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Abstract 

Malaria kills millions of people every year, imposing major economic and social burdens. Despite many efforts 

the classical control interventions which focus mainly on vector management and treatment of affected 

individuals with drugs. These interventions have proven inadequate to stop the transmission of Plasmodium 

parasites, subsequently the spread of malaria by Anopheles mosquitoes. The progressive numbers of insecticide-

resistant insects and drug-resistant parasites have led to the search for a novel arsenal of strategies for inhibiting 

Plasmodium infection of mosquitoes. This work reviews current knowledge on genetic manipulation in 

mosquitoes that holds promise for development of transgenic mosquito refractory to malaria parasites 

transmission. 
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1. Introduction 

Worldwide a variety of vector borne diseases are transmitted to humans by mosquitoes such as malaria which is 

transmitted by anopheline mosquitoes [1]. Nearly half of the world population is at risk of contracting malaria 

and over one million people, mostly African children under the age of die, die of the disease every year [2]. The 

burden of malaria in developing countries (with deficit of qualified and motivated human resources, lack of 

technological expertise and limited financial resources) represents a major international challenge [3]. 

Various prevention and treatment strategies are being used to reduce malaria burden such as intermittent 

prophylaxis for pregnant women and children, insecticide-treated nets, indoor residual spraying of insecticides 

and anti-malarial combination therapies. Despite this progress made for the control of malaria there are 

limitations associated with these proven control strategies [4]. Consequently, this brought consideration of 

developing of new tools to eliminate arthropod-borne infectious pathogens or to block their transmission such as 

genetically modified mosquitoes (GMM) [5]. 

These studies performed by different scientific investigators, worldwide, included investigation of trans-genes 

capable to block infection in the host or parasite propagation inside the vector, searches for advanced 

approaches to avoid insecticides resistance by arthropods, search for tools to avoid drug resistance by the 

parasite. In this scenario researchers have been working on construction of transgenic mosquitoes refractory to 

malaria parasite. Research on transgenic mosquitoes to control malaria and genetically manipulated plasmodium 

falciparum to avoid parasite resistance to drugs will be the subjects of this review. 

2. Principles of genetically modified (GM) mosquitoes: How they can be produced? 

When a mosquito takes an infectious blood meal, the ingested gametocytes differentiate into male and female 

gametes that then mate to generate zygotes. Still in the midgut, zygotes differentiate into motile ookinetes [6]. 

At 24 hours, the motile ookinete invades the midgut epithelium and differentiates into an oocyst. About 2 weeks 

later, the oocyst ruptures, releasing thousands of sporozoites into the mosquito body cavity. At this stage, the 

parasites migrate to the salivary glands from where they can be transmitted to another host during a subsequent 

blood feed. Oocyst and sporozoite populations are severely compromised by mosquito-mounted immune 

responses, but the escape of a small proportion of parasites is sufficient for transmission to persist. 

Recent technical advances in vector biology made possible a new strategy to combat malaria: genetically 

modifying the mosquito to reduce its vectorial competence. However, one crucial unresolved aspect of this 

approach is how to introduce effector transgenes, whose products interfere with parasite development in the 

mosquito, into wild mosquito populations in the field. 

Germline transformation of A. stephensi was first reported in 2000 [7], and other important malaria vectors have 

since been transformed [8,9]. In the process of transformation, a mobile genetic element is used to insert into the 

mosquito genome a gene of interest that is under the control of a specific promoter. Choice of promoters and 

effector genes are some of the most important factors for generating mosquitoes that are refractory to 

Plasmodium infection and in limiting the adverse fitness effects exerted by transgene expression. Genetic drive 
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systems to integrate the transgene into wild mosquito populations are also essential for the implementation of 

genetically modified mosquitoes as tools for control of malaria transmission [10]. To target Plasmodium 

parasites during the developmental cycle, an effective anti-Plasmodium transgene must be expressed in a 

relevant tissue (midgut, fat body, and salivary glands) at a relevant time (time in which the parasite is exist in 

that tissue). The promoter used for transgene expression will determine the timing and the mosquito tissue in 

which the transgene will be expressed [10]. 

Transmission blocking vaccines have been adopted as a mechanism for malaria control [11]. These vaccines 

consist of antibodies that are ingested by the mosquito with the blood meal and interfere with parasite 

development. Proteins expressed on the surface of gametes (e.g. Pfs47/48, Pfs230) and ookinetes (e.g. Pfs25 and 

Pfs28) have been tested for such vaccines [12, 13]. Antibodies against these proteins bind to the parasite and 

presumably block ookinete invasion of the midgut epithelium. Various investigations revealed that polyclonal 

antibodies against mosquito midgut proteins interfere with Plasmodium oocyst formation have been published 

[14], but in no case have the relevant antigens been identified [15].  

Of all the tissues that sporozoites come in contact with, they can invade only the salivary gland. When the 

mosquito bites another vertebrate host, transmission is completed by release of sporozoites from the salivary 

glands [16]. The invasion of salivary glands by sporozoites is thought to be mediated by receptor–ligand-like 

interactions resulting from the binding of parasite surface ligands to specific receptors on the salivary glands 

[17]. 

This is interpreted to indicate that sporozoites have some mechanism for differentiating among the multiple 

mosquito organs suspended in the hemocoel. Electron microscope studies of sporozoite interactions with 

salivary glands also lend support for a receptor–ligand model [18]. 

A study showed that there were species-specific recognition properties of sporozoites for salivary glands. 

Plasmodium knowlesi sporozoites could recognize and invade salivary glands from Anopheles dirus even when 

the glands were transplanted to a non-permissive host, An. freeborni. Conversely, these sporozoites could not 

infect An. freeborni salivary glands under any circumstances [19]. Competent parasite ligands for salivary gland 

recognition and invasion include the circumsporozoite protein (CSP). The CSP is the major protein on the 

surface of sporozoites, and may account for as much as 10% of the protein located there [20]. Some of the 

monoclonal antibodies made to P. gallinaceum CSP blocked sporozoite invasion of Ae. aegypti salivary glands 

[21]. 

In anophelines, midgut specific transgene expression has been achieved using the Carboxypeptidase [22], 

peritrophin [23], Antryp1, and G12 [24] promoters, the vitellogenin promoter has been used to drive transgene 

expression in the mosquito fat body [25], and the apyrase [26] and anopheline antiplatelet protein [27] 

promoters can drive transgene expression in the salivary glands. Conditional transgene expression in A. 

stephensi midguts under the control of the SRPN10 promoter has also been shown [28]. 
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3.  Anopheles spp control: Current situation and gene manipulation as an alternative control method 

Vector control remains generally the most effective method to prevent malaria because there is no available 

vaccine for the disease [32, 33]. Most of the vector control strategies focus on components with insecticidal 

activity that would persist in the environment in which these were applied. Most, if not all, new developments in 

the control of anophelines presented incremental improvements of this concept [34].  

Occurrence of drug-resistant parasites and insecticide-resistant mosquitoes, have been contributing to re-

emergence and difficulties in controlling important arthropod-borne diseases [35]. Insecticide resistance was, 

and is still today, viewed as an unavoidable consequence of widespread insecticide use that can either be 

managed or overcome by the discovery of new compounds with desirable (i.e., long-term mosquitocidal) 

characteristics such as insecticide treated nets (ITNs) [36] and the renewed acceptability of DDT for vector 

control following the agreement to the Stockholm Convention on Persistent Organic Pollutants [37]. Both the 

use of ITNs and indoor residual spraying (IRS) target mosquito vectors in the domestic environment, and 

interest in peridomestic control strategies (e.g., larval control) is slowly reviving [38,39]. 

4.  Mechanism to introduce anti-Plasmodium effector transgenes into wild mosquitoes 

A powerful drive mechanism is essential to spread the transgene to near establishment in the population, be 

tightly linked with the transgene so that separation cannot occur and have minimal impact on mosquito fitness. 

Potential drive mechanisms are naturally occurring “selfish” gene mechanisms with non-Mendelian inheritance 

[40]. 

Transposable elements (TEs) are mobile genetic elements that are capable of moving rapidly into populations 

and can be engineered to carry a transgene through a population. Today, four different transposable elements: 

Hermes, Mos1 (mariner), Minos, and piggyback have been widely used for germ-line transformation of 

numerous mosquito species including Culex quinquefasciatus, Anopheles stephensi, Anopheles gambiae , and 

Anopheles albimanus [41]. However, the rates of transposition for the class II transposons Hermes, Minos, 

Mos1, and piggybac, which have been vital for mosquito transgenesis, are not sufficient to serve as drive 

systems [42]. While TEs randomly integrate into a genome, HEGs use a specific DNA sequence to integrate into 

the chromosome through a mechanism of double-stranded DNA break repair. These enzymes are active in A. 

gambiae cells and embryos [43] and can also be engineered to carry specific DNA sequences. A breakthrough in 

mosquito-based genetic drive systems was recently achieved with the successful introduction of an HEG into 

transgenic anopheline mosquitoes [44]. 

In cage studies, it was shown that the genetic element could invade naive mosquito populations rapidly and may 

provide a novel mechanism of genetic modification of wild mosquitoes [44]. Medea, or maternal-effect-

dominant embryonic arrest, causes the death of all offspring that do not inherit the Medea-bearing gene [45]. In 

this system, there is maternal expression of a toxin regulated by a germ line specific promoter and only zygotes 

expressing an antidote to the toxin will survive. As novel mosquito germline-specific promoters are discovered, 

such as DNA regulatory regions of the vasa gene [46], both HEGs and Medea will have tremendous potential as 

genetic drive systems in mosquitoes. 
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In order for transgenic mosquito technologies to be successfully applied, the genetically modified mosquitoes 

must be able to compete with wild mosquitoes. Therefore, the transgenic mosquito must be reproductively fit to 

ensure that the transgene will established in the population [47]. The transformation efficiency, which can be 

described as the percentage of fertile adults that produce transgenic progeny, does not vary substantially 

between the different transposable elements. In Anopheles mosquitoes, piggyBac has mainly been used for 

germ-line transformation. The efficiencies in Anopheles gambiae range from 1 to 10%, whereas in Anopheles 

albimanus and Anopheles stephensi mosquitoes over 10% have been observed [48, 49, 50, 51, 52]. Probably the 

most important factors that contribute to the efficiency of transformation are practical aspects such as the quality 

and concentration of the injected nucleic acid, the total insert size (piggyBac = 10–13 kb, PhiC31 ~42 kb), 

timing of injection (prior to pole cell formation), needle preparation, robustness of mosquito strain and ambient 

conditions [53]. However, some studies showed that transgenic mosquitoes are as fit as non-transgenic 

mosquitoes [54, 55]. 

5.  Malaria Control using engineered symbiotic bacteria inhibit midgut of mosquito vectors 

Genetic manipulations of mosquito midgut-associated bacteria (MAB) (which live in the midgut, the same 

mosquito compartment where the most vulnerable stages of Plasmodium development occur) have also been 

used as a tool to reduce the development of Plasmodium parasite inside mosquitoes. Common bacterial genera 

(Enterobacter, Pseudomonas, Pantoea, and others) have been identified [56]. The quantity of mosquito midgut 

bacteria increases dramatically upon blood feeding (when parasites are ingested), consequently increasing the 

output of the effector molecules that they are engineered to produce. Genetic modification of bacteria is much 

simpler and faster than genetic manipulation of mosquitoes [4].  

Numerous studies revealed that Mosquitoes that have been treated with antibiotics to remove their MAB are 

more susceptible to Plasmodium infection, and reconstitution of the bacterial flora results in infections at the 

same level as untreated control mosquitoes [57]. When added to a parasite-laden blood meal, bacteria can 

interfere with parasite development [58]. Interestingly, this interference appears to be exclusive to Gram-

negative (G−) bacteria but is bacterial strain dependent, suggesting some bacteria possess an anti-Plasmodium 

property [59]. However, no correlation between G bacteria presence and infection status was observed in field 

populations of A. gambiae and A. funestus from Kenya and Mali, although determination of the timing of 

bacterial and/or parasite acquisition by the mosquitoes was not performed [60]. 

Multiple mechanisms could result in the inhibition of parasite infection by the presence of bacteria. It was 

recently identified that an Enterobacter bacterium isolated from wild mosquitoes in Zambia produces reactive 

oxygen intermediates that kill developing parasites in the midgut lumen, inhibiting Plasmodium prior to 

mosquito midgut infection [56]. Small populations of the bacterium can nearly eliminate ookinete formation in 

the midgut, providing proof of principle for the use of this and other bacteria to control malaria parasite 

transmission [56]. In general, G− bacteria show varying levels of inhibition at the early stages of parasite 

development, suggesting that diverse mechanisms of bacteria-mediated parasite inhibition exist (56). Bacteria 

may play an indirect role in parasite interference through the induction of an anti-Plasmodium immune response 

in the midgut. Studies have suggested that the mosquito’s anti-Plasmodium and antibacterial defense systems 
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are largely overlapping. The mosquito gut microflora has been shown to stimulate basal immune activity, which 

in turn is acting against the malaria parasite [57]. 

Disadvantage of this method is the resistant. This defect has been solved by the use of multiple effector proteins 

by formulating an efficient multi-effector combination. This can simply be achieved by feeding mosquitoes a 

mixture of GM bacteria expressing different effector genes [4]. Importantly, this approach bypasses genetic 

barriers of reproductively isolated mosquito populations and will hinder the spread of mosquito transgenes. 

Furthermore unlike mosquito transgenes, inactivation of bacterial transgenes after many generations in the field 

is not a problematic issue because of the easier logistics of introducing freshly transformed bacteria. Moreover, 

if an effector gene fails to perform as promised, introduction of alternate transgenes is relatively simple. Besides 

the above mentioned advantages regulations already exist regarding evaluation of bacteria to be released into the 

environment [4]. Each of the two methods (GM and manipulated bacteria) has their advantages and 

disadvantages for eventual implementation, but in the future may be combined as part of an integrated control 

strategy for malaria transmission [10]. 

6. Manipulated mosquitoes for malaria Control; advanced techniques implementation challenges 

Despite the fact that several achievements have been made about Anopheles and Aedes mosquitoes there are 

major biotechnology challenges remaining about the improvement of the stability of a gene construct and its 

expression for a robust and complete interruption of pathogen transmission and the devise of safe means of 

spreading foreign antipathogen genes through mosquito populations in the wild. The implementation obstacles 

to overcome include proper risk assessment [61]. Furthermore  it’s essential to build the capacity (individual and 

community) of transfer the biotechnology in malaria-endemic countries to better address ethical, legal and social 

aspects of biotechnologies (e.g. transgenic mosquitoes) for promoting engagement of individuals, and 

communities  about the development, applications, and evaluation of genetics-based methods for disease control 

[4].  

GM mosquitoes are being developed for use in vector control related to malaria under individual institutional or 

national guidelines on research and biosafety in spite of the lack in directed international guidance [4]. A pioneer 

study conducted in Mali mapped out several crucial aspects of potential acceptance or rejection of GM 

mosquitoes. The study also revealed that acceptance was dependent on several conditions [61]. Recently some 

have advocated a total precautionary principle for genetic engineering, which would mean that no technology 

with more than 0% risk should ever be, attempted [62]. The UNDP/World Bank/WHO Special program for 

Research and Training in Tropical Diseases (TDR) has been developing the ideas of genetic control of insect 

vectors since a 1991 meeting on use of genetically modified (GM) mosquitoes to replace disease vectors. TDR’s 

Steering Committee for Molecular Entomology has outlined a three-pronged effort towards developing GM 

mosquitoes for malaria control, with similar approaches for dengue fever and Chagas’ disease [63]. First in the 

process for each disease is to study host–parasite interaction; second is to develop methods to transform the 

vector; and third is to look at population ecology and genetics and at how to replace a population of harmful 

vector insects with a population of non-harmful insects. Social factors need to be carefully considered [64]. 

Some papers also considered a range of ethical issues including animal rights, informed consent, community 
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consensus and environmental viewpoints. Researchers investigated the ethical standards for the use of GM 

mosquitoes for diseases control concluded that each community needs to decide its own priorities for 

methodology of disease policy guidance for ethical genetic engineering, and to negotiate with neighboring 

countries [65]. The approach to GM insects raises few intrinsic ethical issues; however, important 

environmental and human health concerns need to be assessed before release of any GM insects. The policy that 

each community adopts should be the product of open dialogue involving all sectors of society. It can be 

expected that this process will take years and not all communities will endorse genetic control approaches [65]. 

However information about the acceptance of this advanced technique in the control of malaria is limited. 

7.  Study limitations  

All attempts at controlling the spread of diseases by transgenic mosquitoes have to subtend obstacles such as: 

• Lack of risk assessment carried out on the GM insects. 

• Regulations for GM insect release are also lacking, with no specific regulations existing in any country.  

• Ineffective, inefficient, costly, and hazardous to varying degrees. 

• Reduction or eradication of natural populations of disease vectors by introducing dominant lethal gene. 

8. Recommendations 

• Construct transgenic mosquito projects in malaria endemic areas in the Middle East and Africa. 

• Establish a working group to develop a guidance framework document for quality standards to assess safety 

and efficacy and address regulatory, legal, ethical, social and cultural (ESC) issues during GMM 

development and testing. 

• Several refractory genes will be necessary for a successful intervention both to improve the efficacy of 

refractoriness, and to reduce the probability that resistance to antipathogen genes will emerge in 

the Plasmodium population. 

•  Optimization of gene drive systems to deliver these refractory genes into mosquito populations. 

• A broad study is required of the ecology of mosquito vectors through which the refractory genes are 

intended to be driven. 
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