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Abstract 

In this paper, two component univariate mixtures of Normal distributions is proposed to accommodate the non-

normality and asymmetry characteristics of financial time series data as found in the distribution of monthly 

rates of returns for Bursa Malaysia Index Series namely the FTSE Bursa Malaysia Composite Index 

(FBMKLCI) from July 1990 until July 2010. Firstly, we give some basic definitions and concepts of mixtures of 

Normal distributions. Next, we explore some of its distribution properties. In support of determining the number 

of components, we use the information criterion for model selection. The measures provide supporting evidence 

in favour of the two-component mixtures of Normal distributions. For parameter estimation, we apply the most 

commonly used Maximum Likelihood Estimation (MLE) via the EM algorithm to fit the two-component 

mixtures of Normal distributions using data set on logarithmic stock return of Bursa Malaysia index.  

Keywords: Bursa Malaysia stock market index; behavior of financial time series; distributional properties of 
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1. Introduction  

Assumption regarding the returns distribution on financial assets plays a vital role in both financial modelling as 

well as in its applications. For instance, one may underestimate the occurrence of extreme financial events such 

as market crashes if ally with a wrong distributional assumption. According to [1], it is difficult to use a single 

distribution family to estimate and model return distributions with various distributional characteristics as found 

in numerous financial assets. Therefore, this paper paves the way for an easy applied estimation of returns 

distribution using mixtures of Normal distributions. Rather than simply conclude that financial markets are 

normally distributed in the traditional sense, we could utilize this paper to provide a better understanding of 

mixtures of Normal distributions, its flexibility and its application in finance. Although the premise of this paper 

(mixtures of Normal distributions) may sound obvious and well known in finance literature [2], the significance 

of this paper lies in the application of modelling stock market return using mixtures of Normal distributions 

particularly in Malaysia case. 

In this paper, we focus both on the statistical and financial properties of the mixtures of Normal distributions. 

The paper is structured as follows. We present the stylized facts of stock market return of FTSE Bursa Malaysia 

Composite Index (FBMKLCI) in Section 2. In Section 3, we use the information criterion for model selection 

for determining the number of components where the supporting evidence in favour of the two-component 

mixtures of Normal distributions. In Section 4, we give some basic definitions and concepts of mixtures of 

Normal distributions and explore some of its distribution properties. For parameter estimation, we use the 

Maximum Likelihood Estimation (MLE) via the EM algorithm to fit the two-component mixtures of Normal 

distributions using data set on logarithmic stock return of Bursa Malaysia index in Section 5. Lastly, Section 6 

concludes. 

2. Stylized Facts of Stock Market Return  

The data set used in this paper is the monthly closing price covers a twenty years period from July 1990 to July 

2010 for Malaysia stock market index namely the FTSE Bursa Malaysia Composite Index (FBMKLCI) as 

obtained from DataStream. The FBMKLCI is formerly known as the Kuala Lumpur Composite Index (KLCI) 

and adopts the FTSE global index standard. The enhancements were implemented from 6 July 2009 onwards 

(http://www.bursamalaysia.com). The FBM KLCI comprises the largest 30 companies listed on the Main Board. 

The series is denominated in Malaysian Ringgit (MYR). The sample consists of 241 observations.  

Prior to analysis, the series is analyzed in return, which is the first difference of natural algorithms multiplied by 

100 over the whole period. This is done to express things in percentage terms. Let itP  be the observed monthly 

closing price of market index i  on day t , 1,...,i n=  and 1,...,t T= . The monthly rates of return is defined as 

the percentage rate of return by 
, 1

100 log it
it

i t

P
y

P −

 
= ×   

 
. 

Figure 1 depicts the time series plot of monthly stock market index of Bursa Malaysia together with the monthly 

return of Bursa Malaysia stock market index plot for the time span July 1990 until July 2010, the histogram for 
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the Malaysia’s stock return rate with the corresponding normal curve with same mean and standard deviation as 

well as the Normal QQ-plot for the Malaysia logarithmic return.  

From Figure 1(a) and 1(b), it can be seen that the price rise and fall over time. There are periods of quiet and 

periods of wild variation in the monthly return. The period analyzed can be characterized as a period of market 

instability as it reflects the upturn and downturn of Malaysia stock market. It can also be seen that the growth 

pattern in Malaysia has not been smooth at all times. Malaysia undergoes sequence of upward and downward 

economical episodes due to global crisis. Just to mention a few; in 1997, Malaysia experienced a reduction in 

economic growth due to the Asian financial crisis where the rapid growth in Asian economies had come to a 

halt; The September 11 attacks had a significant economic impact on world market; bird flu epidemic especially 

in Asia in 2003; subprime mortgage crisis in 2006; the price of petroleum spiked in 2008 as well as the rapid 

increase in food price on the same year; and H1N1 attacks in 2009. Those can be identified as shocks in the 

stock market of Malaysia [3], [4]. From Figure 1(c), it can easily be seen that the empirical distribution has 

higher peak and heavier tails than the Normal distribution. Also note that the return distribution with thicker tail 

has a thinner and higher peak in the center compared to Normal distribution. The fit of the Normal curve to the 

histogram is poor. Figure 1(d) depicts the Normal QQ-plot for the corresponding logarithmic return. For the 

Malaysia stock return distribution, both tails are heavier than the Normal distribution, and the right tail is 

heavier than the left tail. 

 

 

Figure 1: Clockwise from upper left: (a) time series plot of monthly stock market index, (b) time series plot of 

index rate for Malaysia stock market, (c) empirical distribution plot of Malaysia index, (d) QQ-plot  

200

400

600

800

1000

1200

1400

1600

92 94 96 98 00 02 04 06 08 10

COMPOSITE INDEX

-30

-20

-10

0

10

20

30

92 94 96 98 00 02 04 06 08 10

RETURN COMPOSITE

-4

-3

-2

-1

0

1

2

3

4

5

-30 -20 -10 0 10 20 30

RETURN COMPOSITE

No
rm

al 
Qu

an
tile

Theoretical Quantile-Quantile

400 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2015) Volume 23, No  1, pp 398-412 

Table 1 reports the descriptive statistics and tests for the monthly stock price over the whole sample period. 

First, the means of the series, in general, not significantly different from zero (H0: µ = 0). Second, there is 

evidence of positive skewness (β1, defined as the 3rd standardized moment) in the monthly Composite Index. 

Third, it has been found that stock return in financial market have excess kurtosis, i.e. kurtosis which is 

significantly greater than 3 (the value for a Normal distribution). Kurtosis β2, defined as the ratio of the 4th 

central moment to the square of the variance, increases both with excessive mass in the tails or at the centre of 

the distribution. The Jarque-Bera test rejects the null hypothesis of normality for the stock market return. We 

also applied the well-known Kolmogorov-Smirnov (K-S) test. As Table 1 show, the result from the K-S test, we 

find weak evidence of normality in monthly Composite Index. In order to further investigate deviations from 

normality, we applied the Anderson-Darling (A-D) test. As Table 1 show, the result from the A-D test, 

normality is overwhelmingly rejected for the monthly Composite Index.  

Table 1: Statistical properties of Malaysia stock price 

Statistics Composite Index 

Mean 0.3237 

Standard deviation 6.8727 

Skewness 0.0749 

Kurtosis 5.2621 

Jarque-Bera 51.3942*** 

Kolmogorov-Smirnov 0.0620** 

Anderson-Darling 1.6860*** 

Significance levels: * 10 percent, ** 5 percent, *** 1 percent 

Thus, the return distribution of Bursa Malaysia Composite Index is poorly represents by the Normal distribution. 

It is a stylized facts that returns distributions of financial assets exhibits non-normality and asymmetry 

characteristics where it have thick tails, are skewed and leptokurtic relative to the Normal distribution [5], [6], 

[7]. This happens because it have more values near the mean and in the extreme tails [8] and dramatic falls and 

spectacular jumps appear with higher frequency than predicted [9]. Stylized facts as defined by [6] are statistical 

properties of financial time series, common across a wide range of instruments, markets and time periods. 

3. Model Selection  

Determining the number of components, k , is a major issue in mixture modelling. Two commonly employed 

techniques in determining the number of components, k , are the information criterion and parametric 

bootstrapping of the likelihood ratio test statistic values [10]. Majority of the estimation techniques assume that 

the number of components, k , in the mixture is known at a priori where it is known before the estimation of 

parameters is attempted [11]. 

First, we did the calibration checking for the mixtures of Normal distributions. Figure 2 depicts the calibration 
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plot for the two-component mixtures of Normal distributions. Examining the two-component mixtures of 

Normal distributions plot, it does look satisfactory.  

 

Figure 2: Calibration plot for the two-component mixtures of Normal distributions 

Next, we do cross-validation to confirm the selection of number of the components for the mixture model. We 

do simple data-set splitting, where a randomly-selected half of the data is used to fit the model, and half to test. 

The basic idea is to split a data set into train and test. We fit the model using the training points, and then 

calculate the log-likelihood of the test points under the model. We pick the number of component which 

maximizes the likelihood of the data. Figure 3 and Table 2 depict the log-likelihoods of the 10 fold cross-

validation. In Table 2, k  is the number of components, meanwhile, logL is the value that maximized log-

likelihood. The boldface entry confirms the two components to the mixture model. 

 

Figure 3: Log-likelihoods of different sizes of mixture models, fit to a random half of the data for training, and 

evaluated on the other half of the data for testing 

In addition, we apply the two commonly used model selection criteria: the Akaike information criterion, AIC 

[12] and the Bayesian information criterion, BIC [13] as a tool for model selection. Table 3 depicts the 

likelihood based goodness-of-fit measures for univariate mixtures of Normal distributions fitted to the Bursa 
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Malaysia stock market index. k  is the number of components, K  denotes the number of parameters of a model, 

logL is the value that maximized log-likelihood, AIC is the Akaike information criterion, 2 log 2AIC L K= − + , 

BIC is the Bayesian information criterion, 2 log logBIC L K N= − +  where 241N =  is the sample size. Table 3 

also reports the AIC and the BIC for model selection criteria. The number of components can be selected based 

on a minimum value of AIC and BIC. In our case, the best model according to BIC is an unequal variance with 

two components. The corresponding plots are shown in Figure 4. 

 

Table 2: Log-likelihoods of the 10 fold cross-validation 

k log-L 

1 -397.7372 

2 -389.6632 

3 -393.8297 

4 -394.8476 

5 -397.5470 

6 -396.6822 

7 -399.4821 

8 -398.5211 

9 -401.1397 

10 -399.1875 

  

Since a two-component Normal mixture seems good, we should not consider using more components as by 

going to three, four, etc. components, we improve the in-sample likelihood but we could expose ourselves to the 

danger of over-fitting. Besides, having so many parameters is not always desirable. It can lead to estimation 

problems and over-fitting the data can lead to specification problems. 

4. Mixtures of Normal Distributions  

The Normal distribution is commonly used in the 1700’s and successfully applied to astronomical data analysis 

by Karl Gauss in the 1800 and mostly assumption in previous research on returns distribution of financial assets 

are approximately normally distributed. However, from the late 1960’s, the empirical finance analyses failed to 

support the normality assumption on estimating the returns distribution of financial assets. [14] and [15] have 

pointed out that excess kurtosis and heavy tails exist and established the empirical evidence on the non-

normality in returns distribution of financial assets. Later, strong evidence by numerous empirical finance 

studies has indicated that most of the returns distributions of financial assets are non-normal where normality is 

overwhelmingly rejected in many returns distribution [1], [16]. 
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Table 3: Assessing the number of components, k 

k 1 2 3 

K 2 6 9 

logL -397.7372 -389.6632 -393.8297 

AIC 799.4744 791.3264 805.6594 

BIC 800.2384 793.6185 811.1334 

 

Figure 4: (left) the BIC plot for the dataset, with vertical axes adjusted to display the maximum values (right) 

the classification plot, all of the data is displayed at the bottom, with the separated classes shown on different 

levels above 

As discussed earlier, we know that the assumption of normally distributed returns is not valid. Two features that 

account for non-normality in finance and economic series are; one is the presence of big shocks or outlying 

observations or rare events, another is abrupt regime changes over different sub-periods [17]. The worst part of 

the assumption of a Normal distribution is particularly with respect to the tail behaviour of the series where the 

tails of a Normal distribution taper very rapidly, hence the Normal assumption will exclude the possibility of 

extreme returns where such events are frequently seen in financial markets [18]. Moreover, according to [17], 

Normal distribution has tails that are too thin to accommodate shocks in financial markets. [19] showed an 

illustration of a normal distribution model that is quite inappropriate for fitting market data since its density does 

not take into accounts the fat tails and skewness. 

One way to accommodate this stylized fact is to introduce a more flexible distribution model. Mixtures of 

Normal distributions have gain increasing attention in various disciplines of knowledge. The earliest recorded 

application of the mixtures of Normal distributions was undertaken by Simon Newcomb in his study in 

Astronomy in 1886 followed by Karl Pearson in his classic work on Method of Moments in 1894. In empirical 

finance applications, the use of mixtures of Normal distributions to handle fat tails was first considered by [20]. 

[21] proves that a mixture of Normal distributions is leptokurtic, when all regimes have the same mean. There 

exists a long history of modelling asset returns with mixtures of Normal distributions [22], [23], [24], [25]. [26] 

examined the daily returns from 30 different stocks in the Dow-Jones Industrial Average, estimated mixtures of 
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Normal distributions with two up to four components which were found to fit appropriately and showed that the 

mixtures of Normal distributions have more descriptive validity than a Student-t distribution. Others are [8], 

[27] and [28]. And the lists of literatures continue to emerge until at this moment. 

Most financial markets returns are both skewed and leptokurtic. Based on the above analysis, the FBMKLCI is 

no exception; the monthly log return is far from being normally distributed. Hence, a number of alternatives 

skewed and leptokurtic distributions have been applied. The mixtures of Normal distributions is by far the most 

extensively applied and the simplest case is a mixture of two univariate Normal distributions may be considered 

as the most widely applied. A flexible and tractable alternative of departures from normality is a mixture of two 

Normal distributions. A mixture of two log Normal distributions fit financial data better than a single Normal 

distribution. [14] claims that a mixture of several Normal distributions with same mean but different variances 

are the most popular approach to describe long-tailed distribution of price changes.  

One of the most appealing features of the mixtures of Normal distributions for modelling assets returns is that it 

has the flexibility to approximate various shapes of continuous distributions by adjusting its component weights, 

means and variances [1]. Other advantages of using mixtures of Normal distributions are they maintain the 

tractability of Normal, have finite higher order moments, plus can capture excess kurtosis [29]. Besides, 

mixtures of Normal distributions can capture the structural change both in the mean and variance and it can be 

asymmetric [30]. Also the mixtures of Normal distributions are easy to interpret if the asset returns are viewed 

as generated from different information distributions where the mixture proportion can accommodate parameter 

cyclical shifts or switches among a finite number of regimes [31]. 

Some attractive property of the mixtures of Normal distributions is that it is flexible to accommodate various 

shapes of continuous distributions, and able to capture leptokurtic, skewed and multimodal characteristics of 

financial time series data. Also it is believed that mixtures of Normal distributions are appropriate in order to 

accommodate certain discontinuities in stock returns such as the ‘weekend effect’, the ‘turn-of-the month effect’ 

and the ‘January effect’ [32]. [33] discuss how skewness and excess kurtosis in financial time series can be deal 

using finite mixtures of Normal distributions? and illustrate why mixtures of normal distributions provide a 

flexible way of dealing with skewness and kurtosis?  

A good introduction to the theory and applications of mixtures of Normal distributions can be found in [11], 

[34], [35], [36], [37]. Meanwhile, various applications of the mixtures of Normal distributions in empirical 

finance are documented in [2] and [38]. 

A mixture of two Normal densities is defined by 

( ) ( ) ( ) ( )1 21 , 0 1,g x x xπϕ π ϕ π= + − < <                                                                                                         (1) 

where 1ϕ  and 2ϕ  are two Normal densities with different expectations and variances. In general, the cumulative 

distribution function (cdf) of a mixture of k  normal random variable X  can be represented by 
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1

( )
K

i
i

i i

x
F x

µ
π

σ=

 −
= Φ 

 
∑                                                                                                                                      (2) 

where Φ  is the cdf of ( )0,1 .N  Therefore its probability density function (pdf) is 

 ( )
1

( ) ; ,
K

i i i
i

f x xπ φ µ σ
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µ
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=

=

= ≤ ≤∑
 

If X  is a mixture of K  Normals with pdf in (3), then its mean, variance, skewness and kurtosis are 

 

 

                                                                                              (4) 

                                                                                               

 

[2] defines finite mixture distribution as a probability-weighted sum of other distribution functions where the 

density function of a mixture distribution is the same probability-weighted sum of the component density 

function. In mixtures of Normal distributions, the return distribution is approximated by a mixture of Normal 

each has unique mean iµ  , standard deviation iσ  and weight (sometimes also called as probability or mixing 

parameter) iπ  [39]. The mixture setting, according to [2] is design to capture different market regimes. The 

typical interpretation of a mixture of two Normal distributions is that there are two regimes for returns. One 

where the return has mean 1µ  and variance 2
1σ  another where the return has mean 2µ  and variance 2

2σ . The 

weight is the probability π  which the first regime occurs while the second regime occurs with probability 1 π− .  

For example, in a two-component mixture ( )2k = , the first component, with a relatively high mean and small 

variance, may be interpreted as the bull market regime, occurring with probability π  whereas the second 

regime, with a lower expected return and a greater variance, represent the bear market. 

Thus, the five parameters ( )2 2
1 2 1 2, , , ,π µ µ σ σ  of mixtures of Normal distributions allow a very flexible definition 

of departures from symmetry and normality. Therefore, mixtures of Normal distributions have the ability to deal 

with skewness and kurtosis in analyzing financial time series. By using mixtures of Normal distributions, we 

can obtain densities with higher peaks and heavier tails than Normal distribution. 
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5. Parameter Estimation 

Fitting mixture distributions can be handled by a wide variety of techniques, such as graphical methods, method 

of moments, minimum-distance methods, maximum likelihood and Bayesian approaches (see [34] for an 

exhaustive review of these methods). Considerable advances have been made in the fitting of mixture models 

especially via the maximum likelihood method. The maximum likelihood method has focused many attentions 

and by far has been the most commonly used approach to fit the mixture distributions mainly due to the 

existence of an associated statistical theory and since the advent of the EM algorithm. The key property of the 

EM algorithm has been established by [40]. The EM algorithm is a popular tool for simplifying maximum 

likelihood problems in the context of a mixture model. The EM algorithm has become the method of choice for 

estimating the parameters of a mixture model, since its formulation leads to straightforward estimators [41]. 

Fitting the parameters of the mixtures of Normal distributions is one of the oldest estimation problems in the 

statistical literature. A variety of approaches have been used to estimate the mixtures of Normal distributions as 

discussed earlier. The maximum likelihood method (MLE) is the most commonly preferred method for the 

estimation problem of mixtures of Normal distributions. Unfortunately, the MLEs have no closed forms; hence 

they have to be computed iteratively. However, the computation becomes straightforward using the expectation-

maximization (EM) algorithm.  

The EM algorithm is widely used as it is an easy and implementable method as well as a popular tool for 

simplifying difficult maximum likelihood problems plus has shown great performance in practice where it has 

the ability to deal with missing data, unobserved variables and mixture density problems. The EM algorithm 

will find the expected value as well as the current parameter estimates at the E step and maximizes the 

expectation at the M step. By repeating the E and M step, the algorithm will converge to a local maximum of the 

likelihood function. Various EM-type algorithms can be found in the literature (for example, see [37] and [42] 

for references).  

Denote θ  the parameters of the function to be optimized. The algorithm consists of iterating between two steps, 

the E-step and the M-step. In the Expectation (E) step, the current estimates of the parameters are used to assign 

responsibilities according to the relative density of the training points under each model. Next, in the 

Maximization (M) step, these responsibilities are used in weighted maximum-likelihood fits to update the 

estimates of the parameters. The E-step is repeated, updated with a new value as the current value of θ  and then 

the M-step again provides a further updated value for θ . Thus, the algorithm proceeds, iterating between the E-

step and the M-step until convergence is achieved. Reference [43] introduces a simple procedure of the EM 

algorithm for the special case of mixtures of Normal distributions.  

• Expectation (E) Step 

( )
( ) ( ) ( )

2
2 2

2 2
1 1 1 2 2 2

; ,

; , 1 ; ,

1,..., .

t
t

t t

x

x x

for t T

πφ µ σ
γ

πφ µ σ π φ µ σ
=

+ −

=

                                                                                               (5) 
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• Maximization (M) Step 
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∑ ∑
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∑

                                                                                    (6)                                                                                                           

As an illustration, we apply the maximum likelihood method via EM algorithm to fit the mixtures of Normal 

distributions with two components to the Bursa Malaysia monthly return. Table 4 depicts the summary of two 

components mixtures of Normal distributions using the EM algorithm. There are two components, with weight (

π ), two means ( µ ), two standard deviations (σ ), implied skewness ( 1β ), implied kurtosis ( 2β ) and the 

overall log-likelihood (logL). Also stated are the standard errors, ratios and confidence intervals for the five 

parameters.  

Several important observations may be drawn from Table 4. First, in general the low-variance component has a 

higher probability. The second component has a lower variance in the monthly Composite Index. The high-

variance component has the smaller probability for this data. The Composite Index indicates that the first 

Normal is a low mean high variance regime and the second Normal is a high mean low variance regime. 

Meanwhile, the weights indicate that the second regime is the more prevalent regime for the stock market index 

of Bursa Malaysia.  

The estimation results for the two-component mixtures of Normal distributions are 

 ( ) ( ) ( )0.2222 0.1996,132.2486 0.7778 0.4732, 22.5891tf x N N= − +  

In order to judge whether the estimated models are compatible with the stylized facts of the data, we compute 

the implied skewness 1β  and the implied kurtosis 2β  of the models from 
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                                                                                                                       (7)

       

with i iδ µ µ= − , where µ  is the overall mean. 

408 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2015) Volume 23, No  1, pp 398-412 

The results, reported in Table 4, show a rather close agreement between the pattern of skewness and kurtosis in 

the data with the implied skewness and kurtosis. There is a quite close agreement between implied leptokurtosis 

and actual leptokurtosis for the monthly data. 

 

Table 4: Summary of two components mixtures of Normal distributions using EM algorithm 

Parameter Statistics Component 1 Component 2 

Weight π  Estimate 0.2222 0.7778 

 Standard error 19.1709 - 

 Ratio 0.0116 - 

 95% CI (0.0407,0.4038) - 

Mean µ  Estimate -0.1996 0.4732 

 Standard error 0.5764 2.4166 

 Ratio -0.3463 0.1958 

 95% CI (-3.7684,3.3692) (-0.3799,1.3263) 

Variance 2σ  Estimate 132.2486 22.5891 

 Standard error 0.0355 0.3267 

 Ratio 3725.3127 69.1433 

 95% CI (47.1284,217.3687) (14.7898,30.3883) 

Implied skewness 1β   -0.1020 

Implied kurtosis 2β  5.7435 

Estimate log-likelihood (log-L) -789.6755 

 

Mixtures of Normal distributions have an intuitive interpretation when markets display regime-specific 

behaviour [2]. Markets are stable when the expected return is relatively small and positive and the volatility is 

relatively low, but market crash as the expected return is relatively large and negative and the returns volatility 

is larger than when markets are stable. Therefore, from Table 4, during a stable market regime, which occurs 

78% of the time, have expectation 0.47 and standard deviation 4.75. However, 22% of the time the market is in 

turmoil with an expected return of -0.20 and a standard deviation of 11.50.  

Next, we plot the histogram of the data and the non-parametric density estimate (Figure 5a). In Figure 5b, we 

add the density of a given component to the current plot, but scaled by the share it has in the mixture, so that it is 

visually comparable to the overall density. 
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Figure 5: Figure 5a (left) Histogram (grey) for monthly stock price of Bursa Malaysia. The dashed line is a 

kernel density estimate, which is not completely satisfactory. Figure 5b (right) As in the previous figure, plus 

the components of a mixture of two Normal, fitted to the data by the EM algorithm. These are scaled by the 

mixing weights of the components. 

 

6. Conclusion 

In this paper, we present the empirical evidence on the stock market return based on its time series patterns. We 

propose the mixtures of Normal distributions, which is a flexible family of distribution to accommodate the non-

normality and asymmetric characteristics of financial time series data as found in the distribution of monthly 

rates of returns for the FTSE Bursa Malaysia Composite Index (FBMKLCI) from July 1990 until July 2010. We 

define the mixtures of Normal distributions and explore some of its distribution properties. We fit the two 

component mixtures of Normal distributions to data sets using the maximum likelihood estimation via EM 

algorithm. We may conclude from the above analysis that using the mixtures of two Normal distributions to fit 

the market data of stock market return captures well the stylized facts of non-normality and leptokurtosis. 
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