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Abstract 

A binary logistic regression is performed to predict the presence or absence of Eye Glaucoma and to identify the 

risk factors of the disease. Five predictor variables are included in the model, which are:  age, gender, 

inheritance, diabetes and hypertension. The results of the logistic regression analysis show that the full model, 

that considered all the five independent variables together, is statistically significant. . The most significant 

predictor in the model is the age factor and when it is raised by one year, the person is six times more likely to 

get sick with eye glaucoma while the other variables in the model are controlled but are regarded as clinically 

important.  Moreover, the logistic model explains about 75.5% of the cases for absence of glaucoma, 83.9% for 

its presence and it correctly classifies 80% of the included cases.  

Keywords: Binary;  Logistic regression; Maximum Likelihood; Discriminant Function.  

1. Introduction 

Usually in a medical setting, an outcome might be presence or absence of a certain disease.  Logistic regression 

analysis is widely known  to be a valuable tool in extending the techniques of multiple regression analysis to 

research situations in which the outcome variable is categorical , through  taking on two or more possible 

values.  This is very clearly stated by [1,2,3,4].  
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 In this paper, the risk factors for the disease of Eye Glaucoma are identified using logistic regression analysis. 

Finding the risk factors and the potential risk factors can help prevent the development of the disease. The 

logistic regression model has become the standard method of analysis in this situation, as stated by [5,6,7].  And 

like any other model building technique, the goal of the logistic regression analysis is to find the best fitting and 

most parsimonious, yet biologically reasonable model to describe the relationship between an outcome 

(dependent or response variable) and a set of independent (predictor or explanatory) variables. 

Glaucoma is a condition that causes damage to your eye's optic nerve and gets worse over time. It's often 

associated with a buildup of pressure inside the eye. Glaucoma tends to be inherited and may not show up until 

later in life. The increased pressure, called intraocular pressure, can damage the optic nerve, which transmits 

images to the brain. This can happen when eye fluid isn't circulating normally in the front part of the eye.  If 

damage to the optic nerve from high eye pressure continues, glaucoma will cause permanent loss of vision. 

Without treatment, glaucoma can cause total permanent blindness within a few years. Normally, that fluid, 

called aqueous humor, flows out of the eye through a mesh-like channel. If this channel becomes blocked, fluid 

builds up, causing glaucoma. The direct cause of this blockage is unknown, but doctors do know that it can be 

inherited, meaning it is passed from parents to children. Less common causes of glaucoma include a blunt or 

chemical injury to the eye, severe eye infection, blockage of blood vessels in the eye, inflammatory conditions 

of the eye, and occasionally eye surgery to correct another condition. Glaucoma usually occurs in both eyes, but 

it may involve each eye to a different extent.  

There are two main types of eye glaucoma: The first type is Open-angle glaucoma which is also called wide-

angle glaucoma and it is the most common type of glaucoma. The structures of the eye appear normal, but fluid 

in the eye does not flow properly through the drain of the eye, (trabecular meshwork).The second type is Angle-

closure glaucoma, and sometimes is also called acute or chronic angle-closure or narrow-angle glaucoma. This 

type of glaucoma is less common but can cause a sudden buildup of pressure in the eye. Drainage may be poor 

because the angle between the iris and the cornea (where a drainage channel for the eye is located) is too 

narrow.  

For most people, there are usually few or no symptoms of  eye glaucoma. The first sign of eye glaucoma is often 

the loss of peripheral or side vision, which can go unnoticed until late in the disease. Detecting glaucoma early 

is one reason you should have a complete exam with an eye specialist every one to two years. Occasionally, 

intraocular pressure can rise to severe levels. In these cases, sudden eye pain, headache, blurred vision, or the 

appearance of halos around lights may occur. Thus the need for medical care emerges if any of the following 

symptoms occur: Seeing halos around lights, Vision loss, Redness in the eye, Eye that looks hazy (particularly 

in infants), Nausea or vomiting, Pain in the eye and Narrowing of vision (tunnel vision). To diagnose glaucoma, 

an eye doctor will test your vision and examine your eyes through dilated pupils. The eye exam typically 

focuses on the optic nerve which has a particular appearance in glaucoma. In fact, photographs of the optic 

nerve can also be helpful to follow over time as the optic nerve appearance changes as glaucoma progresses. 

The doctor will also perform a procedure called tonometry to check for eye pressure and a visual field test, if 

necessary, to determine if there is loss of side vision. Glaucoma tests are painless and take very little time. 

Glaucoma treatment may include prescription eye drops, laser surgery, or microsurgery. Moreover, Infant or 
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congenital glaucoma -- meaning you are born with it -- is primarily treated with surgery since the cause of the 

problem is a much distorted drainage system. Glaucoma cannot be prevented, but if it is diagnosed and treated 

early, the disease can be controlled. 

The main objectives of the study are to : identify the most important risk factors of eye glaucoma through the 

use of logistic regression, to find an appropriate discriminant function that helps in the diagnosis of the disease,  

and to know which risk factors are the most statistically significant.   

The study resulted in the fact that a test of the full model against a constant only model was statistically 

significant, indicating that the predictors as a set reliably distinguished between presence and absence of 

Glaucoma. In addition to this, there exists a medium relationship between prediction and grouping. Prediction 

success overall was 80%  (75.5% for absence of glaucoma and 83.9% for presence of glaucoma).  It was 

revealed that only age factor made a significant contribution to prediction, while the rest of the predictors 

(Gender, inheritance, diabetes, and hypertension) were not significant ones. Moreover it was found that when 

age is raised by one year, the person is six times more likely to get sick with eye glaucoma.  

2. Methods and Materials  

The logistic regression model indirectly models the response variable based on probabilities associated with the 

values of the dependent variable Y. We will use P(x) to represent the probability that Y =1, which is the 

presence of Glaucoma.  Similarly, we will define 1-P(x) to be the probability that Y =0, which is absence of 

Glaucoma. These probabilities are written in the following form: 

P(x) = P(Y = 1|𝑋1,𝑋2,𝑋3 … ,𝑋𝑛)         

1 -P(x) = P(Y = 0|𝑋1,𝑋2,𝑋3 … ,𝑋𝑛) 

The log distribution (or logistic transformation of p) is also called the logit of p or logit (p) which is the log (to 

base e) of the odds ratio or likelihood ratio that the dependent variable is 1. In symbols it is defined as: 

Logit (P) = log [P / (1− P)] = ln [P / (1− P)]                                                                                                    → (1) 

Whereas P can only range from 0 to 1, logit (p) scale ranges from negative infinity to positive infinity and is 

symmetrical around the logit of 0.5 (which is zero). Formula (2) below shows the relationship between the usual 

regression equation (𝑌 = 𝛼 + 𝛽𝑋), which is a straight line formula, and the logistic regression equation. The 

form of the logistic regression equation is thus rewritten as: 

Logit P(x) = log [P(x) / (1− P(x))] = ln [P(x) / (1− P(x))] = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 …                           → (2)

  

This looks just like a linear regression and although logistic regression always finds a ‘best fitting’ equation, just 

as linear regression does, the principles on which it does so are rather different, Lei (8) and Peng (9). Instead of 
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using a least-squared deviations criterion for the best fit, it uses a maximum likelihood method, Hosmer (10), 

which maximizes the probability of getting the observed results given the fitted regression coefficients. A 

consequence of this is that the goodness of fit and overall significance statistics used in logistic regression is 

different from those used in linear regression. P can be calculated with the following formula: 

𝑃 = 𝐸𝑥𝑝𝛼+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3…

1+ 𝐸𝑥𝑝𝛼+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3…                                                                                                                → (3) 

Where: 

P = the probability that a case is in a particular category, 

Exp = the base of natural logarithms (approx. 2.72), 

𝛼 = the constant of the equation and, 

𝛽= the coefficient of the predictor variables. 

A model including the intercept (constant) only is carried out firstly. Logistic regression compares this model 

with a model including all the predictors (Age, Gender, Inheritance, Diabetes and Hypertension) to determine 

whether the latter model is more appropriate in representing the data in a better way. Then information about the 

variables that are not included in the equation is provided to tell whether each independent variable (IV) 

improves the model. Moreover, we often want to look at the proportion of cases we have managed to classify 

correctly, for this reason a classification process is adopted. 

Consequently, results after adding predictors are presented and model goodness of fit tests are carried out to 

show if each predictor contributes significantly to the model. The overall significance is tested and an 

approximation to the coefficient of determination R2 is done. 

A classification plot or histogram of predicted probabilities may be presented to provide a visual demonstration 

of the correct and incorrect predictions. Finally, the case-wise list produces a list of cases that didn’t fit the 

model well which are known as outliers. 

2.1    Statistical Tests 

For more elaboration, the statistical tests of goodness of fit are revised and described briefly as follows: 

Starting by Wald test, together with the associated probabilities, it provides  an index of the significance of each 

predictor in the equation, as noted by[11]. The Wald statistic has a chi-square distribution. The simplest way to 

assess Wald is to take the significance values and if they are  less than a value of  0.05, we  reject the null 

hypothesis as the variable does make a significant contribution.  

The Logits (log odds) are the b coefficients  (the slope values) of the regression equation. The slope can be 
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interpreted as the change in the average value of Y, from one unit of change in X. Logistic regression calculates 

changes in the log odds of the dependent, not changes in the dependent value as OLS regression does. For a 

dichotomous variable the odds of membership of the target group are equal to the probability of membership in 

the target group divided by the probability of membership in the other group, [12].  Odds value can range from 

zero to infinity and tell you how much more likely it is that an observation is a member of the target group 

rather than a member of the other group. If the probability is 0.80, the odds are 4 to 1 or 0.80/0.20; if the 

probability is 0.25, the odds are0.33 (0.25/0.75). If the probability of membership in the target group is 0.50, the 

odds are 1 to 1 (0.50/0.50), as in coin tossing when both outcomes are equally likely. 

Another important concept is the odds ratio (OR), which estimates the change in the odds of membership in the 

target group for a one unit increase in the predictor. It is calculated by using the regression coefficient of the 

predictor as the exponent or Exp.  Generally, in statistical packages, the odds ratio is called EXP (b). It eases our 

calculations of changes in the dependent variables DV due to changes in the independent variables IV. So the 

standard way of interpreting a ‘b’ in logistic regression is using the conversion of it to an odds ratio using the 

corresponding EXP (b) value. As an example, if the logit b = 1.5, then the corresponding odds ratio will be 4.48. 

We can then say that when the independent variable increases one unit, the odds that the case can be predicted 

increase by a factor of around 4.5 times, when other variables are controlled.  

Maximum Likelihood (or ML) is used instead of the least squares approach to find the function that will 

maximize our ability to predict the probability of Y based on what we know about X. This is because the values 

of Y can only range between 0 and 1. In logistic regression, two hypotheses are of interest: the null hypothesis, 

which is when all the coefficients in the regression equation take the value zero, and the alternative hypothesis 

that the model with predictors currently under consideration is accurate and differs significantly from the null of 

zero, i.e. gives significantly better than the chance or random prediction level of the null hypothesis. We then 

work out the likelihood of observing the data we actually did observe under each of these hypotheses. The result 

is usually a very small number, and to make it easier to handle, the natural logarithm is used, producing log 

likelihood (LL). Probabilities are always less than one, so LL’s are always negative. Log likelihood is the basis 

for tests of a logistic model. 

The likelihood ratio test is based on –2LL ratio. It is a test of the significance of the difference between the 

likelihood ratios for the researcher’s model with predictors (called model chi square) minus the likelihood ratio 

for baseline model with only a constant in it. Significance at the 0.05 level or lower means the researcher’s 

model with the predictors is significantly different from the one with the constant only (all ‘b’ coefficients being 

zero). It measures the improvement in fit that the explanatory variables make compared to the null model. Chi 

square is used to assess significance of this ratio. When probability fails to reach the 5% significance level, we 

retain the null hypothesis that knowing the independent variables (predictors) has no increased effects (i.e. make 

no difference) in predicting the dependent variable. 

Cox and Snell’s R-Square attempts to imitate multiple R-Square based on ‘likelihood’, but its maximum can be 

(and usually is) less than 1.0, making it difficult to interpret. Here it is indicating the how much is the percentage 

of the variation in the dependent variable DV is explained by the logistic model.  
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The Nagelkerke modification that does range from 0 to 1 is a more reliable measure of the relationship. 

Nagelkerke’s R2 will normally be higher than the Cox and Snell measure and it is the most-reported of the R-

squared estimates, as stated by [13]. 

Hosmer and Lemeshow test constitutes an alternative to model chi-square in which subjects are divided into 10 

ordered groups of subjects and then compares the number actually in the each group (observed) to the number 

predicted by the logistic regression model (predicted). The 10 ordered groups are created based on their 

estimated probability; those with estimated probability below 0.1 form one group, and so on, up to those with 

probability 0.9 to 1.0. Each of these categories is further divided into two groups based on the actual observed 

outcome variable (success, failure). The expected frequencies for each of the cells are obtained from the model. 

A probability (p) value is computed from the chi-square distribution with 8 degrees of freedom to test the fit of 

the logistic model. If the H-L goodness-of-fit test statistic is greater than 0.05, as we want for well-fitting 

models, we fail to reject the null hypothesis that there is no difference between observed and model-predicted 

values, implying that the model’s estimates fit the data at an acceptable level. That is, well-fitting models show 

non-significance on the H-L goodness-of-fi t test. This desirable outcome of non-significance indicates that the 

model prediction does not significantly differ from the observed. The H-L statistic assumes sampling adequacy, 

with a rule of thumb being enough cases so that 95% of cells (typically, 10 decile groups times 2 outcome 

categories = 20 cells) have an expected frequency > 5. 

2.2     Data 

Considering the data used in this study, a Quata  sample of size n = 55 patients is chosen from “Makah Hospital 

for Eye Diseases” in Al Riyadh – Khartoum – Sudan , and  is composed of a dependent and categorical variable 

represented in the presence or absence of glaucoma, in addition to five risk factors of : Age, Gender, inheritance, 

diabetes and hypertension. The categories of the risk factors together with their description are demonstrated in 

table (1).  

Table 1:  Risk Factors for Eye Glaucoma 

Description Risk Factors (Code) (Categories) 

Whether the age is less than 20 years, or between 20 & 35, 

or between 35 & 50 or above 50 years old 

Age (X1) (1,2,3,4) 

Either male or female Gender (X2) (1,2) 
Either presence or absence of the Inheritance factor Inheritance (X3) (1,2) 

Either presence or absence of Diabetes Diabetes  (X4) 1,(2) 

Either presence or absence of Hypertension Hypertension (X5) (1,2) 

 

3. Results 

The objectives  of this study are to identify the most important risk factors of Eye Glaucoma, to find an 
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appropriate discriminant function that helps in the diagnosis of the disease and to know which risk factors are 

the most statistically significant.  Accordingly, a binary logistic regression analysis is carried out, according to  

[14]. The results of the study are summarized as follows: 

Table (2) presents the results of the logistic regression with the constant only included before any coefficients 

(i.e. those relating to Age, Gender, inheritance factor, diabetes and hypertension) are entered into the equation. 

Logistic regression compares this model with a model including all the predictors to determine whether the 

latter model is more appropriate. The table suggests that if we knew nothing about our variables and guessed 

that a person would be sick with eye glaucoma, we would be correct 56.4% of the time.  

Table  2: Classification Table 

Observed Y Predicted Y [ 0 (Absence)] Predicted Y [1 (presence)] Percentage correct 

0 0 24 0.0 

1 0 31 100.0 

Overall Percentage   56.4 

The cut value is 0.500 

Table (3) illustrates  the variables in the equation, which is the constant term at the moment. It can be realized 

that the intercept-only model has ln (odds) = 0.256. If we exponentiate both sides of this expression we find that 

our predicted odds [Exp (B)] = 1.292. That is, the predicted odds of having eye glaucoma is 1.292. Since 31 of 

the sampled persons have eye glaucoma and 24 are not sick, our observed odds are 31/24 = 1.292. Wald statistic 

is computed and since it is 0.886, the null hypothesis is accepted, indicating that the constant does not make a 

significant contribution to the model.  

Table 3: Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Constant .256 .272 .886 1 .347 1.292 

The variables not in the equation table tell us whether each IV improves the model, (Table 4). The answer is yes 

for variables X1 (Age) and  X3 (Inheritance) as both are significant and if included would add to the predictive 

power of the model. The rest of the risk factors seem to be not important at this step, but the overall significance 

P-value of 0.001 assures that the logistic model will represent the data very much.  

Table (5) presents the model chi square value of 27.719, with 5 degrees of freedom, and a probability value of p 

= 0.000. Thus, the indication is that the model has a poor fit, with the model containing only the constant, while 

the predictors do have a significant effect and create essentially a different model. So we need to look closely at 

the predictors and from later tables determine if one or all are significant ones.  
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Table  4: Variables Not in the Equation 

Variables Score df Sig. 

X1 16.857 1 0.000 

X2 0.245 1 0.620 

X3 9.462 1 0.002 

X4 0.296 1 0.587 

X5 0.111 1 0.739 

Overall Statistics 21.436 5 0.001 

 

Table  5: Omnibus Tests of Model coefficients 

Step 1 Chi-square df Sig. 

Step 27.719 5 0.000 

Block 27.719 5 0.000 

Model 27.719 5 0.000 

 

 Although there is no close analogous statistic in logistic regression to the coefficient of determination R2, the 

Model Summary in table (6) provides some approximations. In our case its value (Nagelkerke’s R2) is 0.531, 

indicating a medium relationship between the predictors and the prediction. Under Model Summary the value of 

the -2 Log Likelihood statistic is 47.634.  

Table 6: Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 47.634a .396 .531 

Estimation terminated at iteration number 10 because maximum iterations have been reached. Final solution 

cannot be found. 

Table (7) illustrates Hosmer-Lemeshow (H-L) test. The statistic under consideration has a significance of 0.780 

which means that it is not statistically significant and therefore leading to the fact that the model is quite a good 

fit.  

Table 7: Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 4.789 8 .780 
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Considering table (8), it can be realized that it is a classification table, including the constant term and the rest of 

the predictors.  It reveals that 75.0% were correctly classified for the absence of glaucoma while 83.9% for its 

presence. And overall 80.0% of the cases were correctly classified. This is a considerable improvement on the 

56.4% correct classification with the constant model, indicating that the model with predictors is a significantly 

better one.  

Table 8: Classification Table 

Observed Y Predicted Y (no sick) Predicted Y (sick) Percentage correct 

0 18 6 75.0 

1 5 26 83.9 

Overall Percentage   80.0 

The cut value is 0.500 

Table (9) is about the variables that are included in the logistic regression equation. This is illustrated in the 

following equation: 

Ln(odds) =14.305+1.732Age+0.192Gender-11.012Inheritance+0.263Diabities+0.565Hypertension 

                                                                                                                                                                   → (3) 

Wald statistic states that the risk factor Age is the only statistically significant factor, while the others are not.  

Exp (B) of Age factor is approximately 6, indicating that if Age is raised by one year, the person is six times 

more likely to get sick with eye glaucoma as noted by [15].  

Table 9: Variables in the Equation 

 

Step B S.E. Wald df Sig. Exp(B) 

L. 95% CI 

for EXP (B) 

U. 95% CI 

for EXP (B) 

X1 1.732 0.593 8.542 1 0.003 5.654 1.769 18.065 

X2 0.192 0.843 0.052 1 0.820 1.211 0.232 6.323 

X3 -11.012 81.348 0.018 1 0.892 0.000 0.000 2.892E64 

X4 0.263 0.952 0.076 1 0.783 1.300 0.201 8.395 

X5 0.565 0.850 0.442 1 0.506 1.759 0.333 9.301 

Constant 14.305 162.723 0.008 1 0.930 1.632E6   

 

Finally, the case-wise list of table (10) produces a list of cases that didn’t fit the model well (outliers). If there 

are a number of cases, this may reveal the need for further explanatory variables to be added to the model. But 
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fortunately, only one case (No. 12) falls into this category and therefore the model is reasonably sound (this is 

the only person who did not fit the general pattern). We do not expect to obtain a perfect match between 

observation and prediction across a large number of cases. But no excessive outliers should be retained as they 

can affect results significantly. The standardized residuals for outliers (ZResid) should be inspected and 

removed if they exceed > 2.58 (outliers at the .01 level). And in table (10) it is 3.028.  

Table:10 Casewise Listb 

Case Selected Status a Observed Y Predicted Predicted 

Group 

Resid ZResid 

12 S 1** .098 0 .902 3.028 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 

4. Conclusion 

A binary logistic regression analysis was conducted to predict the persons sick with eye glaucoma. This was for 

55 cases selected using Quata sample  from the patients in ‘Makah Hospital for Eye Diseases”, using Age, 

Gender, inheritance, diabetes, and hypertension as predictors. A test of the full model against a constant only 

model was statistically significant, indicating that the predictors as a set reliably distinguished between sick and 

non-sick of Glaucoma (chi-square 27.719, p-value 0.000 with df 5). Nagelkerke’s R2 of 0.531 indicated a 

medium relationship between prediction and grouping. Prediction success overall was 80% , classified into 

75.5% for glaucoma absence and 83.9% for its presence. The Wald criterion demonstrated that only age factor 

made a significant contribution to prediction (p-value 0.003). Gender, inheritance, diabetes, and hypertension 

were not significant predictors. EXP (b) value indicates that when age is raised by one year, the person is six 

times more likely to get sick with eye glaucoma. Thus the only statistically significant factor is the age, as 

expected , while the other factors are considered as clinically important. 

One constraint of this study is revealed on the use of the non- probability Quato Sampling Technique, which is 

limited in size, and which was used to facilitate the process of data collection  through time saving.  

The recommendations of the study are summarized in two points; Fisrstly,  Equation (3) is preferred  to be used 

in the needed situations to help in deciding for the absence or the presence of the disease. Secondly, for  future 

work , selection of data on basis of a more complex probabilty sample design is recommended so as to be able 

to enlarge the sample size , and to be able to get more presice and reliable  results.  
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