International Journal of Sciences:
Basic and Applied Research
(IJSBAR)

ISSN 2307-4531
(Print \& Online)

On a Generalized $\boldsymbol{H}^{\boldsymbol{h}}$ - Birecurrent Finsler Space

Fahmi Y. A. Qasem ${ }^{\text {a* }}$, Wafa`a H. A. Hadi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics , Faculty of Education-Aden, University of Aden , Khormaksar , Aden, Yemen
${ }^{b}$ Department of Mathematics , Community College, Dar Saad , Aden, Yemen
${ }^{a}$ Email: Fahmiyassen1@gmail.com
${ }^{b}$ Email: wf_hadi@yahoo.com

Abstract

In the present paper, a Finsler space whose curvature tensor $H_{j k h}^{i}$ satisfies $H_{j k h|\mathcal{\ell}| m}^{i}=a_{\ell m} H_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\right.$ $\left.\delta_{h}^{i} g_{j k}\right), H_{j k h}^{i} \neq 0$, where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order called recurrence tensor fields, is introduced, such space is called as a generalized H^{h}-birecurrent Finsler space. The associate tensor $H_{j r k h}$ of Berwald curvature tensor $H_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$, the deviation tensor H_{h}^{i}, the Ricci tensor $H_{j k}$, the vector H_{k} and the scalar curvature H of such space are non-vanishing. Under certain conditions, a generalized H^{h}-birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized H^{h}-birecurrent Finsler space $F_{n}(n>2)$ into Finsler space of scalar curvature.

Keywords: Finsler space; Generalized H^{h}-birecurrent Finsler space; Ricci tensor; Landsberg space; Finsler space of scalar curvature.

[^0]
1. Introduction

H. S. Ruse [6] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and non- Riemannian space by A.G. Walker [2], Y. C. Wong [18] ,Y.C. Wong and K. Yano [19] and others

This idea was extended to Finsler spaces by A. Moor [3] for the first time. Due to different connections of Finsler space, the recurrent of different curvature tensor have been discussed by, R.B. Misra [12] , R.B. Misra and F. M. Meher [13] , B.B.Sinha and S.P.Singh [4] , P. N. pandey and R.B.Misra [10], R.S.D.Dubey and A.K. Srivastara [14] , R.Verma [16] , S. Dikshit [17] , and others. S. Dikshit discussed different Finsler space with birecurrent of Cartan`s curvature tensor, birecurrent of its associate tensor and indicatrix with respect to Berwald`s and Cartan`s connections . F.Y.A.Qasem and A.A.M.Saleem [5] discussed more general Finsler space for the hv -curvature tensor $\mathrm{U}_{\mathrm{jkh}}^{\mathrm{i}}$ satisfies the birecurrence property with respect to Berwald's coefficient $\mathrm{G}_{\mathrm{jk}}^{\mathrm{i}}$ and they called it UBR- Finsler space. A.A.M.Saleem [1] discussed C^{h} - generalized birecurrent Finsler space and U-special generalized birecurrent Finsler space. P.N.pandey, S.Saxena and A.Goswami [11] interduced a generalized H-recurrent Finsler space.

Let F_{n} be $A n n$-dimensional Finsler space equipped with the metric function a $F(x, y)$ satisfying the request conditions [6] .

The vectors y_{i}, y^{i} and the metric tensor $g_{i j}$ satisfies the following relations
a) $y_{i} y^{i}=F^{2}$
b) $\mathrm{g}_{i j}=\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}$
c) $y_{i \mid k}=0$
d) $y_{\mid k}^{i}=0 \quad$ and \quad e) $\quad g_{i j \mid k}=0$.

Thus the unit vector l^{i} and the associate vector l_{i} is defined by
a) $l^{i}=\frac{y^{i}}{F}$
b) $\mathrm{l}_{i}=\mathrm{g}_{i j} l^{j}=\dot{\partial}_{i} F=\frac{y_{i}}{F}$.

The two processes of covariant differentiation, defined above commute with the partial
a) $\dot{\partial}_{j}\left(X_{\mid k}^{i}\right)-\left(\dot{\partial}_{j} X^{i}\right)_{\mid k}=X^{r}\left(\dot{\partial}_{j} \Gamma_{r k}^{* i}\right)-\left(\dot{\partial}_{r} X^{i}\right) P_{j k}^{r}$,
b) $\quad P_{j k}^{r}=\left(\dot{\partial}_{j} \Gamma_{h k}^{* r}\right) y^{h}=\Gamma_{j h k}^{* r} y^{h}$,
c) $\quad \Gamma_{j k h}^{* i} y^{h}=G_{j k h}^{i} y^{h}=0$,
d) $\quad P_{j k}^{i} y^{j}=0$,
e) $\quad \mathrm{g}_{i r} P_{k h}^{i}=P_{r k h}$.

The tensor $H_{j k h}^{i}$ satisfies the relation

$$
\begin{equation*}
H_{j k h}^{i} y^{j}=H_{k h}^{i} \tag{1.4}
\end{equation*}
$$

$$
\text { (1.5) } \quad H_{j k h}^{i}=\dot{\partial}_{j} H_{k h}^{i}
$$

The deviation tensor H_{k}^{i} is positively homogeneous of degree two in y^{i} and satisfies
(1.6) $\quad H_{h k}^{i} y^{h}=H_{k}^{i}$,
(1.7) $\quad H_{k}^{i} y^{k}=0$,
(1.8) $\quad H_{j k}=H_{j k i}^{i}$,
(1.9) $\quad H_{k}=H_{k i}^{i}$,
and
(1.10) $\quad H=\frac{1}{n-1} H_{i}^{i}$.
where $H_{j k}$ and H are called h-Ricci tensor [9] and curvature scalar respectively. Since contraction of the indices does not affect the homogeneity in y^{i}, hence the tensors $H_{r k}, H_{r}$ and the scalar H are also homogeneous of degree zero, one and two in y^{i} respectively. The above tensors are also connected by
(1.11) $\quad H_{j k} y^{j}=H_{k}$,
(1.12) $\quad H_{j k}=\dot{\partial}_{j} H_{k}$,

$$
\begin{equation*}
H_{k} y^{k}=(n-1) H \tag{1.13}
\end{equation*}
$$

The tensors $H_{h}^{i}, H_{k h}^{i}$ and $H_{j k h}^{i}$ also satisfy the following :
(1.14) $\quad H_{k h}^{i}=\dot{\partial}_{k} H_{h}^{i}$,

$$
\begin{equation*}
\mathrm{g}_{i j} H_{k}^{i}=\mathrm{g}_{i k} H_{j}^{i} . \tag{1.15}
\end{equation*}
$$

The associate tensor $H_{i j k h}$ of Berwald curvature tensor $H_{j k h}^{i}$ is given by

$$
\begin{equation*}
H_{i j k h}=\mathrm{g}_{r j} H_{i k h}^{r} . \tag{1.16}
\end{equation*}
$$

The necessary and sufficient condition for a Finsler space $F_{n}(n>2)$ to be a Finsler space of scalar curvature is given by
(1.17) $\quad H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right)$.

A Finsler space F_{n} is said to be Landsberg space if satisfies

$$
\begin{equation*}
y_{r} G_{j k h}^{r}=-2 C_{j k h \mid m} y^{m}=-2 P_{j k h}=0 . \tag{1.18}
\end{equation*}
$$

2. Generalized $\boldsymbol{H}^{\boldsymbol{h}}$-Birecurrent Finsler Space

Let us consider a Finsler space F_{n} whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies

$$
\begin{equation*}
H_{j k h \mid \ell}^{i}=\lambda_{\ell} H_{j k h}^{i}+\mu_{\ell}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), H_{j k h}^{i} \neq 0 \text {, where } \lambda_{\ell} \text { and } \mu_{\ell} \text { are non-zero covariant vector } \tag{2.1}
\end{equation*}
$$ fields and called the recurrence vector fields. Such space called a generalized H^{h} - recurrent Finsler space.

Differentiating (2.1) covariantly with respect to x^{m} in the sense of Cartan and using (1.1.e), we get

$$
\begin{equation*}
H_{j k h|\ell| m}^{i}=\lambda_{\ell \mid m} H_{j k h}^{i}+\lambda_{\ell} H_{j k h \mid m}^{i}+\mu_{\ell \mid m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) . \tag{2.2}
\end{equation*}
$$

Using (2.1) in (2.2), we get

$$
H_{j k h|\ell| m}^{i}=\left(\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}\right) H_{j k h}^{i}+\left(\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}\right)\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right),
$$

which can be written as

$$
\begin{equation*}
H_{j k h|\ell| m}^{i}=a_{\ell m} H_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), H_{j k h}^{i} \neq 0, \tag{2.3}
\end{equation*}
$$

Where $a_{\ell m}=\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}$ and $b_{\ell m}=\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}$ are non-zero covariant tensor fields of second order and called recurrence tensor fields.

Definition 2.1. If Berwald curvature tensor $H_{j k h}^{i}$ of a Finsler space satisfying the condition(2.3), where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order , the space and the tensor will be called generalized H^{h} - birecurrent Finsler space and generalized h - birecurrent tensor, respectively, we shall denote such space and tensor briefly by $G H^{h}-B R-F_{n}$ and $G h-B R$, respectively .

However, if we start from condition(2.3), we cannot obtain the condition(2.1), we may conclude

Theorem 2.1. Every generalized H^{h} - recurrent Finsler space is generalized H^{h} - birecurrent Finsler space, but the converse need not be true.

Transvecting (2.3) by the metric tensor $g_{i r}$, using (1.1e) and (1.16), we get

$$
\begin{equation*}
H_{j r k h|\ell| m}=a_{\ell m} H_{j r k h}+b_{\ell m}\left(g_{k r} g_{j h}-g_{h r} g_{j k}\right) \tag{2.4}
\end{equation*}
$$

Transvecting (2.3) by y^{j}, using (1.1d) and(1.4), we get

$$
\begin{equation*}
H_{k h|\ell| m}^{i}=a_{\ell m} H_{k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.5}
\end{equation*}
$$

Further transvecting (2.5) by y^{k}, using (1.1d) and (1.6), we get

$$
\begin{equation*}
H_{h|\ell| m}^{i}=a_{\ell m} H_{h}^{i}+b_{\ell m}\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) . \tag{2.6}
\end{equation*}
$$

Thus we have

Theorem 2.2. In $G H^{h}-B R-F_{n}$, the associate tensor $H_{j r k h}$ of Berwald curvature tensor $H_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} are non- vanishing.

Contracting the indices i and h in equations(2.3), (2.5) and (2.6) and using(1.8), (1.9), (1.10) and (1.1 a), we get

$$
\begin{align*}
H_{j k|\ell| m} & =a_{\ell m} H_{j k}+(1-n) b_{\ell m} g_{j k} \tag{2.7}\\
H_{\ell|\ell| m} & =a_{\ell m} H_{k}+(1-n) b_{\ell m} y_{k} \tag{2.8}\\
H_{|\ell| m} & =a_{\ell m} H-b_{\ell m} F^{2} \tag{2.9}
\end{align*}
$$

Thus, we conclude

Theorem 2.3. In $G H^{h}-B R-F_{n}$ the Ricci tensor $H_{j k}$, the curvature vector H_{k} and the scalar curvature H are non- vanishing.

Differentiating (2.8) partially with respect to y^{j}, using (1.12) and (1.1b), we get

$$
\begin{align*}
& \dot{\partial}_{j}\left(H_{k|\ell| m}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} \tag{2.10}\\
& +(1-n) b_{\ell m} g_{j k} .
\end{align*}
$$

Using the commutation formula exhibited by($1.3 a$) for $\left(H_{k \mid \ell}\right)$ and using(1.12), we get

$$
\begin{align*}
& \left(\dot{\partial}_{j} H_{k \mid \ell}\right)_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left(\dot{\partial}_{r} H_{k \mid \ell}\right) P_{j m}^{r} \tag{2.11}\\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k}
\end{align*}
$$

Again using commutation formula exhibited by (1.3a) for $\left(H_{k}\right)$ in(2.11), we get

$$
\begin{align*}
& \left\{\left(\dot{\partial}_{j} H_{k}\right)_{\mid \ell}-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(\dot{\partial}_{r} H_{k}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \tag{2.12}\\
- & H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{\left(\dot{\partial}_{r} H_{k}\right)_{\mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-\left(\dot{\partial}_{s} H_{k}\right) P_{r \ell}^{s}\right\} P_{j m}^{r} \\
= & \left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k} .
\end{align*}
$$

Using (1.12) and (2.7) in (2.12), we get

$$
\begin{align*}
& \left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \tag{2.13}\\
& -H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{H_{k r_{\mid \ell}}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}
\end{align*}
$$

Transvecting (2.13) by y^{k}, using (1.1d) , (1.13),(1.3b) and (1.1a), we ge

$$
-2 H_{r \mid \ell} P_{j m}^{r}-(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=(n-1)\left(\dot{\partial}_{j} a_{\ell m}\right) H-(n-1)\left(\dot{\partial}_{j} b_{\ell m}\right) F^{2}
$$

Which can be written as

$$
\begin{equation*}
\left(\dot{\partial}_{j} b_{\ell m}\right)=\frac{\left(\dot{\partial}_{j} a_{\ell m}\right) H}{F^{2}} . \tag{2.14}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
-2 H_{r \mid \ell} P_{j m}^{r}-(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=0 . \tag{2.15}
\end{equation*}
$$

If the tensor $a_{\ell m}$ is independent of y^{i}, the equation (2.14) shows that the tensor $b_{\ell m}$ is also independent of y^{i}. Conversely, if the tensor $b_{\ell m}$ is independent of y^{i}, we get $H \dot{\partial}_{j} a_{\ell m}=0$. In view of theorem2.3, the condition $H \dot{\partial}_{j} a_{\ell m}=0$ implies $\dot{\partial}_{j} a_{\ell m}=0$, i.e. the covariant tensor $a_{\ell m}$ is also independent of y^{i}. This leads to

Theorem 2.4. The covariant tensor $b_{\ell m}$ is independent of the directional arguments if the covariant tensor $a_{\ell m}$ is independent of directional arguments if and only if equation (2.15) holds.

Suppose the tensor $a_{\ell m}$ is not independent of y^{i}, then (2.13) and(2.14) together imply

$$
\begin{align*}
& \left\{-H_{r}\left(\partial_{j} \Gamma_{\ell \ell}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\partial_{j} \Gamma_{k m}^{* r}\right) \tag{2.16}\\
& -H_{k \mid r}\left(\partial_{j} \Gamma_{\ell m}^{* r}\right)-\left\{H_{k r \mid \ell}-H_{s}\left(\partial_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\partial_{j} a_{\ell m}\right)\left[H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right] .
\end{align*}
$$

Transvecting (2.16) by y^{m} and using (1.1d), (1.3c) and (1.3d), we get

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=\left(\dot{\partial}_{j} a_{\ell}-a_{j \ell}\right)\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) . \tag{2.17}
\end{equation*}
$$

where $a_{\ell m} y^{m}=a_{\ell}$
if

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=0 \text {, equation (2.17) implies at least one of the following } \tag{2.18}
\end{equation*}
$$ conditions

a) $a_{j \ell}=\partial_{j} a_{\ell}$,
b) $H_{k}=\frac{(n-1)}{F^{2}} H y_{k}$

Thus, we have

Theorem 2.5. In $G H^{h}-B R-F_{n}$ for which the covariant tensor $a_{\ell m}$ is not independent of the directional arguments and if condition (2.18) holds, at least one of the conditions (2.19a) and (2.19b) hold.

Suppose (2.19b) holds equation (2.16) implies

$$
\begin{align*}
& \left\{-\frac{(n-1)}{F^{2}} H y_{r} \dot{\partial}_{j} \Gamma_{\ell k}^{* r}-H_{k r} P_{j \ell}^{r}\right\}_{\mid m}-\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} \dot{\partial}_{j} \Gamma_{k m}^{* r} \tag{2.20}\\
- & \left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \dot{\partial}_{j} \Gamma_{\ell m}^{* r}-H_{k r \mid \ell} P_{j m}^{r}-\frac{(n-1)}{F^{2}} H y_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right) P_{j m}^{r} \\
- & H_{k s} P_{r \ell}^{s} P_{j m}^{r}=0 .
\end{align*}
$$

Transvecting (2.20) by y^{j}, using (1.1d), (1.3b) and (1.3d), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} \mathrm{P}_{\ell k}^{r}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} P_{k m}^{r}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \mathrm{P}_{\ell m}^{r}=0 \tag{2.21}
\end{equation*}
$$

Thus, we have

Theorem 2.6. In $G H^{h}-B R-F_{n}$, we have the identity (2.21) provided (2.19b).

Transvecting (2.21) by the metric tensor $g_{r j}$, using (1.1e) and (1.3e), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} P_{j \ell k}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid l} P_{j k m}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} P_{j \ell m}=0 \tag{2.22}
\end{equation*}
$$

By using (1.1.c) , equation (1.22) can be written as

$$
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}+y_{k} H_{\mid r} P_{j \ell m}=0 .
$$

In view of theorem2.3, we have

$$
\begin{equation*}
P_{j e m}=0 . \tag{2.23}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}=0 . \tag{2.24}
\end{equation*}
$$

Therefore the space is Landsberg space.

Thus, we have

Theorem 2.7. An $G H^{h}-B R-F_{n}$ is Landsberg space if and only if conditions (2.24) and (2.19b) hold good.

If the covariant tensor $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$, in view of theorem2.5, (2.19b) holds good. In view of this fact, we may rewrite theorem 2.7 in the following form

Theorem 2.8. An $G H^{h}-B R-F_{n}$ is necessarily Landsberg space if and only conditions (2.24) and (2.19b) hold good and provided $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$.

Differentiating (2.5) partially with respect to y^{j}, using (1.5) and (1.1b), we get

$$
\begin{align*}
& \dot{\partial}_{j}\left(H_{k h|\ell| m}^{i}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.25}\\
& +b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Using commutation formula exhibited by (1.3b) for $\left(H_{k h \mid f}^{i}\right)$ in (2.25), we get

$$
\begin{align*}
& \left\{\dot{\partial}_{j}\left(H_{k h \mid \ell}^{i}\right)\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right) \tag{2.26}\\
& -H_{k h \mid r}^{r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* i}\right)-\dot{\partial}_{r}\left(H_{k h \mid \ell}^{i}\right) P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i} \\
& +a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Again applying the commutation formula exhibited by (1.3a) for $\left(H_{k h}^{i}\right)$ in (2.26) and using (1.5), we get

$$
\begin{align*}
& \left\{H_{j k h \mid t}^{i}+H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{l m} \tag{2.27}\\
& +H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)- \\
& \left\{H_{r k h \mid t}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \\
& \quad+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Using (2.3) in (2.27), we get

$$
\begin{align*}
& \left\{H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m} \tag{2.28}\\
& +H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right) \\
& -\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) .
\end{align*}
$$

Transvecting (2.28) by y^{k}, using (1.1d), (1.1a), (1.3b), (1.4) and (1.6), we get

$$
\begin{equation*}
\left\{H_{h}^{r}\left(\dot{\partial}_{j} \dot{r}_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \dot{F}_{n \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid t}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.29}
\end{equation*}
$$

$$
\begin{aligned}
& -H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)\right. \\
& \left.-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\partial_{j} a_{\ell m}\right) H_{h}^{i}+\left(\partial_{j} b_{\ell m}\right)\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) .
\end{aligned}
$$

Substituting the value of $\dot{\partial}_{j} b_{\ell m}$ from (2.14) , in (2. 29), we get

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.30}\\
& -H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)\right. \\
& \left.-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right)\left[H_{h}^{i}-H\left(\delta_{h}^{i}-l^{i} l_{h}\right)\right] .
\end{align*}
$$

if

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.31}\\
& -H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=0 .
\end{align*}
$$

We have at least one of the following conditions :
a) $\left(\dot{\partial}_{j} a_{\ell m}\right)=0$,
b) $H_{h}^{i}=H\left(\delta_{h}^{i}-l^{i} l_{h}\right)$.

Putting $H=F^{2} R$, the equation (2. 32b) may be written as

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right), \tag{2.33}
\end{equation*}
$$

where $R \neq 0$. Therefore the space is a Finsler space of scalar curvature .

Thus, we have

Theorem 2.9. An $G H^{h}-B R-F_{n}$ for $n>2$ admitting equation (2.31) holds is a Finsler space of scalar curvature provided $R \neq 0$, the covariant tensor $a_{\ell m}$ is not independent of directional arguments .

3. Conclusions

(3.1) The space whose defined by condition (2.3) is called generalized H^{h} - birecurrent Finsler space.
(3.2) Every generalized H^{h} - recurrent Finsler space is generalized H^{h} - birecurrent Finsler space, but the converse need not be true.
(3.3) In generalized H^{h} - birecurrent Finsler space the Berwald curvature tensor $\mathrm{H}_{\mathrm{jkh}}^{\mathrm{i}}$ and the associate tensor $\mathrm{H}_{\mathrm{jrkh}}$ satisfies the generalized birecurrence property .
(3.4) The torsion tensor $H_{k h}^{i}$, the deviation tensor H_{h}^{i}, the Ricci tensor $H_{j k}$, the vector H_{k} and the scalar curvature tensor H are all non- vanishing in our space .
(3.5) An generalized H^{h} - birecurrent Finsler space is necessarily Landsberg space if and only if conditions (2.24), (2.19b) and $\mathrm{a}_{\mathrm{j} \ell} \neq \dot{\partial}_{\mathrm{j}} \mathrm{a}_{\ell}$ hold.
(3.6) An generalized H^{h} - birecurrent Finsler space for $\mathrm{n}>2$ is a Finsler space of scalar curvature provided $R \neq 0$, the covariant tensor $\mathrm{a}_{\ell \mathrm{m}}$ is not independent of directional arguments and condition (2.31) holds .

4. Recommendations

The authors recommend that the research should be continued in the Finsler spaces because it has many applications in in relativity physics and other fields .

References

[1]. A.A.M.Saleem "On Certain Generalized Birecurrent and Trirecurrent Finsler Spaces." M.Sc. Thesis, University of Aden, Aden ,Yemen, 2011.
[2]. A.G. Walker. On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52 ,1950,pp. 36-64.
[3]. A. Moór. Untersuchungen über Finslerränme von rekurrenter krümmung: Tensor N.S,13,1963,pp. 118.
[4]. B.B.Sinha and S.P.Singh " On recurrent spaces of second order in Finsler space." Yakohama Math. J.,vol. 18,pp. 27-32, 1970.
[5]. F.Y.A .Qasem and A.A.M.Saleem" On U- birecurrent Finsler space." Univ. Aden J. Nat. and Appl . Sc.Vol. 14 No. 3 ,December. 2010.
[6]. H.S .Ruse. Three dimensional spaces of recurrent curvature: Proc. Lond. Math. Soc., 50, 1949,pp. 438446.
[7]. P. N. Pandey. A recurrent Finsler manifold admitting special recurrent transformation: Prog . Math.,13 (1-2) , 1979 ,pp. 85-98.
[8]. P. N. Pandey . A note on recurrence vector : proc. Nat. Acad. Sci. 51A,I , 1981,pp. 6-8.
[9]. P. N. Pandey." Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, India ,1993.
[10]. P.N. Pandey and R.B. Misra. Projective recurrent Finsler manifold :Publications Mathematicae Debrecen, 28(3-4) ,1981, pp.191-198 .
[11]. P.N. Pandey, S. Saxena, and A. Goswani "On a Generalized H-Recurrent space", Journal of International Academy of physical Science, Vol. 15, pp. 201-211, 2011.
[12]. R .B. Misra. On a recurrent Finsler spaces :Rev .Roumhaine Math. Pures Appl. 18 ,1973,pp. 701 -712.
[13]. R.B . Misra and F.M. Meher. A recurrent Finsler space of second order : Rev. Roumaine Math Pures,1923, pp. 563 - 569 .
[14]. R.S.D. Dubey and A.K. Srivastava. On recurrent Finsler spaces: Bull. Soc.Math. Belgique ,1981,pp.

283-288.
[15]. R.S. Mishra and H.D. Pande "Recurrent Finsler space." J, India Math. Soc. N.S. vol.32, pp.17-22, 1968.
[16]. R. Verma "Some transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, ,India, 1991.
[17]. S. Dikshit "Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, 1992
[18]. Y .C. Worg . Linear connections with zero torsion and recurrent curvature : Trans . Amer . Math. Soc ., 102 ,1962, pp. 471 - 506.
[19]. Y .C .Worg and K. Yano. projectively flat spaces with recurrent curvature : Comment Math . Helv .,35 ,1961, pp. 223 - 232 .

[^0]: * Corresponding author.

