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Abstract 

 Count data has become widely available in many disciplines. The mostly used distribution for modeling count 

data is the Poisson distribution (Horim and Levy; 1981) which assume equidispersion (Variance is equal to the 

mean). Since observed count data often exhibit over or under dispersion, the Poisson model becomes less ideal 

for modeling. To deal with a wide range of dispersion levels, Generalized Poisson regression, Poisson 

regression, and lately Conway-Maxwell-Poisson (COM-Poisson) regression can be used as alternative 

regression models. We compared the Generalized Poisson regression, Poisson Regression Model and Conway- 

Maxwell- Poisson. Data on road traffic crashes from the Anambra State Command of the Federal Road Safety 

Commission (FRSC), Nigeria were analyzed using these three methods, the results from the three methods are 

compared using the Akaike Information Criterion (AIC) with Poisson showing an AIC value of 2325.8 and GPR 

having an AIC value of 896.0278 and COM-Poisson showing an AIC value of 951.01. The GPR was considered 

a better model when analyzing road traffic crashes in Anambra State, Nigeria.  
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1.  Introduction   

 Count data arise in many fields which includes; biology, healthcare, psychology, marketing and many more. 

When response variable is a count and the researcher is interested in how this count changes as the explanatory 

variable increases. Classical Poisson regression is the most well-known methods for modeling count data, but its 

underlying assumption of equidispersion limits its use in many real-world applications with over-or under 

dispersed data. This excess variation may result to incorrect inference about parameter estimates, standard 

errors, tests and confidence intervals. Over-dispersion mostly arises for various reasons including mechanisms 

that generate excessive zero counts or censoring. As a result over-dispersed count data are common in many 

areas which in turn, have led to the development of statistical methodology for modeling over-dispersed data 

[1]. For over-dispersed data, the Negative Binomial model is a popular choice [2]. Other over-dispersion models 

include Poisson mixtures [3] and Conway-Maxwell-Poisson. A flexible alternative that captures both over- and 

under-dispersion is the Conway-Maxwell-Poisson (COM-Poisson) distribution. The COM-Poisson is a two-

parameter generalization of the Poisson distribution which also includes the Bernoulli and Geometric 

distributions as special cases [4]. The COM-Poisson distribution has been used in so many count data 

application and has been extended methodologically in various directions [1]. Therefore in this work, because of 

the problem of model selection and the appropriate method to apply in the analysis of auto-crash data bearing in 

mind their underlying assumptions, we wish to find the model that is most adequate. 

2. Methodology 

In this section we shall review the models that most widely used in the analysis of count data which include: the 

Poisson models, Conway- Maxwell- Poisson models, Generalized Poisson Regression model and the Akaike 

Information Criterion 

2. 1 Poisson Models  

This is a special case of Generalized Linear Models (GLM) framework. The simplest distribution used for 

modeling count data is the Poisson distribution with probability density function  

P(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = 𝜆𝜆𝑖𝑖
𝑦𝑦𝑖𝑖 exp(−𝜆𝜆𝑖𝑖)

𝑦𝑦𝑖𝑖 !
     𝑦𝑦1  =  0,1,2, …           (1) 

The canonical link is (𝜇𝜇)= log(𝜇𝜇) resulting in a log-linear relationship between mean and linear predictor. The 

variance in the Poisson model is identical to the mean, thus the dispersion is fixed at 𝜙𝜙=1 and the variance 

function is V(𝜇𝜇)=𝜇𝜇 [5]. The mean Poisson regression can be assumed to follow a log link, (𝑌𝑌i)=𝜇𝜇i=𝑒𝑒𝑥𝑥𝑝𝑝(𝑥𝑥i′𝛽𝛽), 

where 𝑥𝑥i denotes the vector of explanatory variables and β the vector of regression parameters. The maximum 

likelihood estimates can be obtained by maximizing the log likelihood. 

2.2 Conway-Maxwell-Poisson (COM-Poisson) Models  

The COM-Poisson distribution is a two parameter generalization of the Poisson distribution that is flexible 
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enough to describe a wide range of count data distributions, since its revival, it has been further developed in 

several directions and applied in multiple fields.  

The COM-Poisson probability distribution function is given by the equation: 

P(𝑦𝑦;𝝀𝝀,𝒗𝒗) =  𝝀𝝀𝒚𝒚

(𝒚𝒚!)𝒗𝒗𝒁𝒁(𝝀𝝀,𝒗𝒗)
                                              (2) 

for a random variable Y, where 𝑍𝑍(𝜆𝜆,𝜐𝜐)=∑ 𝜆𝜆𝑠𝑠

(𝑠𝑠!)𝑣𝑣
∞
𝑠𝑠=0 , and 𝜐𝜐≥ 0 is a normalizing constant; 𝜐𝜐 is considered the 

dispersion parameter such that 𝜐𝜐>1 represents under-dispersion, and 𝜐𝜐<1 over-dispersion. The COM-Poisson 

distribution includes three well-known distribution as special cases: Poisson (𝜐𝜐=1), Geometric (𝜐𝜐=0, 𝜆𝜆<1), and 

Bernoulli (𝜐𝜐→∞𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝜆𝜆
1+𝜆𝜆

) [6]. 

Taking a GLM approach, Sellers and Shmueli (2010) [1] proposed a COM-Poisson regression model using the 

link function, 

(E(Y)) = log𝝀𝝀 = X’β = β0 + ∑ 𝛽𝛽𝑗𝑗𝑃𝑃
𝑗𝑗=1 Xj                   (3) 

2.3 The Generalized Poisson Regression Model  

The advantage of using the generalized Poisson regression model is that it can be fitted for both over-dispersion, 

Var(𝑦𝑦𝑖𝑖) > 𝐸𝐸(𝑦𝑦𝑖𝑖), as well as under-dispersion, Var(𝑦𝑦𝑖𝑖) < 𝐸𝐸(𝑦𝑦𝑖𝑖) (Wang and Famoye (1997)). Suppose is a count 

response variable that follows a generalized Poisson distribution, the probability density function of 𝑦𝑦𝑖𝑖 , 𝑖𝑖 =

1,2, … ,𝑛𝑛 is given as (Famoye (1993), Wang and Famoye (1997)) [7]. 

𝑓𝑓(𝑦𝑦𝑖𝑖) = 𝑃𝑃(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = [ µ𝑖𝑖
1+𝛼𝛼µ𝑖𝑖

]𝑦𝑦𝑖𝑖 (1+𝛼𝛼𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑖𝑖!
exp [−µ𝑖𝑖(1+𝛼𝛼𝑦𝑦𝑖𝑖)

(1+𝛼𝛼𝑦𝑦𝑖𝑖)
 ], 𝑦𝑦 =  0,1       (4) 

      

2.4  Multicollinearity Test  

One formal way of detecting multicollinearity is by the use of the variance inflation factors (VIF). The VIF is 

used to test for the presence of multicollinearity, and is given by  

VIF = 1
1−𝑅𝑅𝑗𝑗2

                                  (6) 

Where 𝑅𝑅𝑗𝑗2 is the coefficient of determination of a regression of an explanatory variable j on all the other 

explanators. A VIF value of 10 and above indicates a multicollinearity problem (Wikipedia.org) [8]. 

Table 1 shows that all the variables have VIF values <10. Thus all the variables can be included in the 

subsequent analyses and modeling with the Poisson regression, Generalized Poisson regression, and Negative 

Binomial Regression. 
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Table 1: Multicollinearity Test 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

NUMBER OF 

CRASHES 
.609 1.643 

WEEK .971 1.030 

NUMBER  OF 

CAUSES 
.621 1.611 

 

2.5 Akaike Information Criterion (AIC)  

When several models are available, one can compare the models performance based on several likelihood 

measures which have been proposed in statistical literatures. One of the most popularly used measures is AIC. 

The AIC penalized a model with larger number of parameters, and is defined as  

𝐴𝐴𝐼𝐼𝐶𝐶=−2𝑙𝑙𝑛𝑛𝐿𝐿+2𝑝𝑝                (7)  

Where 𝑙𝑙𝑛𝑛𝐿𝐿 denotes the fitted log likelihood and 𝑝𝑝 the number of parameters. A relatively small value of AIC is 

favorable for the fitted model [6]. 

3. Analysis and Results  

The data were analyzed using R Software and the results obtained are given below. Before performing the 

analysis on the three methods used, testing the data for multicollinearity was conducted. The test results are 

shown in table II below: 

5. Conclusion  

Poisson regression model, GPR, and Conway-Maxwell- Poisson regression model were compared to determine 

a better model used in modeling auto-crashes in Anambra State, Nigeria. The criterion for selection of the best 

model used is AIC. Best model is the model that has the smallest AIC value. 

6. Recommendation 

Based on AIC values in Table 1, the smallest AIC value is a Generalized Poisson Regression model. Thus, the 

best model for analyzing traffic crash data or over and under-dispersed data  is the Generalized Poisson 

Regression model.  
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Table 2: Parameter estimates, standard error and AIC value for models 

 POISSON QUASI-POISSON GPR COM-POISSON 

Estimated 

coefficient 

Std 

Error  

Estimated 

coefficient 

Std 

Error  

Estimated 

coefficient 

Std 

Error  

Estimate

d 

coefficie

nt 

Std 

Error  

intercept 2.907810 0.052759 2.907810 0.228054 2.255499 0.124604 16.9459 6.2129 

Number of 

crashes 

0.072249 0.006912 0.072249 0.029879 0.079212 0.027320 2.1853 0.9560 

Season (wk 

of the year) 

-0.005722 0.001229 -0.005722 -0.005314 -0.004059 0.004649 -0.1597 0.1509 

Number of 

causes 

        

AIC 2325.8 - 896.0278 951.01 
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Appendix 

>y= 

c(47,23,19,11,9,23,30,71,65,7,55,8,46,76,3,67,10,18,10,30,0,6,61,47,67,35,81,67,46,12,32,11,41,22,44,16,0,12,

29,25,31,15,4,5,84,45,61,27,0,35,20,72,44,35,10,33,85,10,42,0,14,11,95,82,45,61,47,70,32,7,18,42,19,20,9,11,9

,23,30,71,53,12,0,7,31,0,33,8,7,50,33,5,2,32,3,6,4,4,1,0,85,44,3,16) 

> x1 = 

c(5,4,10,6,3,6,1,1,7,7,7,6,2,1,3,3,1,8,3,2,0,10,11,5,1,4,6,4,7,2,5,4,4,2,4,2,0,3,2,5,2,6,1,1,5,6,8,7,0,3,10,6,4,2,2,2,

6,2,1,0,3,2,11,10,11,5,10,7,8,8,7,4,5,4,10,6,6,1,1,3,9,4,0,2,4,0,7,2,2,4,2,2,1,7,1,1,1,2,1,0,8,4,1,3) 

> x2 = 

c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,

40,41,42,43,44,45,46,47,48,49,50,51,52,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52) 

> x3 = 

c(5,4,3,2,3,3,1,1,7,7,7,6,2,1,3,3,1,8,3,2,0,3,3,5,1,4,6,4,7,2,5,4,4,2,4,2,0,3,2,5,2,6,1,1,5,6,8,7,0,3,3,6,4,2,2,2,6,2,1,

0,3,2,3,4,5,1,4,2,3,2,3,4,5,4,3,2,2,1,1,3,3,4,0,2,4,0,3,2,2,4,2,2,1,2,1,1,1,2,1,0,2,1,1,3) 

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 
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Loading required package: stats4 

Loading required package: splines 

> model = vglm(y~x1+x2+x3, family = genpoisson) 

Warning message: 

In log(theta + x * lambda) : NaNs produced 

> summary(model) 

Call: 

vglm(formula = y ~ x1 + x2 + x3, family = genpoisson) 

Pearson residuals: 

                   Min      1Q  Median     3Q    Max 

rhobit(lambda) -0.6557 -0.5331 -0.2506 0.4613 2.7072 

loge(theta)    -4.4189 -0.3801  0.3893 0.8479 0.9771 

Coefficients: 

               Estimate Std. Error z value Pr(>|z|)     

(Intercept):1  2.255499   0.124604  18.101  < 2e-16 *** 

(Intercept):2  0.996075   0.200239   4.974 6.54e-07 *** 

x1             0.079212   0.027320   2.899 0.003739 **  

x2            -0.004059   0.004649  -0.873 0.382701     

x3             0.137679   0.040374   3.410 0.000649 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Number of linear predictors:  2  

Names of linear predictors: rhobit(lambda), loge(theta) 

Dispersion Parameter for genpoisson family:   1 

Log-likelihood: -443.0139 on 203 degrees of freedom 

Number of iterations: 13  

> AIC(model) 

[1] 896.0278 

> model = glm(y~x+x2+x3, family = poisson) 

Error in eval(expr, envir, enclos) : object 'x' not found 

> model = glm(y~x1+x2+x3, family = poisson) 

> summary(model) 

Call: 

glm(formula = y ~ x1 + x2 + x3, family = poisson) 

Deviance Residuals:  

   Min      1Q  Median      3Q     Max   

-8.100  -3.884  -1.411   2.021   9.565   

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.907810   0.052759  55.115  < 2e-16 *** 

x1           0.072249   0.006912  10.452  < 2e-16 *** 

x2          -0.005722   0.001229  -4.654 3.25e-06 *** 

x3           0.090689   0.010355   8.758  < 2e-16 *** 
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 (Dispersion parameter for poisson family taken to be 1) 

    Null deviance: 2276.6  on 103  degrees of freedom 

Residual deviance: 1840.5  on 100  degrees of freedom 

AIC: 2325.8 

Number of Fisher Scoring iterations: 5 

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

> model.nb = glm(y~x1+x2+x3) 

> summary(model.nb) 

Call: 

glm(formula = y ~ x1 + x2 + x3) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-42.656  -14.817   -7.673   11.592   56.389   

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  16.9459     6.2129   2.728  0.00754 ** 

x1            2.1853     0.9560   2.286  0.02438 *  

x2           -0.1597     0.1509  -1.059  0.29233    

x3            2.7158     1.4705   1.847  0.06771 .  
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for gaussian family taken to be 517.7724) 

    Null deviance: 64857  on 103  degrees of freedom 

Residual deviance: 51777  on 100  degrees of freedom 

AIC: 951.01 

Number of Fisher Scoring iterations: 2 

> model.compis = glm.compois(y~x1+x2+x3) 

Error: could not find function "glm.compois" 

> model.compois = glm.compois(y~x1+x2+x3) 

Error: could not find function "glm.compois" 

> model.compois =glm(y~x1+x2+x3) 

> summary(model.compois) 

Call: 

glm(formula = y ~ x1 + x2 + x3) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-42.656  -14.817   -7.673   11.592   56.389   

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  16.9459     6.2129   2.728  0.00754 ** 

x1            2.1853     0.9560   2.286  0.02438 *  
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x2           -0.1597     0.1509  -1.059  0.29233    

x3            2.7158     1.4705   1.847  0.06771 .  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 (Dispersion parameter for gaussian family taken to be 517.7724) 

    Null deviance: 64857  on 103  degrees of freedom 

Residual deviance: 51777  on 100  degrees of freedom 

AIC: 951.01 

Number of Fisher Scoring iterations: 2 

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

>  model.compois =glm(y~x1+x2+x3) 

> summary(model.compois) 

Call: 

glm(formula = y ~ x1 + x2 + x3) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-42.656  -14.817   -7.673   11.592   56.389   

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    
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(Intercept)  16.9459     6.2129   2.728  0.00754 ** 

x1            2.1853     0.9560   2.286  0.02438 *  

x2           -0.1597     0.1509  -1.059  0.29233    

x3            2.7158     1.4705   1.847  0.06771 .  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 (Dispersion parameter for gaussian family taken to be 517.7724) 

    Null deviance: 64857  on 103  degrees of freedom 

Residual deviance: 51777  on 100  degrees of freedom 

AIC: 951.01 

Number of Fisher Scoring iterations: 2 

 

 

 

 


