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Abstract 

Purple coloured natural ruby has been studied by surface sensitive tool like XPS supported by XRD, X-ray 

tomography (micro CT), FESEM, TEM and EDS. While XPS and EDS established the presence of transitional 

elements like Cr, Fe, Ti, the phases, morphologies and microstructures were studied by XRD, FESEM and 

TEM. X-ray micro CT provided non-destructive insights into the morpho-structural state of sample. UV-Vis and 

FTIR spectra of the ruby, recorded both in absorbance and reflectance mode, confirmed the occurrence of the 

above transitional elements contributing to typical colour display. Core level spectra of Cr, Fe, Ti, Al and O 

studied by XPS identified the ionic states of the elements.  Results of the systematic and detailed investigations 

carried out in the study conclude that presence of low quantities (trace levels) of Cr, Fe,Ti coupled with inter-

valence charge transfer between Fe and Ti accounts for the purple colour of  natural ruby. The paper further 

highlights how surface and bulk characterization studies together facilitate better interpretation and meaningful 

conclusion.  

------------------------------------------------------------------------ 

*Corresponding author.  

94 
 

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 25, No  2, pp 94-114 

Keywords: Purple Coloured Ruby; XRD; XPS; X-ray Micro CT; Inter-Valence Charge Transfer; 

Microstructure; Ti3+; Fe3+; Cr3+; UV-Vis Spectra. 

1. Introduction  

Ruby is a precious coloured gem where Cr-related light emission takes place in corundum (Al2O3). The thermo-

mechanical properties of ruby are excellent and rival those of diamond [1]. Pure corundum appears white or 

colourless but presence of small amounts of transitional impurities such as Cr, Ti, Fe, V, Cu, Mg produces 

colour like red, pink, orange and several mixed shades [2-12]. Electronic transition taking place in ruby at the 

outer 3d3 shells of Cr3+ ions gives rise to red colour. Such mechanism is exploited to produce tunable laser and 

sensors for temperature and pressure. Despite several applications of ruby in current technologies, the aesthetic 

use of the gem overtakes all other uses because of its deep red colour (pigeon blood) and attractive shades. 

Ruby, particularly of natural origin, has been in use by mankind over many centuries, thus relatively common 

scientific techniques/methods like UV-Vis optical spectra [13, 14], X-ray diffraction (XRD) [15-17], IR 

(infrared), ESR (electron spin resonance) and Raman spectroscopy [9, 18-22] were the first to be applied and 

reported in literature for characterization and evaluation. In such a backdrop, few works on characterization of 

ruby by XPS (X-ray photoelectron spectroscopy) come to notice [16, 23] and that too any published work hardly 

exist today on X-ray micro computed tomography (micro CT) study of ruby.  

XPS is a modern surface sensitive tool; however, for any unambiguous characterization / identification of 

material, its result has to be adequately backed by bulk microstructural analysis. In such scenario, important 

bulk characterization tools like XRD (X-ray diffraction), FESEM (field emission scanning electron 

microscopy), TEM (transmission electron microscopy), SAED (selected area electron diffraction), EDS (energy 

dispersive spectra of x-ray), UV-Vis (ultraviolet-visible) and FTIR (Fourier transform infrared) spectroscopy 

have been employed in this work to support and complement the XPS results. For the first time, latest non-

destructive technique like X-ray micro CT has been used here to obtain direct visual picture of total internal 

structure and reconstruct  three dimensional (3D) image of ruby. The overall study experimentally establishes 

the existence of Ti3+ jointly with Fe3+ and Cr3+ to account for the mixed colour / shade (purple) in the natural 

ruby. 

Purple ruby of natural origin has been chosen in this work because of its easy and abundant availability in the 

vicinity. Its mixed shade is appealing from aesthetic standpoint. The experimental results in the investigation are 

loaded with potential scope for improvement of colour / shade of low grade rubies through use of several 

processing techniques (heat treatment, chemical leaching, plasma, laser, e-beam, ion implantation, etc.) towards 

high value addition. One may like to avail the scientific results of the study for artificial growth of purple ruby 

crystals (using crystal growth processes like Czochralski, Bridgman and Vernouli) towards commercial 

exploitation. 

2. Materials and methods 

The typical purple colour / shade exhibited by natural ruby (origin: Kalahandi, Odisha, India) used in this work 
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is shown in figure 1. The rubies shown in the figure are 0.5-1.5 cm in size. Some of them were pulverized to -

300 BSS (53 µm) size for various characterization studies. While powder samples were employed for XPS, 

XRD, TEM, SAED and FTIR, polished specimens were used for FESEM, EDS and UV-Vis spectrometry 

studies. X-ray photoelectrons were collected from pelletized powder sample by employing the model S/N-10001 

(Project No. 251, Prevac, Poland) with a VG Scienta-R3000 hemispherical energy analyzer. AlKα radiation 

(operating at 200 W, 10 kV and 20 mA) was employed as the incident radiation and ultra high vacuum condition 

(>10-9 mbar) was maintained in the chamber during analysis. General resolution of the instrument: 0.2 eV. The 

spectrometer was well calibrated taking Ag standard and referring to the B.E. of the Ag3d5/2 (368.2 eV). While 

Full survey spectra (0-1486.0) were recorded at pass energy 200 eV, high-resolution spectra (at specific peaks) 

were recorded at 20 eV pass energy. XRD pattern of powder sample was recorded in 2θ range 6-1000 by 

employing PANalytical X’Pert Pro diffractometer using CuKα radiation (λ = 0.15406 nm). Noting the observed 

peak positions, d values were determined and hkl indices of planes were assigned by comparison with the d 

values in JCPDS (1999) data files (Table 1). Surface morphologies of the polished samples were observed under 

FESEM (ZEISS SUPRA 55). Microstructures of the grains were observed by TEM: TECNAI G2 (200 kV), FEI, 

Netherland having additional facility for selected area electron diffraction (SAED). The Gatan Inc.’s digital 

micrographTM software was used to identify the phases and their corresponding planes from SAED pattern.  

Elemental compositions were studied by EDS attached both to FESEM and TEM. Internal and external (surface) 

imaging and microstructural investigation of  the ruby sample was performed by an X-ray micro CT (model: 

SkyScan 2211, Bruker, Belgium). The best achievable spatial resolution of the CT machine is 600 nm. 

Reconstruction of scanned images was performed by using SkyScan’s InstaRecon software. Sample was 

scanned with a full 3600 rotation (0.20 increments) at following conditions: accelerating voltage - 60 kV and 

target current- 270 µA. The reconstructed images were transferred into 3D models using CTvox and Avizo 9.0.0 

platforms. FTIR spectra for powder samples were recorded in the range 400-4000 cm-1 using a Perkin-Elmer 

Spectrum GX spectrometer with spectral resolution of 1 cm-1. All the characterization facilities are available at 

the CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, India. 

3. Results  

3.1 XPS studies 

XPS of the ruby samples was studied using AlKα radiation and the broad spectral feature (full survey spectra) of 

a typical sample is shown in figure 2a. The binding energy (BE) spectra show the presence of several elements. 

The de-convoluted (following Gaussian-Lorentzian curve fitted function) high resolution core level spectra of 

Cr2p, Al2p, Ti2p, Fe2p and O1s states are shown in figure 2b, figure 2c, figure 2d, figure 2e and figure 2f 

respectively. The Cr2p spectra when de-convoluted (figure 2b) produce two peaks respectively at 576.7 and 

586.6 eV due to Cr3+. The core level BE spectra of Al 2p shown in figure 2c when de-convoluted produce two 

peaks at 74.1 and 75.3 eV respectively due to Al3+ and mixed valence states . The de-convolution of Ti 2p 

spectra produce four peaks (figure 2d). The signatures due to Ti3+ (457.6 eV:2p3/2, 463.5 eV:2 p1/2 ) and Ti4+ ( 

458.5 eV:2p3/2, 464.7 eV:2 p1/2) are identified here. The spectra of Fe 2p shown in figure 2e when de-convoluted 

produce four peaks. While two of the peaks show signatures of Fe2+ at BE of 708.5 and 722.4 eV, the rest two 

peaks at 710.6 and 724.4 eV are the signatures of Fe3+. The O1s spectra (figure 2f) show three different peaks at 
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530, 531.7 and 534.3 eV upon de-convolution. These peaks are the signatures of three different oxygen species, 

which may be ascribed to lattice site / surface oxygen contamination. The summary of all XPS results including 

possible peak assignments is presented in Table 2. 

 

Figure 1: Typical purple colour / shade of the natural ruby used in the study. 

Table 1: JCPDS (1999) data files used for identifying various phases (with space groups) in the ruby sample 

and their lattice constant values. 

Phase and Structure Lattice constants 

(in nm) 

      Space group JCPDS 

(1999)  

a b C 

Al2O3 (Rhombohedral)  0.47588  1.2992        R3�c (167) 42-1468 

Al2O3.3H2O (Monoclinic)  0.8624 0.5060 0.9700       P21/n(14) 02-0249 

Al2O3.54SiO2 (Orthorhombic) 2.0104 1.9897 1.3395       Pnma (62) 44-0003 

Cr2O3 (Rhombohedral) 0.49516   1.35987       R3�c (167) 84-1616 

TiO2 (Tetragonal)  0.4508  0.3027     P42/mnm (136) 82-0514 
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Figure 2a: Full survey XPS spectra of the purple ruby. 

 

 

Figure 2b: XPS spectra of Cr2p level in the purple ruby. 

 

 

                                         Figure 2c: XPS spectra of Al2p level in the purple ruby. 
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Figure 2d: XPS spectra of Ti2p level in the purple ruby. 

                    

Figure 2e: XPS spectra of Fe2p level in the purple ruby. 

3.2  XRD and SAED studies 

Figure 3 shows the XRD pattern observed for the purple ruby. By determining the d values and comparing them 

with JCPDS data files (Table 1), identification of crystallographic phases was done. Major phases thus identified 

and their possible planar indices (hkl) are shown in Table 3. Al2O3 (including water of crystallization) is found to 
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be the major phase; Cr2O3, TiO2 and Al2O3.54SiO2 are noticd to be the minor phases (corresponding to smaller 

peaks). All the phases except aluminium silicate are detected in the selected area electron diffraction (SAED) 

pattern shown in figure 4. Table 4 presents the determined d values, identified phases and correspong planes 

(hkl) observed from SAED pattern. 

 

Figure 2f: XPS spectra of O1s level in the purple ruby. 

3.3 FESEM, TEM and EDS studies 

Figure 5a shows the surface microstructure of a typical purple ruby (as-collected and polished) by FESEM. 

Figure 5b shows EDS of elements detected at a point located on a selected grain, as indicated spectrum 1 in 

figure 5a. EDS recorded at a point just outside the selected grain (indicated as spectrum 2 in figure 5a) is shown 

in 5c. The EDS peak intensities of Al, Ti, Si, O and trace elements are observed to vary across the sample 

surface. TEM microstructures of the purple ruby (observed at two different points) are shown in figure 6a and 

6b and their corresponding EDS are presented in figure 6c and 6d respectively. Very small peaks of Cr and Fe 

are marked in the energy range of 5.1- 6.1 and 6.1-7.1 keV respectively and their distributions also are found to 

vary across the surface.   

3.4 X-ray micro CT studies 

Figure 7(a-e) shows the external (surface) and internal (morpho-structure) images recorded for the ruby sample 

by employing the non-destructive radiation technique such as X-ray micro CT. Specimen was used in its natural 

form (no processing or preparation like thin sectioning, surface polishing, etc. was done). While surface 

tomographic image is shown in figure 7(a), figure 7(b) shows the internal tomographic morphology (all in grey 
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scale). Figure 8 shows the internal structure of the specimen in grey scale being transferred to colour form 

(given virtual colours).  Figure 7c, d and e show the grey images of slices through the center of the sample 

which are taken in X-Y, Y-Z and Z-X planes of the CT scanner’s co-ordinate system. Several mineral phases 

(inclusions / impurities) along with matrix are noticed in figure 7 and 8.         

                   

Table 2: Binding energy (BE) values of Cr2p, Al2p, Ti2p, Fe 2p and O1s levels determined from XPS analysis 

of the purple ruby. 

 
Core level  spectra 

 
     BE (eV) values and peak assignment 
        in the observed core level spectra 

 

 
 

 

 
Cr2p level 

 
Cr2p3/2 

         576.7 
            Cr3+ 

         (Cr2O3) 

 
 

 

 

 
 
 

Cr2p1/2 

 
         586.6 
          Cr3+ 

       (Cr2O3) 

 
Al2p level 

 
74.1 
 Al3+ 

 (Al2O3) 

         
             75.3 

                   Al-O-H such as 
          AlO(OH),  AlO(OH)2,  Al(OH)3 

 
 

Ti2p level Ti2p3/2 457.6 
Ti3+ 

( Ti2O3) 

458.5 
Ti4+         

(TiO2) 

    

 

 

 

Ti2p1/2 463.5 
Ti3+ 

( Ti2O3) 

464.7 
Ti4+        

(TiO2) 

Fe2p level Fe2p3/2 708.5 
Fe2+ 

(FeO) 

710.6 
Fe3+ 

(Fe2O3, α-FeOOH) 

    

 

  
Fe2p1/2 

 
722.4 
Fe2+ 

(FeO) 

 
724.4 
Fe3+ 

(Fe2O3,  α-FeOOH) 

 

 
O1s level 

 
530.0 
(O2-) 

Cr2O3, FeO,  
FeOOH, TiO2 

 
531.7 
Al2O3, 

Al2O3.3H2O, AlO(OH) 

 
534.3 

Surface 
contaminated 

OH 
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Figure 3: XRD pattern of the purple ruby showing presence of various phases. 

 

Figure 4: SAED pattern of the purple ruby. 

Table 3: Major crystallographic phases (identified from strong peaks in XRD) and corresponding planes in the 

purple ruby sample. 

d-spacing (nm) 

determined from 

XRD  

d-spacing (nm) and  corresponding 

phases in JCPDS data files (Table 1) 

Planes 

identified 

(hkl) 

   

1.001301 1.00201, Al2O3.54SiO2 (200) 

0.348268 0.348, Al2O3 (012) 

0.335022 0.333, Al2O3.3H2O (202) 

0.255201 0.2551, Al2O3 (104) 

0.237892 0.2379, Al2O3 (110) 
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0.208434 0.2085, Al2O3 (113) 

0.200738 0.199, Al2O3.3H2O (023) 

0.173971 0.17398, Al2O3 (024) 

0.160106 0.16014, Al2O3 (116) 

0.140424 0.14045, Al2O3 (214) 

0.137346 0.13738, Al2O3 (300) 

0.104253 0.10427, Al2O3 (226) 

 

3.5 UV-Vis spectral studies 

Reflectance and absorbance spectra of polished purple ruby specimen were recorded in the UV-visible region 

and the results are presented in figure 9. The reflectance is seen to rise from 425 to 480 nm, followed by an 

inflexion. Relatively sharp rise is noticed to take place at 450-470 nm. Another  rise at 580 nm is also observed 

which continues till a very steep rise takes place between 590 and 650 nm. It may be mentioned that 425 nm and 

590 nm are the onset wavelengths of blue and pink colours respectively. The absorbance spectra in the figure are 

found to be opposite in nature to the reflectance spectra.  

3.6 FTIR spectral studies  

FTIR spectra (absorbance as well as reflectance) recorded for the purple ruby (taken in pelletized powder form) 

is shown in figure 10. The absorbance intensities in the plot have been multiplied 120 times to strengthen the 

peaks for a suitable comparison with the reflectance spectra. The nature of the reflectance spectra in the figure is 

seen to be almost opposite to the absorbance spectra, a finding similar to that observed in figure 9. 

   

Table 4: Crystallographic phases with corresponding planes identified from SAED pattern of the purple ruby 

(using Gatan Inc.’s digital micrographTM software). 

d-spacing (nm) determined from 

SAED  

Phases and planes (hkl) identified 

  

0.34616 Al2O3 (012) 

0.33404 Al2O3.3H2O (202) 

0.25540 Al2O3 (104) 

0.25046 Al2O3.3H2O (311) / Cr2O3 (110) 

0.20954 Al2O3 (113) 

0.19974 Al2O3.3H2O (023) 
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0.17086 Al2O3 (024) 

0.16221 Al2O3 (116) 

0.13446 Al2O3 (300) 

0.133672 TiO2 (301) 

0.12654 Cr2O3 (119) 

0.11676 Al2O3 (220) 

0.10527 Al2O3 (226) 

 

Figure 5: (a) FESEM image of the purple ruby  

   (b) Corresponding EDS observed at a point on a selected grain, indicated as spectrum 1 in (a) 

   (c) Corresponding EDS observed at a different point (outside the typical grain), indicated as spectrum 2 in (a).    

 

4. Discussion 

XPS is a highly surface sensitive tool. With the present spectrometer, a depth maximum up to 10 nm could be 

analysed.  Since colour / shade of ruby is influenced by factors like refractive index, absorption coefficient, etc., 

it is necessary to do the bulk characterizations before XPS study. The discussion here therefore prefers first to 

address the results obtained from XRD, SAED, FESEM, TEM, X-ray micro CT and EDS. UV-Vis and FTIR 

studies.  
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From the XRD pattern shown in figure 3, the d values were determined and the possible phases and hkl indices 

of the planes have been identified by comparing with JCPDS data files (Table 1). It is observed that the peaks / 

reflections are mostly due to alumina and its associated phases: Al2O3, Al2O3.3H2O and Al2O3.54SiO2. The 

results are summarized in Table 3. It is evident that while Al2O3 shows two strong peaks, three medium intensity 

peaks, three weak peaks and seven very weak peaks, its phase containing water of crystallization (Al2O3.3H2O) 

exhibits one strong peak, one weak peak and three very weak peaks.              

 

Figure 6: (a) TEM microstructure of the purple ruby (b) TEM microstructure of the same ruby recorded at a 

different point (c) EDS corresponding to figure (a) showing presence of Cr (d) EDS corresponding to figure (b) 

showing presence of Fe. 

 

Figure 7: Sequence of grey images of the purple ruby recorded by X-ray micro CT: (a) surface tomographic 

image (b) internal tomographic image; (c), (d) and (e) images of tomographic slices through center of specimen. 
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Figure 8: Transferred colour (virtual colour) tomographic image of figure7 (b) showing internal structure of the 

ruby: matrix-dark red, impurities-yellow, white and dark blue. 

  

 

Figure 9: UV-Vis absorbance and reflectance spectra of the purple ruby. 

 

Figure 10: FTIR absorbance and reflectance spectra of purple ruby. 
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Aluminium silicate (Al2O3.54SiO2) shows one medium intensity peak and three weak peaks. Further, the XRD 

pattern exhibits two weak peaks due to Cr2O3 and two weak peaks due to TiO2. Such poor intensity peaks are 

quite expected due to their low contents in the ruby. It may be interesting to note the considerable presence of 

water of crystallization (3H2O) in alumina. Such acquiring of water molecule in ruby appears unusual because 

aluminium hydrate (Al2O3.3H2O / Al(OH)3) is known to be produced (Bayer’s process) when alumina is treated 

with the solution of NaOH at 1750 C under pressure to produce NaAlO2 (alkaline solution), followed by cooling 

under bubbling CO2 [24]. Since the ruby used here is of natural origin, Bayer’s route of formation of 

Al2O3.3H2O appears to be far-fetched. It might have taken place under the earth crust by natural processes. 

Hydroxylated alumina (Al(OH)3) exists in two major forms: diaspore and bohemite [25]. The presence of 

diaspore in ruby has been detected by some workers using IR spectroscopic data, as can be found in literature 

[26-28]. The present study in contrast detects Al2O3.3H2O / Al(OH)3 from XRD. 

The SAED pattern shown in figure 4 has been identified and summarized in Table 4. Except aluminium silicate 

(Al2O3.54SiO2), the rest of the phases observed in XRD are detected in SAED. The d values and their 

corresponding hkl indices are presented in the Table 3. The FESEM microstructure (figure 5a) of the typical 

ruby sample shows polycrystalline morphology on the surface. Single crystal ruby is produced by nucleation 

and controlled growth process where directional withdrawal of heat/cooling takes place very slowly, e.g. 

Czochralski method. Since the origin of the ruby investigated here is mine/earth crust, one can hardly expect the 

above controlled process conditions to have existed in the earth crust at the time of crystal formation millions of 

year ago. figure 5b and 5c (EDS) show the presence of elements such as Al, Ti, Si, O. Cr is not detected in such 

micron level scanning. Strong peak due to Au is seen to arise from gold coating of specimen in FESEM 

scanning. Since Cr is the most crucial impurity element in ruby that produces red colour, it becomes quite 

pertinent to ascertain its presence. The ruby sample was therefore taken in the form of fine powder to do TEM 

study. The powder was ultrasonicated in ethanol medium, and then one drop of the suspension liquid was loaded 

on to copper grid (carbon coated) of 2 mm diameter followed by drying under IR lamp. The grid was introduced 

into the TEM and the microstructure of the fine ruby grain along with EDS of the sample was observed. The 

results are presented in figure 6. From the nm scale microstructures shown in figure 6a and 6b, more refined 

morphologies are seen. Corresponding EDS shown in figure 6c and 6d respectively show the presence of 

various elements in the ruby matrix. While figure 6c detects Al, Si, Ti, Cr and O, figure 6d records Al, Si, Fe 

and O. X-ray  micro CT images presented in figure 7 (a, c, d, e) show the grey images of top surface as well as 

three slices through centre of specimen.  Internal characteristic and morpho-structural investigation of ruby 

sample. Irregular undulations noticed on the surface of ruby (figure 7a) may be attributed to its genesis from 

mine/earth crust. The 3-D tomographic grey scale image shown in figure 7b was transferred to colour image 

(figure 8) for easy distinction between different phases present in the sample by assigning different colours to 

them. Four types of phases are marked by different colour codes: matrix (deep red), impurities/inclusions 

(yellow, white and dark blue). The presence of at least four types of phases is also evident from tomographic 

slices shown in figure 7 c, d, & e:  matrix (grey) and impurities (light grey, deep grey and white). Some micro 

cracks are observed in figure 7d & e. Consolidating the FESEM, TEM and X-ray micro CT results one may find 

that impurities distributions are not uniform in the ruby at sub-micron / nm levels. 

UV-Vis spectra of the ruby are presented in figure 9. It is marked that the rise in reflectance occurs at 425 and 
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580 nm respectively. Since 425 and 590 nm are the onset wavelengths of blue and pink colours respectively, the 

above two rises may be due to the presence of Ti and Cr. Thirangoon [29] has reported that optical absorption at 

around 426 and 540 nm occurs due to Ti4+ and Cr3+ respectively and the absorption at around 470 nm occurs due 

to Fe3+. The UV-Vis absorption spectra studied on diaspore samples of Turkey show similar results [30, 31]. In 

the present case, the occurrence of strong absorption (figure 9) at around 470 nm may therefore be attributed to 

Fe3+.  

The FTIR spectra (absorbance and reflectance) of the ruby (figure 10) have been interpreted based on literature 

report [29]. Accordingly, the absorption peak at 3621 cm‐1 (marked as circle) may be attributed to kaolinite (Al2 

Si2 O5 (OH)4). Boehmite (γ-AlO(OH)) is ascribed to the peaks at 1989 cm-1, 2123 cm‐1 and to the broad 

absorption band in the range 3000-3400 cm-1 (indicated with two rectangular boxes). Following Schwarz et al. 

[32] in case of ruby of Tanzania origin, one may assign the peaks at 1989, 2123, 2928 and 3000 cm-1 to diaspore 

(due to structurally bound-OH bond). The FTIR results are seen to corroborate our XRD results.  

XPS survey spectra and the de-convoluted peaks of the core level high resolution spectra for various elements in 

the ruby sample are presented in figure 2 (a-f). Table 2 summarizes all the results of the XPS analysis. To begin 

with, one can always look for the core level spectra of Al because the basic matrix of ruby is alumina. As seen 

from figure 2c and Table 2, the single peak arising due to Al2p (in the survey spectra) produces two separate 

peaks at 74.1 and 75.3 eV respectively after de-convolution. Following literature [33], the first peak (strong) is 

assigned to Al3+, as in the case of Al2O3 and the second peak (weak) may be attributed to Al but the valence 

state may be 1+, 3+ , etc. as in the case of AlO(OH), Al(OH)3 and AlO(OH)2 (see Table 2). In view of the 

evidence obtained for Al(OH)3 from XRD and the evidence for boehmite (γ-AlO(OH)) obtained from  FTIR (as 

reported above), one may think of a mixed valency state for Al to  exist in the present case of purple ruby. 

Figure 2b shows well-defined spin-coupled peaks at the BE of 576.7 eV and 586.6 eV for Cr2p3/2 and Cr2p1/2 

respectively. As per literature [34-36], the Cr2p3/2 and Cr2p1/2 peaks are attributed to Cr3+. Figure 2d depicts the 

de-convoluted spectra of Ti2p. It may be observed from Table 2, the peaks attributed to Ti3+ are at 457.6 eV 

(Ti2p3/2) and 463.5 eV (Ti2p1/2); the peaks at 458.5 eV (Ti2p3/2) and 464.7 eV (Ti2p1/2) are attributed to Ti4+ [37-

39]. Similarly, figure 2e and Table 2 show that the peaks at 708.5 eV (Fe2p3/2) and 722.4 eV (Fe2p1/2) are 

attributed to Fe2+; the peaks at 710.6 eV (Fe2p3/2) and 724.4 eV (Fe2p1/2) are due to Fe3+ [23, 40, 41]. The O1s 

level spectra (figure 2f) is observed at three energy levels (peaks), as shown in Table 2: 530.0, 531.7 and 534.3 

eV and the ionic states of O are seen here to be similar to that exist in the compounds referred in Table 2 [36, 

42,  43]. It is interesting to note that the O1s spectra corroborate the Al2p spectral finding in respect of Al2O3, 

AlO(OH) and Al2O3.3H2O/Al(OH)3. Similarly, the spectra corroborate the occurrence of both Fe2+and Fe3+ (Fe-

OOH, FeO) in the Fe2p spectra, and also corroborate the occurrence of Ti4+ (TiO2) in the Ti2p spectra and Cr3+ 

(Cr2O3) in the Cr2p spectra. The O1s spectra further demonstrate that the surface of the purple ruby contains -

OH whose origin is attributed in literature to contamination [42]. 

In the light of the above narratives, the salient findings in this investigation may be summarized as follows: 

(i) XRD pattern shows the following peaks/reflections (corresponding to phases): Al2O3 (major), Al2O3.3H2O / 
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Al(OH)3 (second major), Al2O3.54SiO2 (medium); Cr2O3 (minor), TiO2 (minor) 

(ii) SAED pattern detects the following phases: Al2O3 (major), Al2O3.3H2O (second major), Cr2O3 (minor), TiO2 

(minor) 

(iii) Morphology observed under FESEM & TEM: polycrystalline 

(iv) X-ray micro CT (non-destructive testing) image of surface and interior: shows internal impurity inclusions   

(v) Detection of elements:  

      (a) from EDS attached to FESEM: Al, Ti, Si, O 

      (b) from EDS attached to TEM: Al, Si, Ti, Cr, Fe, O 

(vi) Transitional element ions detected by XPS:  

      Cr3+,   Ti3+, Ti4+,    Fe2+, Fe3+  

(vii) Ions identified in UV-Vis spectra: Cr3+, Ti4+, Fe3+  

It may be inferred from the above that XPS detect the presence of two additional ions in the purple ruby: Ti3+ 

and Fe2+. Achiwawanich et al. [23] have discussed in the case of surface analysis of Mong Hsu rubies of 

Myanmar (Burma) that blue colour arises in ruby by Fe2+/Ti4+ inter-valence charge transfer (IVCT). This can 

occur when the pair of Fe2+/Ti4+ ions (within 0.01%) remain in adjacent positions in the Al2O3 matrix, allowing 

the overlap of their 3d orbitals [44, 45]. Our XPS spectra (figure 2e, Table 2) show the presence of Fe3+ and Fe2+ 

in the ruby in almost equal proportions. In ruby Fe3+ produces characteristic yellow colour and Cr3+ produces red 

colour (in octahedral environment in α-Al2O3) [8, 46]. A combined presence of Fe3+ and Cr3+ causes 

superposition of yellow and red that leads to produce colours like pink (with minimal traces of Cr & Fe) and 

orange (with higher concentration of Fe than Cr)  [23, 47, 48]. Nassau [3] and other workers [26-28] have 

reported and discussed the issue of Fe and Ti in literature. According to Nassau [3], in sapphire and a variety of 

corundum, Al2O3, impurities like Fe and Ti can exist in two valence states with two combinations: (a) Fe2+ and 

Ti4+ (b) Fe3+ and Ti3+. A single electron can be caused to transfer from the Fe to the Ti by light absorption and 

back again. Since state (b) has a higher energy than state (a), the transition from (a) to (b) involves the 

absorption of energy, producing a broad intense absorption band at the red end of the spectrum and resulting in 

the deep blue colour. Thus, in IVCT a light induced reversible reaction Fe2+ + Ti4+ ↔ Fe3+ + Ti3+ takes place 

between state (a) and state (b). 

As stated above, in ruby red colour is produced by small amount Cr3+ and blue colour is produced by trace 

amounts of Fe, Ti by IVCT mechanism. The superposition of red and blue colour produces the secondary colour 

magenta which is nothing but red purple. The colour of the natural ruby sample chosen in this investigation 

(figure 1) matches with red purple or magenta. The levels of Cr, Fe and Ti present in the ruby are marked to be 
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very low or traces, as seen from XPS (figure 2a) and EDS (figure 6c, 6d). Hence, the purple colour or hue of the 

typical ruby (in this study) is attributed to the presence of low quantities of impurities like Cr, Fe and Ti coupled 

with occurrence of light induced electron transfer between Fe and Ti. 

5. Conclusion 

In this study, a combined characterization approach involving latest surface and bulk techniques provides an 

accurate way to reason out the purple colour of natural ruby obtained from Kalahandi district of Odisha, India.  

While XPS focused on the detection of various transitional element ions in surface region, bulk techniques such 

as XRD, X-ray micro CT, FESEM, TEM, EDS, UV-Vis and FTIR provided a wide range of microstructural, 

tomographic and spectroscopic data to probe for the cause behind the secondary /mixed colour or hue. The study 

concludes that occurrence of low levels (trace amounts) of critical transitional elements such as Cr, Fe and Ti is 

basically responsible for the display of purple colour.  Cr3+ produces red colour in the octahedral environment of 

α-Al2O3 and the light induced reversible reaction Fe2+ + Ti4+ ↔ Fe3+ + Ti3+ causes IVCT producing blue colour. 

Superposition of these two colours (red and blue) thus produces magenta or red purple hue in ruby. Brilliant red 

or pigeon blood coloured ruby fetches highest price in market. The present study gives a clue as to how one can 

upgrade the purple ruby to more demanding red ruby.  The objective could be achieved if intensity of blue 

emission is reduced in ruby by reduction of Ti and Fe levels  adopting impurity removal methods like heat 

treatment, chemical leaching, plasma, laser heating, etc. 
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