor H^i_{kh} by means of the tensor H^i_k called it by him as deviation tensor [9,10], according to

(1.10)
$$H_{jkh}^{i} = \frac{1}{3} \dot{\partial}_{j} (\dot{\partial}_{k} H_{h}^{i} - \dot{\partial}_{h} H_{k}^{i})$$

and

(1.11)
$$H_{kh}^{i} = \frac{1}{3} (\dot{\partial}_{k} H_{h}^{i} - \dot{\partial}_{h} H_{k}^{i}),$$

where

(1.12)
$$H_h^i := 2 \partial_h G^i - \partial_s G_h^i y^s + 2 G_{hs}^i G^s - G_s^i G_h^s.$$

In view of Euler's theorem on homogeneous functions we have the following relation

(1.13)
$$H_{ik}^{i} y^{j} = H_{k}^{i} = -H_{ki}^{i} y^{j}.$$

The contraction of the indices i and h in (1.10), (1.11) and (1.12) yields the following:

$$(1.14) Hik = Hiiki,$$

(1.15)
$$H_k = H_{ki}^i$$

and

(1.16)
$$H = \frac{1}{n-1} H_i^i,$$

where $H_{jk}\,$ and H are called h–Ricci tensor [7] and curvature scalar, respectively.

The tensor H_{jh.k} defined by

$$(1.17) Hih.k := gih Hiik$$

2. An K^h – Generalized Birecurrent Spaces

Let us consider a Finsler space F_n in which Cartan's fourth curvature tensor K^i_{jkh} satisfies

$$(2.1) \hspace{1cm} K^{i}_{jkh|\ell\,|m} = \lambda_{\ell} \, K^{i}_{jkh|m} + b_{\ell m} \, K^{i}_{jkh} \;\;,\; K^{i}_{jkh} \; \neq 0,$$

where λ_ℓ and $b_{\ell m}$ are non-zero covariant vector field and covariant tensor field of second order, respectively.

The space and the tensor satisfying the condition (2.1) will be called K^h -generalized birecurrent space and h-generalized birecurrent tensor, respectively. We shall denote them briefly by K^h -GBR- F_n and h-GBR, respectively.

In view of the conditions (1.1) and (1.2), we may conclude the following results

Theorem 2.1. Every K^h- recurrent space is K^h- birecurrent space, but the converse need not be true.

Differentiation (1.1) covariantly with respect to x^m in the sense of Cartan, we get

$$K^i_{jkh|\ell\;|m} = \, \lambda_{\ell|m} \, K^i_{jkh} + \lambda_\ell \, K^i_{jkh|m} \, , \qquad K^i_{jkh} \, \neq \, 0 \label{eq:Kikh|m}$$

which can be written as

$$K^i_{jkh|\ell\mid m} = \, \lambda_\ell \, K^i_{jkh|m} + b_{\ell m} \, K^i_{jkh} \, , \qquad K^i_{jkh} \, \neq \, 0 \label{eq:Kikh}$$

which it is the condition (1.2), where λ_{ℓ} and $b_{\ell m} = \lambda_{\ell | m}$ are non-zero covariant vector field and covariant tensor field of second order, respectively.

Theorem 2.2. Every K^h – recurrent space is an K^h – GBR – F_n .

Now, in view of (1.1), the condition (2.1) may written as

$$K^{i}_{jkh|\ell\;|m} \! = \lambda_{\ell} \, \lambda_{m} \, K^{i}_{jkh} + b_{\ell m} \, K^{i}_{jkh} \, , \qquad K^{i}_{jkh} \, \neq \, 0 \label{eq:Kikh}$$

which can be written as

$$K^{i}_{jkh|\ell|m} = a_{\ell m} K^{i}_{jkh}, \qquad K^{i}_{jkh} \neq 0,$$

where $a_{\ell m} = \lambda_{\ell} \lambda_m + b_{\ell m}$ is non-zero covariant tensor field of second order is called the birecurrence tensor field.

Theorem 2.3. In K^h-recurrent space, an K^h-GBR-F_n is K^h-birecurrent space.

Transvecting (2.1) by the metric tensor g_{ip} , using (1.5) and (1.3a), we get

(2.2)
$$K_{ipkh|\ell|m} = \lambda_{\ell} K_{ipkh|m} + b_{\ell m} K_{ipkh}.$$

Conversely, the transvection of (2.2) by the associate tensor g^{ip} of the metric tensor g_{ip} yield (2.1). Thus, the

condition (2.1) is equivalent to the condition (2.2). Therefore K^h - GBR- F_n may characterized by the condition (2.2).

Thus, we conclude

Theorem 2.4. An K^h -GBR- F_n may characterized by the condition (2.2).

Contracting the indices i and h in (2.1) and using (1.6a), we get

(2.3)
$$K_{ik|\ell|m} = \lambda_{\ell} K_{ik|m} + b_{\ell m} K_{ik}$$

Showing that the Ricci tensor K_{jk} of K^h -GBR- F_n is generalized birecurrent.

Thus, we conclude

Theorem 2.5. In K^h-GBR-F_n, the Ricci tensor is generalized birecurrent.

Transvecting (2.3) by y k and using (1.4), we get

$$(2.4) K_{i|\ell|m} = \lambda_{\ell} K_{i|m} + b_{\ell m} K_{i},$$

where $K_{jk} y^k = K_j$.

Transvecting (2.1) by g jk and using (1.3b), we get

(2.5)
$$K_{h|\ell|m}^{i} = \lambda_{\ell} K_{h|m}^{i} + b_{\ell m} K_{h}^{i},$$

where $g^{jk}K^i_{jkh}=K^i_h$.

Transvecting (2.3) by g^{jk} , using (1.3b) and (1.6b), we get

(2.6)
$$K_{|\ell|m} = \lambda_{\ell} K_{|m} + b_{\ell m} K.$$

Thus, we conclude

Theorem 2.6. In K^h -GBR- F_n , the vector K_j , the deviation tensor K_h^i and the curvature scalar K are all generalized birecurrent.

Transvecting (2.1) by y^j , using (1.4) and (1.7), we get

(2.7)
$$H_{khl\ell lm}^{i} = \lambda_{\ell} H_{khlm}^{i} + b_{\ell m} H_{kh}^{i}$$
.

Transvecting (2.7) by y k, using (1.4) and (1.13), we get

(2.8)
$$H_{h|\ell|m}^{i} = \lambda_{\ell} H_{h|m}^{i} + b_{\ell m} H_{h}^{i}$$
.

Contracting the indices i and h in (2.7) and using (1.15), we get

(2.9)
$$H_{k|\ell|m} = \lambda_{\ell} H_{k|m} + b_{\ell m} H_{k}.$$

Contracting the indices i and h in (2.8) and using (1.16), we get

(2.10)
$$H_{|\ell|m} = \lambda_{\ell} H_{|m} + b_{\ell m} H.$$

Transvecting (2.7) by g_{ii} , using (1.3a) and (1.17), we get

(2.11)
$$H_{ki,h|\ell|m} = \lambda_{\ell} H_{ki,h|m} + b_{\ell m} H_{ki,h}$$

Thus, we conclude

Theorem 2.7. In K^h -GBR- F_n , the h(v)-torsion tensor H^i_{kh} , the deviation tensor H^i_h , the curvature vector H_k , the curvature scalar H and the tensor $H_{kj,h}$ are all generalized bircurrent.

The associate tensor K_{ijkh} of Cartan's fourth curvature tensor K^i_{jkh} and the associate tensor R_{ijkh} of Cartan's third curvature tensor R^i_{ikh} are connected by the identity [7]

$$(2.12) K_{hijk} - K_{ihjk} = 2R_{hijk}.$$

Differentiating (2.12) covariantly with respect to x^{ℓ} in the sense of Cartan, we get

(2.13)
$$K_{\text{hijk}|\ell} - K_{\text{ihjk}|\ell} = 2R_{\text{hijk}|\ell}.$$

Differentiating (2.13) covariantly with respect to x^m in the sense of Cartan and using (2.2), we get

$$(2.14) \lambda_{\ell}(K_{\text{hijk}|m} - K_{\text{ihjk}|m}) + b_{\text{lm}}(K_{\text{hijk}} - K_{\text{ihjk}}) = 2R_{\text{hijk}|\ell|m}.$$

Putting (2.12) and (2.13) in (2.14), we get

(2.15)
$$R_{\text{hiik}|\ell|m} = \lambda_{\ell} R_{\text{hiik}|m} + b_{\ell m} R_{\text{hiik}}.$$

Transvecting (2.15) by g^{ir}, using (1.3b) and in view of (1.8), we get

(2.16)
$$R_{\text{hik}|\ell|m}^{r} = \lambda_{\ell} R_{\text{hik}|m}^{r} + b_{\ell m} R_{\text{hik}}^{r}.$$

Transvecting (2.16) by ghj, using (1.3b) and (1.9b), we get

(2.17)
$$R_{k|\ell|m}^{r} = \lambda_{\ell} R_{k|m}^{r} + b_{\ell m} R_{k}^{r}.$$

Contracting the indices r and k in (2.16) and using (1.9a), we get

(2.18)
$$R_{hi|\ell|m} = \lambda_{\ell} R_{hi|m} + b_{\ell m} R_{hi}.$$

Transvecting (2.18) by ghj, using (1.3b) and (1.9c), we get

(2.19)
$$R_{|\ell|m} = \lambda_{\ell} R_{|m} + b_{\ell m} R.$$

Thus, we conclude

Theorem 2.8. In K^h -GBR- F_n , Cartan's third curvature tensor R^r_{hjk} , it's associate tensor R_{hijk} , the deviation tensor R^r_k , the Ricci tensor R_{hi} and the scalar R are all generalized bircurrent.

3. Conclusions

- (3.1) The space whose defined by condition (2.1) is called K^h-generalized birecurrent Finsler space.
- (3.2) Every K^h-recurrent space is an K^h-generalized birecurrent Finsler space.
- (3.3) In Kh-recurrent space, an Kh-GBR-F_n is Kh-birecurrent space.
- (3.4) In Kh-generalized birecurrent Finsler space, the Ricci tensor is generalized birecurrent.
- (3.5) In K^h -generalized birecurrent Finsler space, the vector K_j , the deviation tensor K_h^i and the curvature scalar K are all generalized birecurrent.
- (3.6) In K^h -generalized birecurrent Finsler space, the h(v)-torsion tensor H^i_{kh} , the deviation tensor H^i_h , the curvature vector H_k , the curvature scalar H and the tensor $H_{kj,h}$ are all generalized bircurrent.
- (3.7) In K^h -generalized birecurrent Finsler space, Cartan's third curvature tensor R^r_{hjk} , it's associate tensor R_{hijk} , the deviation tensor R^r_k , the Ricci tensor R_{hj} and the scalar R are all generalized bircurrent.

4. Recommendations

Authors recommend the need for the continuing research and development in Finsler space due to its vital applying importance in other fields.

References

- [1] A. Moór. Untersuchungen über Finslerränme von rekurrenter krümmung, Tensor N.S, 13 Math. Pures. Appl. 18, 1923, pp. 563 569.
- [2] A. Moór. Unterräume von rekurrenter krümmung in Finslerrmen, Tensor N.S., 24, 1972, pp. 261-265.
- [3] A. Moór. Über eine übertragungs theorie der metrischen linienel ement- räumeit recurrent Grund tensor, Tensor N. S., 29, 1975, pp. 47-63.
- [4] F.Y.A. Qasem "On transformations in Finsler spaces." Ph. D. Thesis, University of Allahabad, India, 2000.
- [5] F.Y.A. Qasem and A. A. M. Saleem "On U- birecurrent Finsler space." Univ. Aden J. Nat. and Appl. Sc.Vol.14 No.3, December 2010, pp. 587-596.
- [6] F.Y.A. Qasem and A. A. M. Saleem "On W_{jkh} generalized birecurrent Finsler space." Journal of the Faculties of Education, University of Aden, Aden, Yemen, No. (11), 2010, pp. 21-32.
- [7] H. Rund: The differential geometry of Finsler space, Springer Verlag, Berlin Gottingen–Heidelberg, 1959; 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
- [8] H.S. Ruse: Three dimensional spaces of recurrent curvature, Proc. London Math. Soc., 50 (2), 1949, pp.438-446.
- [9] M. Matsumoto "On h-isotropic and Ch- recurrent Finsler." J. Math. Kyoto Univ., 11, 1971, pp.1-9.
- [10] M. Matsumoto "On C-reducible Finsler spaces." Tensor, N.S., 24, 1972, pp. 29-37.
- [11] M. A. H. Alqufail., F. Y. A. Qasem and M. A. A. Ali "On study K^h birecurrent Finsler space."

 The scientific Journal of The Faculty of Education-Thamar, University of Thamar, Thamar, Yemen.

 (Accepted).
- [12] M. A. A. Ali "On K^h birecurrent Finsler space." M.Sc. Thesis, University of Aden, Aden, Yemen, 2014.
- [13] N.S.H. Hussien "On Kh- recurrent Finsler space." M.sc. Thesis, University of Aden, Aden, Yemen, 2014
- [14] P.N. Pandey "Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, Allahabad, India, 1993.

- [15] R.S. Mishra and H.D. pande "Recurrent Finsler spaces." J. Indian Math. Soc. N.S. Vol. 32, pp.17 -22, 1968.
- [16] S. Dikshit "Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, Allahabad, India, 1992.