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Abstract  

Current progress in Mid-IR semiconductor laser technology established on inter-sub-band changed like quantum 

wells assure a remarkable impact on tunable diode laser-based sensors for trace gases.  This paper presents 

improvement toward the awareness of room-temperature laser-based sensors for combustion-generated 

pollutants like NO2 and SO2. Laboratory measurements of SO2 at 8.5 µm are presented with detection range on 

the order of 1 ppm. Further approaches for higher sensitivity measurements in exhaust gas conditions are 

illustrated, as well as measurements of SOx.     

Keywords: Pollutant- Combustion- Sensors; Quantum –Cascade; Diode- Laser. 

1.  Introduction  

Contemporary jet aircraft engines generate oxidized sulfur type, such as SO2, SO3, and H2SO4, which may 

contribute to the formation of aerosols and clouds in the atmosphere [1].  The reaction mechanisms and rates for 

conversion of combustion-generated SO2 to SO3 and next to H2SO4 in jet aircraft exhausts are the subjects of 

severe inspection in the assessment of the atmospheric effects of aviation, which can be determined by 

quantitative determinations of SO2 and SO3 yields in the exhaust streams of test engines at high-altitude speed 

atmosphere.  Fuel-bound sulfur is currently in jet fuels as pollution and as lubricant agents.  For the period of the 

combustion process in the engine, this sulfur is fundamentally completely corroded to structure SO2, which is 

exhausted into the atmosphere.   
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Some of the SO2 further corroded over a long time scale by atmospheric order to form H2SO4, which condenses 

to form tiny aerosol particles.  Furthermore, some of the SO2 is rapidly corroded in combustor exhaust stream to 

generate SO3, which is in turn rapidly transformed into H2SO4 through result with H2O in the exhaust. However, 

[2, 3] elaborated further how H2SO4 formed in the exhaust stream may deposit on combustion-generated soot 

particles to produce hydrophilic condensation nuclei, thereby promoting formation of contrails and unrelenting 

cirrus clouds in the stir of the aircraft.  These clouds and their development in highly traveled aircraft 

passageway can have significant impacts on the radiate heat and chill budgets in the local upper troposphere and 

lower stratosphere, with extremely uncertain effects on area climate and on mass shift across the tropopause [1]. 

Thus aircraft-generated high-altitude clouds, resulting from SOx chemistry in the exhaust, may affect global 

climate and stratospheric ozone dynamics.  

Due to potentially severe long-term atmospheric effects, governments and industrial research and development 

of complex gas turbine engine model are pursuing means of confirming and quantifying the linkages between 

fuel-bound sulfur, combustion-generated SO2, SO3, and H2SO4, and the formation of condensation nuclei.   Key 

factor of this research and development is the determination of the kinetics, concentrations, and chemical fates 

of SO2 and SO3 in combustor exhaust streams.  It call for highly sensitive (ppmv level) and quantitative 

detection of SO2 and SO3 at high temperatures (2800 to 6990 K), reduced pressures (0.2 to 0.4 atm), and 

elevated H2O and CO2 mole fractions (0.10 to 0.15) characteristic of combustor exhaust conditions.  Summary 

of the temperature and pressure account through the exhaust turbine and the resultant equilibrium SOx 

concentration account is shown in Figure 1.  Note that thermodynamic equilibrium favors SO3 structure; 

however it is well recognized that almost all of the emitted sulfur is in the form of SO2 due to the slow kinetic 

rate of conversion of SO2 to SO3 under these circumstances  

 

Figure 1: shows the calculated equilibrium SO2 from a P-T cycles analysis of a commercial service jet aircraft 

engine operating with Jet – A fuel having 0.5% sulfur contents and at an overall equivalence ratio of 

0.37.(Courtesy Dr. Quang-Viet Nguyen NASA/GRC, May 2000) 

1.1 Definition of Problem 

The increase in  anthropogenic activities from jet aircraft exhaust increased  the level of pollution in atmosphere 

as particulate matter were ejected into the atmosphere in form of fumes from the exhaust of  jet aircraft engine 

through the exhaust. This study intends to assess room-temperature laser-based sensors for combustion-

generated pollutants such as NOx and SOx. 
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1.2 Objectives of Study 

The purpose of this study is to identify and quantifying the linkages between fuel-bound sulfur, combustion-

generated SO2, SO3, and H2SO4, and the formation of condensation nuclei.   

1.3 Significance of the Study 

This study if properly carried out will 

• Provide insight to the pollution level in atmosphere. 

• Create public awareness and information to the dangers caused by pollution jet aircraft engines. 

• Create better quality life and public safety health for the people if air quality of the environment is 

monitored. 

• Reduce sickness arising from short and long term exposure to air pollution. 

1.4 Limitation of Study 

The limitations of this study include the following: (a) the complexity in ascertaining exact rates for conversion 

of combustion-generated SO2 to SO3 and next to H2SO4 in jet aircraft exhaust.  

2. Review of Related Literature 

2.1 SOx Monitoring Techniques  

Although procedure to detect these species have been formulated in several research laboratories, their 

implementation requires considerable exertion and specialized dexterity in physical chemistry, optics, and 

spectroscopy, so these methods are not readily available to the combustion engineering community. We 

observed that investigating the kinetics of SO2 and SO3 has devised means of detecting these species using 

electronic evolution in the ultraviolet area of the spectrum [4].  SO2 can be detected by absorption or laser-

induced fluorescence in its electronic bands near 298 nm.  Furthermore, SO3 has absorption bands in the vacuum 

ultraviolet (145 to 160 nm), and has been detected by laser photo dissociation to excite fluorescence from 

excited SO2 near 298 nm.  Detection of SO3 by this method requires a fluorine excimer laser at about 157 nm, 

and is unworkable in systems containing substantial concentrations of oxygen since O2 absorbs strongly at the 

wavelengths required to photo dissociate the SO3.  The SO2 electronic band is accessible to pulsed tunable dye 

lasers, and can also be reached by frequency summing of two high-power near-IR solid state lasers in a non-

linear optical crystal.     

Infrared fraction of the spectrum present an alternative approach for probing trace-level gas-phase species, 

mostly by laser absorption in fundamental and overtone vibration-rotation bands.  Nevertheless, the infrared 

absorption approach has in history found less application at high sensitivities than ultraviolet method owing to 

inherent sensitivity limitations of conventional absorption measurements and to the rareness of tolerable infrared 

light sources.   
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More than 15 years, semiconductor laser absorption spectrometers with the utmost sensitivities have operated 

primarily in the mid-infrared, where the fundamental vibration evolution occurs.  These evolutions have the 

largest infrared evolution strengths for a given molecule, while they arise from single-quantum change in the 

vibration quantum number.  Accordingly they accessed this wavelength region, laser absorption spectrometers 

have been developed using lead salt diode lasers [5].  Although these devices have achieved high sensitivities 

and have operated on airplanes, balloons, and combustion facilities, there are several aspects of lead salt lasers 

that result in a complex instrument design or inhibit routine use.  Lead salt lasers are hygroscopic, are highly 

sensitive to electrostatic discharge, exhibit performance degradation due to temperature cycling, and produce 

relatively low output power (0.1 to 1 mW).  Remarkably, these lasers do not operate at room temperature but 

require cryogenic cooling.  In addition, these lasers are only available in Fabry-Perot designs, with the result that 

they operate multimode and can require a monochromator to select a single longitudinal mode.  They are 

available in few wavelengths from limited purveyor because of low demand.  They found their best use in 

highly specialized, deep research applications.  

2.2 Quantum Cascade Lasers  

However, recent development of quantum cascade lasers enables the following major progression in trace type 

detection:  entrance to the strong, mid-infrared fundamental vibration-rotation evolution with a room 

temperature, single-mode, tunable diode laser [6, 7].  QC lasers realize gain via the transitions of electrons 

between two sub bands in the conduction band of a coupled quantum well structure.  Inversion is created by 

engineering the lifetimes of the states concerned. The paired electron-injection and active-well regions are 

replicated many times over (cascaded) to increase output power.  Since the evolution occur completely within 

the conduction band of the material, the output wavelength is determined by the thickness of the active region 

and is independent of the band gap.  QC lasers can be fabricated at any wavelength from ~ 4.6 to 17 µm using 

AlInAs/InGaAs lattices.  The QC laser design overcomes two main drawbacks of lead salt diode lasers.  First, 

they can be operated at room temperature, and second, depressed response (DRP) versions can be fabricated to 

operate on a single longitudinal mode.  By accessing the stronger bands in the mid-infrared fingerprint region, a 

QC laser absorption spectrometer requires a considerably shorter path than a near-IR device of comparable 

sensitivity.  These advantages result in an overall sensor system that will be smaller and less complex than 

existing lead salt or near-IR sensors.  Thus, the advent of QC lasers enables a new generation of laser-based 

sensors which achieve the sensitivities of lead salt laser sensors and incorporate the robustness and ease of 

operation of near-IR diode laser sensors.  

Many groups have recently delivered applications of QC lasers to trace gas sensing [8].  Sensitive absorption 

spectroscopy using frequency modulation (FM) detection and a room temperature, pulsed (DRP) QC laser has 

been reported. Receptive absorption spectroscopy has also been demonstrated with cryogenically cooled, as [9]. 

The continue wave (cw) QC lasers using either FM detection or photo acoustic detection techniques [10]. 

Detection of isotopic composition has also been demonstrated using cryogenically cooled cw QC lasers [11].  

However, works has focused on quasi-cw, room temperature operation of the laser source with high sensitivity 

detection achieved using the balanced ratio metric technique [12].   
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They established the operation of a breadboard QC laser system to detect N2O and NO near 5.4 µm, and are 

currently developing a field sensor for measurements of formaldehyde in the troposphere.  Their general 

approach is to combine QC laser light sources with multipass absorption cell and noise reduction techniques 

formerly developed for our near-IR diode laser sensors, to achieve sub-ppmv sensitivities for infrared-active 

species.  While QC lasers can be operated cw at cryogenic conditions, they took the approach of pulsed 

operation at thermoelectrically cooled conditions near room temperature. The noise reduction techniques include 

[13]:  

 Reduction of thermal noise through use of liquid-nitrogen-cooled field of view.  

 Dual-beam, unbiased share metric detection (USD). The USD system is an analog circuit which ratios 

the signal and reference beams to cancel common mode laser intensity fluctuations.  Here the USD is interfaced 

with the pulsed laser source by operating the USD circuit at a bandwidth which is low adequate to standard the 

laser pulses into a "quasi-cw" sign, but high sufficient to reject common mode laser noise.  

 3. Methodology 

3.1 IR Spectroscopy of SO2 and SO3  

We examined the quantitative infrared spectroscopy of SO2 and SO3 via data bases existing in the literature.  A 

detailed, line-by-line compilation of the vibration-rotation transitions of SO2 is given in the HITRAN96 data 

base on atmospheric infrared transitions.  The HITRAN cipher and data base was urbanized by the Air Force 

Research Laboratory to provide model simulation capability for high-resolution infrared absorption spectra of 

atmospheric species as functions of temperature, pressure, concentration, and path length.  We also performed 

spectral modeling simulations using the commercial version of HITRAN marketed by Ontar Corp.  The 

modeling calculations simulated the conditions of our room-temperature FTIR and QC laser measurements, as 

well as the conditions of high-temperature combustor exhaust measurements at both atmospheric and reduced 

pressures.  The high-temperature calculations also included simulations of the absorption spectra of H2O and 

CO2, which are the most important sources of spectral interference with SO2 and SO3 detection in combustor 

exhaust streams.  The high-temperature simulations of H2O and CO2 absorption spectra used the HITEMP 

spectroscopic data base for these species; this data base includes hot-band transitions which are applicable to 

high-temperature systems up to ~ 1000 K.  Unfortunately, there is no high-temperature analogue of this data 

base for SO2, so the scaling of SO2 transitions and line strengths to combustor exhaust temperatures is not well 

validated.   

The experimental SO2 spectra were obtained at room temperature with a commercial FTIR spectrometer (Midac 

Corp.) interfaced to a multipass absorption cell.  The cell was connected to a gas supply manifold and a vacuum 

system allowing operation from vacuum to 1 atm.  The multipass optical system within the cell was set up to 

give 20 passes, resulting in a total path length of 4.90 m.  Matched pairs of background (cell evacuated) and 

sample (cell containing gas sample) spectra -1 were obtained at 0.5 cm spectral resolution by co-adding 33 

interferograms for each case.   
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The background and sample: (a) Spectra were ratio to give quantitative spectra of absorbance, in (Io/I), versus 

evolution frequency in cm.  (b) The measurements were performed over the pressure range 0.1 to 0.4 atm for a 

commercial gas mixture of 502.5 ppmv SO2 diluted in N2.  

As demonstrated by the experimental spectra in Figure2: shows SO2 has two vibration bands in the 6 to 9 µm 

region: (a) the strong asymmetric stretch (ʋ3) band centered near 1359 cm (7.35 µm). 

 (b) The weaker symmetric stretch band (ʋ1) centered near -1050 cm (8.7 µm).   

The 8.6 µm QC laser measurements carried out for this exertion probe the latter, ʋ1 band; though, evolution in 

the ʋ3 band will achieve the highest possible sensitivity.  The most recently reported integrated band intensities 

at 295 K (including hot band contributions) are 0.39 x 10-17 and 2.98 x 10-17 cm/ (molecule cm-2) for the ʋ1 and 

ʋ3 bands, respectively.  

 

Figure 2: FTIR spectra of 502 ppm SO2, balance N2 at 295 K in a 4.89m path (Courtesy atmos.) 

Figure 3 shows the result absorbance spectrum to check for spectral interferences by air at room temperature, we 

filled the FTIR absorption cell to atmospheric pressure with room air at ~ 20% relative humidity, overlain with 

the SO2 spectrum.  All the evolutions in the room air spectrum are due to H2O, as confirmed by HITRAN 

calculations.  At room temperature, there are no interfering H2O transitions in the SO2 (ʋ1) band, confirming 

that the laboratory QC laser measurements at 8.5 µm did not require a purge flow in the beam path.  Though, 

there are several H2O features in the region of the SO2 (ʋ3) band, as this region is near the edge of the strong 

H2O (ʋ2) band centered near 6.2 µm.  H2O interference in this region is a key factor in the design of a system for 

high-temperature measurements, as described below.   

 

Figure 3: Comparison of FTIR spectra of SO2 and room air, showing spectral overlap of H2O absorption 

features (Courtesy Atmos.). 
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The infrared spectrum of gas-phase SO3 consists of a ʋ3 band centered at 1392.3 cm (7.19 µm), and ʋ2 and ʋ4 

bending bands near 500 cm (20 µm) [14, 15]. SO3 is a planar symmetric (D3h) molecule, and thus the 

symmetric stretch ʋ1 is infrared-inactive.  Only the ʋ3 band is accessible to a QC laser.  Full spectroscopic 

measurements of this band have been reported by Henfrey and Thrush.  A section of their published spectrum, 

obtained at 0.01 cm-1 resolution for 10 Torr of SO3 in a 15 cm gas cell, is shown in Figure 4.  The authors report 

detailed spectroscopic constants which can be used to calculate the line-by-line transition frequencies; though no 

line strength data are available.  The peak absorbencies shown in Figure 4 are consistent with line strengths 

similar in magnitude to those for SO2 (ʋ3).  A broad computer literature search indicates that there are no open-

literature data on the line power or high-temperature spectroscopy of this band.   

 

Figure 4: High resolution spectrum of the center of the SO3 (v3) band (Courtesy Atmos.). 

4. Data Analysis  

4.1 Laser Measurements on Quantum Cascade   

Mutually dispersed response (DRP) and non-dispersed response (DRP) Quantum Cascade (QC) laser devices 

working near 8.5 µm were available to support this exertion.  The dispersed response lasers of carrier 

D2307CC2 were partially characterized at Lucent for pulsed operation near room temperature.  Figure5: is a plot 

of the temperature tuning for two representative QC lasers.  This data was obtained for pulsed operation at 82.8 

kHz with 60 ns pulse width.  

 

 

 

 

Figure 5: show Example of QC laser temperature tuning data for two devices (top and bottom) (Courtesy 

Atmos.) 

The current tuning rate is approximately 10-2 cm-1/mA (300 MHz/mA). Figure6: shows L-I and V-I curves 

presented for the laser.  
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These QC lasers have a current threshold of approximately 2.6 to 3.6 near room temperature and have a 

distinctive emission roll-off at higher currents.  In between, the L-I curve is linear.   

 

 

 

 

Figure 6: shows example L-1 and V-I curve for the same two devices as in figure.5. (Courtesy Atoms) 

These procedures require a reasonably high compliance voltage (~5 V) compare to other semiconductor diode 

lasers.  For zero bias, the devices have an efficient resistance of about 21 ohm, which decreases to 1.5 ohm 

above threshold. They described the laser system and drive current configuration for these experiments [12].  

Absorption dimension were classically made by pumping the laser with a 5 kHz injection current pulse train 

consisting of 66 ns pulses for an overall duty cycle of 0.03%.  The waveform be superimposed ahead a low-

amplitude slope waveform with a typical repetition frequency of 100 Hz.   

The collimated laser beam exits the mount and it split into a signal and a reference beam using an ar-coated Ge 

beam splitter.  The signal beam propagates through a 0.5 m electro polished, stainless steel absorption cell 

having ar-coated, 30' wedged Ge windows.  After exiting the cell, the beam is refocusing onto an LN2-cooled 

photovoltaic HgCdTe detector by a 1 in. diameter, ar-coated Ge f/1 lens.  Similarly, the reference beam is 

refocused onto a second HgCdTe detector using another Ge lens.  Rider was made to purge the beam paths.  The 

detectors were 1 mm diameter devices.  Each detector was fitted with a 61 deg cold field-of-view.  This helps 

minimize the background current arising from collection of ambient radiation.  

 Outputs from the detectors were sent to a high gain current preamplifier then into gated integrators.  The gated 

integrator signals were sampled, recorded and integrated to produce a real time history of the number density of 

the type under analysis.  This dual beam, predictable detection technique allowed us to investigate spectral 

absorbance down to ~0.5%.   

We observed the compound absorption aspect that arises from the partial overlie of six lines of the ʋ1 band that 

occur near 1160.76 cm (8.63 µm).  These evolutions are listed in Table 1. 

A forecasted absorption spectrum near 1159 cm, for 100 ppmv of SO2 at 100 Torr, is shown in Figure 7.  

Further modeling with HITRAN96 at lower pressures specify that strong absorption spectra of individual 

transitions can be produced in the Doppler-broadened limit, using 1 to 10 Torr of undiluted SO2 over the 

available 0.5 m path.  
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Table 1:  Entity evolution in v1 Band of SO2 causative to the Observed Absorption Features 

 

 

Figure 7: Computed spectrum of SO2 absorption features near 1160 cm-1, for 100ppm, SO2/air at 100 Torr. 

(Courtesy Atmos.) 

Certainly is important to note that the band spectrum for SO2 is highly crammed and overlapped, even under low 

pressure, Doppler-broadened conditions.  However, we do not sample a true zero-absorption baseline, rather the 

differential absorption produced by the compound, overlie features.   

 Model experimental absorption spectrum is existing in Figure 8.  This spectrum was obtained for 0.5 Torr 16 -2 

(1.6 x 10cm-3) of SO2 at 296 K, and is an average of ten single sweeps (0.1 s average).  The thinner line is a 

running average of ten data points and advances the signal-to-noise ratio.   

The peak absorption is 0.07 and the signal-to-noise ratio (SNR) is ≈30, which entail minimum detectable peak 

absorption of 3 x 10-3 for 2.6 x 1014 cm-3 SO2 and a 1 m path.  By extrapolating these results to the typical 

detection limits of dispersed response or FM-based spectrometers and accounting for increased collision 

broadening near atmospheric pressure, we approximate detection sensitivity at room temperature of about 

0.1ppm 

Frequency (cm-1)     Line Strength  (cm-    

         1(molecleӿcm-2)  

                  Z1                     Z2 

        1161.49479             1.53 x 10-21            8      3      6            6      2       6 

        1161. 70377             3.40 x 10-21          25      5     21          25      2      20 

        1161. 77537             5.21 x 10-21          16      2     16          15      1      15 

        1161. 77313             5.38 x 10-21          15      1     15          16      0      16 

        1161. 79491             3.22 x 10-21          17      2     16          16      2      17 

        1161. 81365             2.89 x 10-21          18      2     17          17      1      16 
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Figure 8:  Examples QC laser absorption  spectrum of the compound SO2 feature near 1160.75cm-1.The 

spectrum was obtained with 9.5 Torr SO2 at room temperature in a 50cm cell. (Courtesy Atmos.) 

4.2 Exhaust Gas  Simulation Measurements   

The annex of the present room-temperature results will require QC lasers working at different wavelengths so as 

to optimize the sensitivity of the beleaguered lines as well as ensure that they are free from interference by 

major exhaust gas type such as CO2 and H2O.  In order to determine best wavelengths for SO2 and SO3, we used 

broad spectral simulations by HITRAN and HITEMP to forecast high-resolution spectral absorbance for a 

variety of combustion exhaust situation from 0.1 to 1 atm.  A supposed set of environment used here and 

representative of many exhaust gas conditions in flight are P~ 0.2 atm, T~ 700 K, ΩCO2 ~ 0.1, and ΩH2O ~ 0.1.  

 The forecasted spectra were estimated in terms of absorbance per meter of path length for 1 ppmv of SO2.  In 

calculating the detection limits in terms of concentration and path length, we assumed a minimum detectable 

absorbance of 1 x 10-5.  They discussed this projected value based on our breadboard QC laser measurements at 

5.5 and 8.5 µm with and without the DRP noise- canceling circuit [12]. The absorbance computations used Beer' 

and thus neglected the possible laser line broadening effects due to thermal frequency chirp [12]. The 

computation also used the pressure broadening coefficient for SO2 in air contained in the HITRAN data base 

and thus neglects possible additional broadening due to collisions with H2O and CO2. Despite these limitations, 

the HITRAN and HITEMP spectral modeling computations provide the best estimates within the known state of 

the art for high-temperature, high-resolution infrared absorption by SO2, H2O, and CO2.  

 However, the absorbance spectra for SO2 (ʋ3), H2O, and CO2 in the 1321 to 1390 cm region (7.3 to 7.5 µm), for 

P = 1 atm, T = 700 K, ΩH2O = 0.2, ΩCO2 = 0.1, ΩSO2 = 1 ppmv, were simulated [1].  The SO2 absorbencies 

generally exceed those of CO2, and are well above the estimated absorbance detection limit of ≈ 10-5.  Though, 

they are much lower than those of H2O.  Most significantly, at 1 atm the pressure-broadened wings of the H2O 

transitions fill in the gaps between the evolutions, so that the H2O absorbance is near-continuum which is 

always at least 100 times greater than that of SO2 at 1 ppmv.  Higher resolution simulations of selected gap in 

the H2O spectrum indicate that spectral discrimination of SO2 features under these conditions would be 

extremely difficult, and would require refined data processing and spectral fitting procedures to identify 10 to 

100 ppmv of SO2.  
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In distinction, there is a lot less H2O interference in the ʋ1 band, as shown in Figure 9 for the same 1 atm 

conditions.  This is steady with our experimental observations at room temperature.  Though the SO2 

absorbencies for 1 ppmv-m are near the probable detection limit of ~ 10-5, the features of SO2 are much easier to 

distinguish from the H2O background in the spectral windows.   

 

Figure 9: Computed atmospheric pressure exhaust gas absorption spectra near SO2 (v1) band 

Therefore at 1 atm and elevated temperature, SO2 is probable to be further simply detected in the weaker ʋ1 

band than in the ʋ3 band.  Pro ʋ3 band evolution at reduced pressure; the peak SO2 absorbance for 1 ppmv-m is 

abridged, however yet surpass 10-5.  More importantly, the collision-broadened wings of the H2O lines are 

seriously diminished, opening several spectral windows where SO2 skin can be known.  As abridged pressure 

conditions are more relevant to engine exit conditions at altitude, we focus on those conditions for more detailed 

computation in the SO2 (ʋ3) band.   

To reproduce the conditions of engine exhaust measurements at high-altitude cruise conditions, we carry out a 

series of high-resolution calculations throughout the 1321 to 1390 cm region for P = 0.2 atm, T = 700 K, ΩH2O 

= 0.1, ΩCO2 = 0.1, ΩSO2 = 1 ppmv.  These calculations led to the recognition of three suitable spectral regions 

for detection of SO2.  These are illustrated in Figures 10 through 12.   Here we show the entity contributions 

from H2O, CO2, and SO2, and the sum of the three.  In each of these spectral windows, a scan of the laser 

frequency will give quantitative identification of H2O and SO2; in addition, spectral scans near 1342 cm will 

give CO2 determination as well.  Gradual determinations of SO2 along with H2O and or CO2 will allow direct 

determination of the emission index of SO2 with a single sensor.  The 1333 cm-1 region offers the strongest SO2 

evolution however the 1342 cm-1 region has better isolation of the SO2 lines.  The forecasted  SO2 crest 

absorbance in these windows for 1 ppmv-m are moderately above the probable detection limit of ~ 10-5, which 

shows that sub-ppmv levels of SO2 will probably be visible with a ≈ 1 m path length.  

 

Figure 10: Computed exhaust gas spectra at 0.2 atm near 1332cm-1 (Courtesy Atmos.) 
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Figure 11: Computed exhaust gas spectra at 0.2 atm near 1343 cm-1 (Courtesy Atmos.) 

 

Figure 12: Computed exhaust gas spectra at 0.2 atm near 1354 cm-1 (Courtesy Atmos.) 

Spectral model of the H2O and CO2 absorbance near the SO3 band center are shown in Figure 13 for the 0.2 atm 

exhaust conditions.  The H2O baseline absorbance is fairly higher in this region, (2 to 4) x 10-4.  Depended on 

the peak absorbance of SO3 at room temperature for this region, we estimate peak SO3 absorbance for 1 ppmv-m 

to be about 8 x 10-5 as indicated by the bar on the graph.   

 

Figure 13: Computed exhaust gas spectra at 0.2 atm near 1392 cm-1 (Courtesy Atmos.) 

SO3 structure should be readily detectable among H2O features near 1391.2 cm.  It shows that SO3 can likewise 

be detected to ~ 1 ppmv or less with a 1 m path length.  Like with SO2, it is likely that spectral scans of the laser 

will permit instantaneous determination of H2O and/or CO2, therefore docile the emission index of SO3.  There 

may be other spectral casement for detection of SO3, nevertheless the region to lower frequency contains 

increasing contributions from SO2 (ʋ3), while the region to higher frequency contains increasing contributions 

from H2O (ʋ2).  Decisive determination of the detection casement for SO3 awaits direct spectral measurements 

at representative temperatures and pressures.  
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5. Conclusion  

We used two mixtures of laboratory experimental measurements and spectral modeling calculation to evaluate 

and quantify the feasibility of high-sensitivity detection of SO2 and SO3 in combustor exhaust streams, using 

room-temperature quantum cascade laser absorption at precise operating wavelengths near 7 µm.  Due to severe 

interference from collision broadened H2O lines at 1 atm, it appears that the QC laser absorption method is best 

suited for the sub atmospheric conditions of high-altitude simulation test facilities when applied to the trace 

levels found in aircraft emission exhaust streams.  

 Spectral modeling model of high-resolution infrared absorption spectra for high-altitude test chamber 

conditions (0.2 atm, 700 K) specify a few discrete spectral casement between 7 and 7.5 µm where SO2 and SO3 

absorption features can be observed with minimal interference from H2O and CO2 in the exhaust stream.  

Through comparisons of the predicted peak absorbance and the expected detection limit given above, it is likely 

that both SO2 and SO3 can be detected at or below 1 ppmv, with a path length of 1 m, using a multipass optical 

system.   

 Laboratory measurements of QC laser absorption by SO2 at 8.6 µm shows a breadboard QC laser 

detection system and point to likely detection limits that can be achieved for a fully developed prototype sensor 

system.  Based on straightforward projections of design improvements in laser intensity on detector, pulse 

generation electronics; heat-sinking of the laser chip, reduction of detector thermal noise, and quasi-cw balanced 

ratio metric rejection of common mode noise, we conservatively estimate a noise-equivalent absorbance 

detection limit of approximately ≈1 x 10-5.  
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