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Abstract

In the present paper, a Finsler space F,whose Cartan's fourth curvature tensor K}kh satisfies

Kiihie jm = Ae Kighjm + bem Kl + Kjin # 0, where A, and by,,, are non-zero covariant vector field and covariant

tensor field of second order, respectively, is introduced and such space is called as K"-generalized birecurrent

Finsler space and denoted briefly by K"~ GBR-F,,, we obtained some generalized birecurrent in this space. Also

we introduced Ricci generalized birecurrent space.
Keywords: Finsler space; Ricci generalized birecurrent space; generalized birecurrent tensors.
1. Introduction

H. S. Ruse [8] introduced and studied a three dimensional space as space of recurrent curvature. The recurrent of
an n—dimensional space was extended to Finsler space by A. Moor [1,2,3] for the first time. Due to different
connections of Finsler space, the recurrence of different cuvature tensors have been discussed by R.S. Mishra
and H. D. Pande [15] and P. N. Pandey [14]. S. Dikshit [16], discussed a Finsler space in which Cartan's third
curvature tensor R_jkh”™( i) is birecurrent. M. A. H. Alqufail, F. Y. A. Qasem and M. A. A. Ali [11] discussed a
Finsler space in which Cartan's fourth curvature tensor K_jkh”( i) is birecurrent.
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F. Y. A. Qasem [4] discussed a Finsler space in which Cartan's third curvature tensor R_jkh”( i) is generalized
and special generalized birecurrent of the first and second kind. F. Y. A. Qasem and A. A. M. Saleem [5,6]

discussed a Finsler space for which the h— curvature tensor U_jkh”( i) and Weyl's projective curvature tensor

W_jkh~( i) are generalized birecurrent. N. S. H. Hussein [13] introduced the K~h- recurrent space. Thus, the

K~h- recurrent space characterized by (1.1) K, =2 Kiy o Kjin # 0,

where the non-zero covariant vector field A, being the recurrence vector field.

M. A. A. Ali [12] discussed the K"- birecurrent space. Thus, the K" birecurrent space is characterized by
(1.2) K}kmum = am K}kh’ K}kh # 0,

where a,, is non-zero covariant tensor field of second order is called the birecurrence tensor field.

the metric tensor g;; and its associate metric tensor g U are covariant constant with respect to the h- covariant

derivative

(1.3) a) gy=0 and b)gl=0.

The h —covariant derivative of the vector y I, vanish identically, i. e.
(1.4) ik =0.

The associate tensor K of the curvature tensor K }kh is given by
(1.5) Kijin = 8 Kikn-

The Ricci tensor K, and the curvature scalar K are given by

(1.6) a) Kis = Ky and  b) g*Ky =K.

The curvature tensor K}kh satisfies the relation

(1.7) Kjikh Yj = Hkih’

The associate tensor Rjji, of the curvature tensor R}kh is given by
(1.8) Rijih := &rjRlkn

The Ricci tensor Ry, the deviation tensor Ry, and the curvature scalar R are given by
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(1.9) a) R =Rj b) Ri,g*=RL and ¢ g*Rp =R

Berwald constructed the curvature tensor H]-ikh and the h(v)-torsion tensor H}; by means of the tensor H}. called

it by him as deviation tensor [9,10], according to

(1.10) i =5 0;(OH}, — apHY)

and

(L11) Hin = 3 (OuH, — 9nH ),

where

(1.12) H! :=20,G' — d, Gl y* + 2 Gl GS — GLGS .

In view of Eulers theorem on homogeneous functions we have the following relation
(1.13) Hj y' = H = —Hj; y/.

The contraction of the indices i and h in (1.10), (1.11) and (1.12) yields the following:

(1.14) Hj = Hj;,
(1.15) Hy = Hi;
and

— Ly
(1.16) H=—H|,

where H;, and H are called h-Ricci tensor [7] and curvature scalar, respectively.

The tensor Hyy, defined by

(1.17) Hin == 8in Hii

2. An K" — Generalized Birecurrent Spaces

Let us consider a Finsler space F, in which Cartan's fourth curvature tensor K]-ikh satisfies

(2.1) Kiknieim = Ae Kiihm + bem Kiin + Kjn # 0,

210



International Journal of Sciences: Basic and Applied Research (1JSBAR) (2016) Volume 25, No 3, pp 208-216

where A, and b, are non-zero covariant vector field and covariant tensor field of second order, respectively.

The space and the tensor satisfying the condition (2.1) will be called K'-generalized birecurrent space and

h-generalized birecurrent tensor, respectively. We shall denote them briefly by KP-GBR-F,, and h-GBR,

respectively.

In view of the conditions (1.1) and (1.2), we may conclude the following results
Theorem 2.1. Every K" recurrent space is K"-birecurrent space, but the converse need not be true.
Differentiation (1.1) covariantly with respect to x™ in the sense of Cartan, we get
Kjikh|t’ Im = Agjm K}kh + A K}kh|m ) K}kh #0
which can be written as
Kjikh|t’ m = Ag K}kmm + bm Kjikh ' K}kh #0

which it is the condition (1.2), where A, and b, = A, are non-zero covariant vector field and covariant

tensor field of second order, respectively.
Theorem 2.2. Every K"- recurrent space is an K"~ GBR-F,,.
Now, in view of (1.1), the condition (2.1) may written as
Kjikhw im= A¢ Am K}kh + bm K}kh , K}kh #0
which can be written as
Kjikhw m= azm Kjikhv K}kh #0,

where a,, = AsAy, + by, 1S Non-zero covariant tensor field of second order is called the birecurrence tensor
field.

Theorem 2.3. In K"- recurrent space, an K"~ GBR-F,, is K- birecurrent space.

Transvecting (2.1) by the metric tensor g;, , using (1.5) and ( 1.3a), we get
(2.2) Kjpknieim = e Kjpkhjm + bem Kjpkn -

Conversely, the transvection of (2.2) by the associate tensor g'P of the metric tensor gip Yield (2.1). Thus, the
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condition (2.1) is equivalent to the condition (2.2). Therefore K- GBR-F,, may characterized by the condition
(2.2).

Thus, we conclude

Theorem 2.4. An K"- GBR-F,, may characterized by the condition (2.2).
Contracting the indices iand hin (2.1) and using (1.6a), we get

(2.3) Kjkjeim = Ao Kjim + bem Kjie-

Showing that the Ricci tensor K, of K"~ GBR-F,, is generalized birecurrent.
Thus, we conclude

Theorem 2.5. In K"~ GBR-F,, , the Ricci tensor is generalized birecurrent.
Transvecting (2.3) by y ¥ and using (1.4), we get

(2.4) Kijz im= AeKjjm + bom K;,

where Ky y* = K;.
Transvecting (2.1) by g ¥ and using (1.3b), we get

(2.5) Khiem= A Kiym + bem Kiy

where gi*Kjy, = K, .

Transvecting (2.3) by g¥, using (1.3b) and (1.6b), we get
(2.6) Kiz jm = AeKjm + bpm K.

Thus, we conclude

Theorem 2.6. In K'-GBR-F,, the vector K;, the deviation tensor Ki and the curvature scalar K are all

generalized birecurrent.
Transvecting (2.1) by yJ, using (1.4) and (1.7), we get

(2.7) H]i<h|{’ jm= 7\47H1i<h|m + bym Hip, -
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Transvecting (2.7) by y ¥, using (1.4) and (1.13), we get

(2.8) Hjgjm= Ae Hhjm + bem Hi .

Contracting the indices iand h in (2.7) and using (1.15), we get
(2.9) Hijejm = AeHgm + bem Hi.

Contracting the indicesi and h in (2.8) and using (1.16), we get
(2.10) Hiojm = AsHjm + b H.

Transvecting (2.7) by g;; , using (1.3a) and (1.17), we get

(2.11) Hyjnjejm = Ae Hinjm + bem Hign-

Thus, we conclude

Theorem 2.7. In KP- GBR-F,, the h(v)-torsion tensor Hi, , the deviation tensor Hi , the curvature vector Hy,

the curvature scalar H and the tensor H,;, are all generalized bircurrent.

The associate tensor Kj;,, of Cartan's fourth curvature tensor K}kh and the associate tensor R;j, of Cartan's

third curvature tensor R}kh are connected by the identity [7]

(2.12) Khijk — Kinjk = 2Rpijjk-

Differentiating (2.12) covariantly with respect to x* in the sense of Cartan, we get

(2.13) Khijkje — Kinjkje = 2Rnijkje-

Differentiating (2.13) covariantly with respect to x™ in the sense of Cartan and using (2.2), we get
(2.14) Ae(Knijigm — Kinjkim) + bim (Knijk — Kinjk) = 2R jm-

Putting (2.12) and (2.13) in (2.14), we get

(2.15) Rhijkje jm = Ae Ruijiim + bem Ruijk

Transvecting (2.15) by g'", using (1.3b) and in view of (1.8), we get

(2.16) Rhikiejm = AeRhjkm + bem Rhjk-
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Transvecting (2.16) by g, using (1.3b) and (1.9b), we get

(2.17) Rij2im = A¢ Rigm + bem R

Contracting the indices r and k in (2.16) and using (1.9a), we get
(2.18) Rujieim = Az Riyjjm + bem Ry

Transvecting (2.18) by g, using (1.3b) and (1.9c), we get

(2.19) Rizim =Ae Rjm + bem R.

Thus, we conclude

Theorem 2.8. In K"~ GBR-F,,, Cartan's third curvature tensor Rk, it's associate tensor Ry, the deviation

tensor Ry, the Ricci tensor Rp; and the scalar R are all generalized bircurrent.
3. Conclusions
(3.1) The space whose defined by condition (2.1) is called K" -generalized birecurrent Finsler space.
(3.2) Every KM -recurrent space is an K"-generalized birecurrent Finsler space.
(3.3) In KP- recurrent space, an K"~ GBR-F,, is K"- birecurrent space.
(3.4) In KP- generalized birecurrent Finsler space , the Ricci tensor is generalized birecurrent.

(3.5) In K- generalized birecurrent Finsler space, the vector K;, the deviation tensor Ki and the

curvature scalar K are all generalized birecurrent.

(3.6) In K"-generalized birecurrent Finsler space , the h(v)-torsion tensor Hi, , the deviation
tensor Hi, the curvature vector Hy, the curvature scalar H and the tensor Hy;n are all generalized

bircurrent.

(3.7) In KP- generalized birecurrent Finsler space, Cartan's third curvature tensor Rhjk , it's associate
tensor Ry, the deviation tensor Ry, the Ricci tensor Ry; and the scalar R are all generalized

bircurrent.
4, Recommendations

Authors recommend the need for the continuing research and development in Finsler space due to its vital

applying importance in other fields.
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