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Abstract 

In this article, the log beta log-logistic regression model based on the beta log-logistic distribution is which has a 

wider range of applications. The estimates of the parameters of the model for censored data are derived. Finally, 

the proposed model is applied to a real data set. Model checks based on martingale residuals and the AIC and 

BIC statistics are used to suggest appropriate models. 

Keywords: beta log-logistic distribution; censored data; profile log-likelihood; survival function; lifetime data; 

maximum likelihood estimation; martingale residuals.                                                                                               

1. Introduction 

The statisticians have interested in constructing flexible distributions to facility better modeling of lifetime data. 

So they made generalization of some lifetime models such as generalized log gamma, exponentiated Weibull, 

modified Weibull, and β-Birnbaum-Saunders distributions. Although many distributions are discussed in the 

literature, few regression models have been proposed.  
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Regression models can be proposed in different forms in survival analysis; for example, the location-scale 

regression model which is frequently used in clinical trials. In this paper, we introduce a location-scale 

regression model, which will be referred to as log-beta log-logistic regression model based on a recently 

introduced continuous distribution, proposed by Lemonte [13] that extend the log- logistic distribution and some 

other distributions. Lemonte [13] named this distribution beta log-logistic distribution. The main motivation for 

the use of the log-beta log-logistic regression model is that it is much more flexible than the log-logistic 

regression model, i.e., the additional shape parameters (a and b) allow for a high degree of flexibility of the log-

beta log-logistic regression model. So the new regression model can be helpful in many practical situations for 

modeling positive real data sets. 

The article is organized as follows: In Section 2, we present the beta log-logistic distribution proposed by 

Lemonte [13]. In Section 3, we propose a log beta log-logistic regression model of location-scale form, estimate 

the model parameters by maximum likelihood and derive the observed information matrix. Residuals analysis is 

presented in Section 4. We show in Section 5 that the proposed model is more adequate to fit the myeloma 

patients data set, given by Krall and his colleagues [10], than log-beta Weibull (LBW) regression model 

proposed by Ortega and his colleagues [16], by checking the residual plots for both models and discriminating 

between the models using the AIC and BIC statistics. Finally, Section 6 offers some concluding remarks. 

2. Beta log-logistic distribution 

Lemonte [13], using the generator approach suggested by Eugene and his colleagues [7], defined a new 

statistical model which he called the beta log-logistic (BLLog) distribution. This new distribution generalizes 

the log-logistic (LLog) model. The basic idea of the generator approach is as follows. Starting with a 

distribution function 𝐺(⋅)  and a random variable Y~B(a,b) , another random variable T is defined by 𝑌 =  𝐺(𝑇). 

The distribution of the random variable T is called the beta-G distribution. The distribution of T is given by   

𝐹(𝑡) = 𝑝𝑟[𝑇 ≤ 𝑡] = 𝑝𝑟[𝑌 ≤ 𝐺(𝑡)] = 𝐼𝐺(𝑡)(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)� 𝜛𝑎−1
𝐺(𝑡)

0
(1 −𝜛)𝑏−1𝑑𝜛. (1) 

This new distribution F(t) adds new parameters a > 0 and b > 0 to those already in G(T). Here, 𝐵(𝑝;  𝑞)  =

𝛤(𝑝) 𝛤(𝑞)/ 𝛤(𝑝 +  𝑞) is the beta function, where Γ(.) is the gamma function. 𝐵𝑦(𝑝, 𝑞) = ∫ 𝜛𝑝−1(1 −𝑦
0

𝜛)𝑞−1𝑑𝜛   is the incomplete beta function and Iy(p; q)= By(p; q)/B(p; q) is the regularized(incomplete) beta 

function. The added parameters a and b may be used to modify the shape and the skewness of the distribution.  

The probability density function (pdf) corresponding to (1) is given by 

𝑓(𝑡) = 𝑔(𝑡)
𝐵(𝑎,𝑏)

𝐺(𝑡)𝑎−1[1 − 𝐺(𝑡)]𝑏−1,                                         (2) 

where g(t) is the probability density function corresponding to G(t). 

The hazard rate function associated with (1) is defined as 
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𝑟(𝑡) =
𝑔(𝑡)𝐺(𝑡)𝑎−1[1 − 𝐺(𝑡)]𝑏−1

𝐵(𝑎, 𝑏)[1 − 𝐼𝐺(𝑡)(𝑎, 𝑏)]
. 

The log logistic distribution is the probability distribution of a random variable whose logarithm has a logistic 

distribution, this distribution is also known as Fisk distribution which was first introduced by Champernowne 

[3] for graduating income distribution. It has a cdf of the form 

𝐺(𝑡) =
𝑡𝛿

𝛼𝛿 + 𝑡𝛿
,   𝑡 > 0,                                                                 (3) 

where α> 0 and δ > 0 are scale and shape parameter respectively. This distribution is used in survival analysis 

as a parametric model for events whose hazard rate increases initially and decreases later. The pdf 

corresponding to (3) is given by 

𝑔(𝑡) =
𝛿 �𝑡𝛼�

𝛿−1

𝛼 �1 + �𝑡𝛼�
𝛿
�
2 ,            𝑡 > 0.                                              (4) 

Lemonte [13], inserting (3) and (4) in (2), obtained the beta log-logistic (BLLog) density function with positive 

parameters a, b, α and  δ. The pdf of  BLLog(a; b; α; δ) is given by 

𝑓(𝑡) =
(𝛿𝛼)(𝑡𝛼)𝑎𝛿−1

𝐵(𝑎, 𝑏)[1 + (𝑡𝛼)𝛿]𝑎+𝑏
, 𝑡 > 0.                                   (5) 

The cdf corresponding to (5) is 

𝐹(𝑡) = 𝐼 𝑡𝛿

𝛼𝛿+𝑡𝛿
(𝑎, 𝑏),                          

the survival function is  

𝑆(𝑡) = 1 − 𝐼 𝑡𝛿

𝛼𝛿+𝑡𝛿
(𝑎, 𝑏),                 

and the associated hazard rate function takes the form 

ℎ(𝑡) =
�𝛿𝛼� �

𝑡
𝛼�

𝑎𝛿−1
�1 + (𝑡𝛼)𝛿�

−(𝑎+𝑏)

𝐵(𝑎, 𝑏)𝑆(𝑡)
, 𝑡 > 0.                         (6) 

The new density (5) includes The LLog distribution as special cases. The LLog distribution arises when a = b = 

1.  
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3. Log beta log-logistic regression model 

Although lifetime of different individuals follows the same probability distribution, the parameters of the 

distribution may change depending on certain characteristic of the individual, variables representing these 

characteristic are referred to as covariates or explanatory variables, for example the mean value of the lifetime 

of an individual may depend on the blood pressure, sex, and weight. So, it would be interest to find the 

relationship between the lifetime and the explanatory variables. The most common approach to this type of 

relationship is a regression model. 

3.1 Location –scale regression model 

The class of location-scale models will be considered. The covariates vector is denoted by     xi = (xi1, xi2, . . . , 

xip)T, which is related to responses Y = log(T ) through a regression model. 

Considering reparametrization of f(t) in (5), δ= 1/σ and α = exp(μ), it follows that the density function of Y can 

be written as 

𝑓(𝑦; 𝑎, 𝑏,𝜎, 𝜇) =
𝜎−1

𝐵(𝑎, 𝑏)
�𝑒𝑥𝑝 �

𝑦 − 𝜇
𝜎

��
𝑎
�1 + 𝑒𝑥𝑝 �

𝑦 − 𝜇
𝜎

��
−(𝑎+𝑏)

,    (7) 

where a, b, σ > 0, −∞ < μ < ∞, and   -∞ < y < ∞. The survival function takes the form 

𝑠(𝑦) = 1 − 𝐼 𝑒𝑥𝑝((𝑦−µ)/𝜎)
[1+𝑒𝑥𝑝((𝑦−µ)/𝜎)]

(𝑎, 𝑏) .                                                           (8) 

The  hazard rate function is, then, given by 

ℎ(𝑦) =

𝜎−1
𝐵(𝑎, 𝑏) �𝑒𝑥𝑝 �

𝑦 − µ
𝜎 ��

𝑎
�1 + 𝑒𝑥𝑝 �𝑦 − µ

𝜎 ��
−(𝑎+𝑏)

1 − 𝐼 𝑒𝑥𝑝((𝑦−µ)/𝜎)
[1+𝑒𝑥𝑝((𝑦−µ)/𝜎)]

(𝑎, 𝑏) ,               (9) 

Similar to Lawless[11], Ortega and his colleagues [15], Silva and his colleagues [19], Carrasco and his 

colleagues [2], Silva and his colleagues [20], Silva and his colleagues [18], Hashimotto and his colleagues [9], 

Gusmao and his colleagues [8], and Cordeiro and his colleagues  [5] and others, we propose another way of 

expressing the dependence of  yi on , xi  as 

yi = xT
i β + σ zi ,                         i = 1, . . . , n                                     (10) 

where yi  is the response variable ,  xT
i= (xi1, xi2, . . . , xip)  is the vector of explanatory variable , β = (β1, . . . , 

βp)T,  σ > 0, and zi  is a random error with density function (11) 

𝑓(𝑧) =
1

𝐵(𝑎, 𝑏)
[𝑒𝑥𝑝(𝑧)]𝑎[1 + exp(𝑧)]−(𝑎+𝑏) ,          −∞ < 𝑧 < ∞.   (11) 
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The parameter µi= xT

i β is the location of  yi. Where vector µ= (µ1,..., µn) T and,  X = (x1, x2, ..., xn) is a known 

model matrix. 

3.2. Estimation of the model parameters 

Let ti denote the survival time of an individual or an item under observation, and suppose that these survival 

times are influenced by the regressor vector xi. However, not all the survival times are observed; some ti's will 

be censored at time ci. Let δi be an indicator variable denoting whether the i th observation was observed (δi =1) 

or censored (δi =0). Consider a sample (y1,x1),…,(yn,xn) of n independent observations, where yi= δi log(ti)+(1- 

δi) log(ci). We assume noninformative censoring such that the observed lifetimes and censoring times are 

independent. the log likelihood function for the vector of parameters θ=(a,b,δ,βT)T from model (10) takes the 

form 

𝑙(𝜃) = �𝛿𝑖 𝑙𝑜𝑔[𝑓(𝑦𝑖)]
𝑛

𝑖=1

+ �(1 − 𝛿𝑖)𝑙𝑜𝑔[𝑆(𝑦𝑖)]
𝑛

𝑖=1

, 

where f(yi) is the density function (7) and S(yi) is the survival function (8) of Yi. The log-likelihood function for 

θ reduces to  

𝑙(𝜃) = −𝑟𝑙𝑜𝑔(𝜎) − 𝑟𝑙𝑜𝑔𝐵(𝑎, 𝑏) + 𝑎 ∑ 𝛿𝑖  (𝑧𝑖)𝑛
𝑖=1 − (𝑎 + 𝑏)∑ 𝛿𝑖 (𝑙𝑜𝑔[1 + 𝑒𝑥𝑝(𝑧𝑖)])𝑛

𝑖=1 + ∑ (1 −𝑛
𝑖=1

𝛿𝑖)𝑙𝑜𝑔 �1 − 𝐼 𝑒𝑥𝑝�𝑧𝑖�
�1+𝑒𝑥𝑝�𝑧𝑖��

(𝑎, 𝑏)�,                      (12) 

where r is the number of uncensored observations (failures) and zi =( yi - xT
i β)/ σ. The Maximum likelihood 

estimates 𝜽� of θ can be obtained by maximizing the log-likelihood function (12).  

Let 𝐼(𝜽) = 𝐸��̈�(𝜽)� is the observed information matrix and the asymptotic covariance matrix I-1(θ) of  𝜃� can be 

approximated by the inverse of the (p+3)(p+3) observed information matrix  �̈��𝜽�� = −  𝜕
2𝑙(𝜽)

𝜕𝜃𝜕𝜃𝑇
|𝜃=𝜃� . 

.
( )

. .

. . .

j

j

j

j s

aa ab a a

bb b b

L L L L

L L L

L L

L

σ β

σ β

σσ σβ

β β

 
 
 

− =  
 
  
 

L θ  

where 𝐿𝑎𝛽𝑗 = [𝐿𝑎𝛽1 … 𝐿𝑎𝛽𝑝], 𝐿𝑏𝛽𝑗 = [𝐿𝑏𝛽1 … 𝐿𝑏𝛽𝑝], 𝐿𝜎𝛽𝑗 = [𝐿𝜎𝛽1 … 𝐿𝜎𝛽𝑝], and  

𝐿𝛽𝑗𝛽𝑠 = �
𝐿𝛽1𝛽1 … 𝐿𝛽1𝛽𝑝
⋮ ⋱ ⋮

𝐿𝛽𝑝𝛽1 … 𝐿𝛽𝑝𝛽𝑝
� 
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 4. Residual analysis  

After the model is fitted, we need a tool to check the assumptions and assess the adequacy of the fitted model. 

The examination of residuals is an important way to check assumptions in the fitted model.  In survival analysis 

with right censored data, use of martingale residuals which were proposed by Barlow and Prentice [1] is one 

way to assessing leverage and goodness of fit. In parametric lifetime models, we can define the martingale 

residual as (see for example, Therneau and his colleagues  [17], Commenges and Rondeau [4], and Elgmati [6]) 

the difference between the counting process and the integrated intensity function (which is also known hazard 

rate function given in ,9), 

                                                                     𝑟𝑀𝑖 = 𝛿𝑖 − �∫ ℎ(𝑢)𝑑𝑢𝑦
0 �,                                   i=1,…,n 

where δi take the value 0 or 1  if the  ith observation is censored or uncensored respectively. 

 As we known ∫ ℎ(𝑢)𝑑𝑢𝑦
0 = − log[𝑆(𝑦)] therefore it can be reduces to the simple form 

𝑟𝑀𝑖 = 𝛿𝑖 + log�𝑆�𝑦𝑖 ,𝜃���, 

(see for example, Ortega and his colleagues  [14], Silva and his colleagues  [20], and Hashimoto and his 

colleagues  [9]).  

The martingale residuals are skew, have maximum value +1 and minimum value −∞. The martingale residual 

for the log beta log-logistic model takes the form 

𝑟𝑀𝑖 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

1 + 𝑙𝑜𝑔

⎩
⎪
⎨

⎪
⎧

1 − 𝐼
𝑒𝑥𝑝 (

𝑦𝑖−𝑿𝑖
𝑇𝜷�

𝜎� )

[1+𝑒𝑥𝑝 (
𝑦𝑖−𝑿𝑖

𝑇𝜷�
𝜎� )]

(𝑎�, 𝑏�)

⎭
⎪
⎬

⎪
⎫

𝑖𝑓 𝛿𝑖 = 1,

                 

⎩
⎪
⎨

⎪
⎧

1 − 𝐼
𝑒𝑥𝑝 (

𝑦𝑖−𝑿𝑖
𝑇𝜷�

𝜎� )

[1+𝑒𝑥𝑝 (
𝑦𝑖−𝑿𝑖

𝑇𝜷�
𝜎� )]

(𝑎�, 𝑏�)

⎭
⎪
⎬

⎪
⎫

𝑖𝑓 𝛿𝑖 = 0.

 

5. Application 

In order to demonstrate the proposed methodology, we use the myeloma patients data set given by Krall and his 

colleagues [10] and a subset of which is reported in Lawless [12]. The aim of our study is to relate the logarithm 

of the survival time (y=log t) for multiple myeloma to a number of prognostic variables for censored data. The 

data reports the survival times (t), in months, for 65 patients with multiple myeloma who were treated with a 

certain drug. Out of these patients only 17 survived to the end of the study, while 48 died during the study. The 
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data includes several possible explanatory variables but only five of them [as in Lawless] are used in the 

following analysis. These variables are: logarithm of a blood urea nitrogen measurement at diagnosis (x1), 

hemoglobin measurement at diagnosis (x2), age at diagnosis (x3), sex (x4) [0 for male and 1 for female], and 

serum calcium measurement at diagnosis (x5).  

Except for the sex (x4), the data was centered and the model 

 𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖1 − �̅�1) + 𝛽2(𝑥𝑖2 − �̅�2) + 𝛽3(𝑥𝑖3 − �̅�3) + 𝛽4𝑥𝑖4 + 𝛽5(𝑥𝑖5 − �̅�5) + 𝜎𝑧𝑖 , 

was employed, where the variable yi =log( ti ) is assumed to follow the log BLLog distribution given in (7), in 

which the random errors zi have density function (11). 

When we tried to maximize the likelihood function (12) numerically we found that in many cases the numerical 

procedure failed to converge and negative values of σ were produced. As an alternative we use the profile log-

likelihood approach as describe by Rao [21] as follows.  

Suppose  a  is known, then we rewrite the log-likelihoods L(θ)=La(b, σ, β) (to show that a is fixed but b, σ, and β 

vary). The profile likelihood of a can be defined as  

𝑃𝑙(𝑎) = �𝑏�(𝑎),𝜎�(𝑎),𝛽�(𝑎)� ≡ arg 𝑚𝑎𝑥𝑏,𝜎,𝛽  𝐿𝑎( 𝑏,𝜎,𝛽). 

It means that we maximize La( b,σ, β) with respect to b, σ, and β to estimate b, σ, and β. To a large extent the 

profile likelihood could be used as a full likelihood and it should be maximized with respect to a. In general, we 

may not have an analytic formula for Pl(a); only a numeric value corresponding to a numeric specification of a. 

Using a large set of values of a and their corresponding values for Pl(a) we can construct the graph (a, Pl(a)). 

From this graph we can obtain an approximation of the value of a that maximizes Pl(a). In other words we 

evaluate  

𝑎� = arg 𝑚𝑎𝑥𝑎   𝐿𝑎 = �𝑏� ,𝜎�, �̂�� = arg 𝑚𝑎𝑥𝑎L�a, 𝑏�(𝑎),𝜎�(𝑎),𝛽�(𝑎)�. 

Thinking about it we can see that  𝑎� and  𝑏� ,𝜎�, and �̂�  are the maximum likelihood estimators 𝜃� = �𝑎�, 𝑏� ,𝜎�, �̂�� =

 arg 𝑚𝑎𝑥𝜃   𝐿(𝜃).  

To illustrate that, we do the following steps:  

1. For our application, get the initial values for b,σ, and β from the fit of the log beta weibull regression model  

(see, Ortega and his colleagues  [12] )  

2. For every value of a  in an appropriate set that is thought to contain the maximum  likelihood 𝑎� of a, calculate  

the MLEs 𝑏�(𝑎),𝜎�(𝑎), and 𝛽�(𝑎) conditioned on  a, and then the maximized log-likelihood function Lmax(a) is 

determined.  
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3. Maximize the log-likelihood Lmax(a), to obtain â . There for the MLEs of b, σ, and β are given by 𝑏� =

𝑏�(𝑎),𝜎� = 𝜎�(𝑎), and �̂� = 𝛽�(𝑎), respectively. Figure 1 shows that the profile log-likelihood 

𝑙�𝑏�(𝑎),𝜎�(𝑎), and �̂�(𝑎)� reaches its maximum value at a = 170. Hence, this value is taken as the MLE of a.  

 

Figure 1: Maximized profile log likelihood for the log BLLog regression model to the myeloma data. 

 

Now, for the myeloma patients data, we would like to compare between log-beta log logistic and log-beta 

weibull regression models. To choose between competing models we use Akaike's information criterion (AIC) 

and Bayesian information criterion (BIC) statistics, there are defined as  

AIC=-2.log(likelihood)+2(p+2+k)   and      BIC=-2 log(likelihood)+(p+k)log(n) 

where p is the number of estimated parameters and k = 2 is an arbitrary constant for both models. Lower values 

of the AIC and BIC indicate the preferred model. 

We fitted the log beta log logistic and the log-beta weibull regression models to myeloma patient's data. Table 1 

gives the estimates and their standard errors of the parameters for both regression models. The values of the 

statistics AIC and BIC are then used to select the better model. The statistic AIC yields the value -2.252˟104  for 

the log-beta log logistic regression model  and 218.194 for the log-beta weibull regression model , whereas the 

statistic BIC yields -2.252˟104 for the log-beta log logistic regression model  and 212.136 for the log-beta 

weibull regression model. The values of these statistics indicate that the log-beta log logistic regression model is 

more adequate to explain the data set than  the log-beta weibull regression model.  

The current estimates of the regression parameters for the log BLLog regression model and the LBW regression 

model and their standard errors are represented in Table 1. We can note that the log BLLog regression model 

has standard errors smaller than the LBW regression model. 

 In order to detect possible outlying observations as well as departures from assumptions of the log BLLog 

regression model and the LBW regression model we present. In figures 2 and 3, the graphs of martingale 

residuals against y, log time. By analyzing these graphs, asymmetry is observed, since, we know that the range 

of the martingale residuals is between (-∞,1), and we show in our plots it is between (0,1)   and as we show 

0 40 80 120 160 200
10

100

1 103×

1 104×

1 105×

profilelikelihood

a
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there is no outliers in the martingale plots and and the both figures seem to fit the data very well.  

Table 1: Estimates of the parameters ,standard errors , P-values , and confidence intervals in (.) for the Log 

BLLog  and LBW models fitted to the myeloma data. 

 

parameter 

BLLog LBW 

Estimate SE P-values Estimate SE P-values 

b 
0.093 

(0.053,0.133) 

0.02  0.181 

(0.057, 0.305) 

0.063  

σ 
1 

(0.864, 1.136) 

0.069  2.012 

(1.462, 2.562) 

0.281  

β0 
0.09 

(-0.262, 0.442) 

0.18 0.5 0.288 

(-2.135, 2.710) 

1.236 0.816 

β1 
-0.396 

(-0.759,-0.033) 

0.185 0.02 -1.564 

(-2.280, -0.849) 

0.365 <0.001 

β2 
0.085 

(0.036, 0.134) 

0.025 0.001 0.161 

(0.071, 0.252) 

0.046 < 0.001 

β3 
0.001253 

(-0.009375,0.012) 

0.005 0.5 0.005 

(-0.018, 0.029) 

0.012 0.654 

β4 
0.121 

(-0.145, 0.387) 

0.136 0.4 0.280 

(-0.246, 0.805) 

0.268 0.297 

β5 
-0.039 

(-0.094, 0.016) 

0.028 0.1 -0.154 

(-0.272, -0.036) 

0.060 0.011 

 

The log BLLog model involves two extra parameters which gives it more flexibility to fit the data. The 

explanatory variables x1 and x2 are marginally significant for the log BLLog model at the significance level of 

5%. We note from the fitted log BLLog regression model that the age at diagnostic and the sex do not seem to 

be significant. Therefore, it is to be expected that an individual with low blood urea nitrogen and the serum 

calcium measurements at diagnosis would survive longer, while an individual with high hemoglobin 

measurement at diagnosis would survive longer. 
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Figure 2: Plot of the Martingale residuals against y for the log BLLog model 

 

 

Figure 3: Plot of the Martingale residuals against y for the LBW model 

 

The final model will be as follow  

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖1 − �̅�1) + 𝛽2(𝑥𝑖2 − �̅�2) + 𝜎𝑧𝑖 , 

The parameter estimates in the final model are given in table 2. The estimates can be interpreted as following; 

the median survival time should increase approximately 8% (e0.085 ˟ 100%) as the hemoglobin measurement 

increases one unit.  
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Table 2: MLEs of the parameters from the log BLLog regression model on the myeloma data set – final model 

parameter Estimate S.E. p-value C.I. 95% 

b 0.093 0.02 - (-0.184, 0.37) 

σ 1 0.059 - (0.524, 1.476) 

β0 0.091 0.149 0.5 (-0.666, 0.848) 

β1 -0.396 0.188 0.02 (-1.246, 0.454) 

β2 0.085 0.023 0.001 (-0.212, 0.382) 

 

6. Concluding remarks 

According to the previous results it can be seen that the log BLLog regression model is more representable for 

modeling censored and uncensored lifetime data. The proposed model serves as an important extension to 

several existing regression models. Hence, the proposed regression model can be considered as an alternative 

model for lifetime data analysis and be more flexible than the LLog model (arises as the basic exemplar when  a 

= b = 1). Maximum likelihood is described for estimating the model parameters, and the usefulness of the model 

is also demonstrated through the analysis of a real data set. 
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Appendix: Matrix of second derivatives −�̈�(𝜽) 

The necessary formulas to obtain the second-order partial derivatives of the log-likelihood function are given 

after some algebraic manipulations, the following formulas are obtained 
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𝐿𝑏𝛽

= �
𝑥𝑖𝑒𝑧𝑖

𝜎[1 + 𝑒𝑧𝑖]
ℱ

+
𝜁4

∑ 𝐵(𝑎, 𝑏)[1 − 𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏)]𝒞 +
∑ ��𝐺(𝑧𝑖)�

𝑎−1
�1 − 𝐺(𝑧𝑖)�

(𝑏−1)
(𝜉1𝑖) ��1 − 𝐺(𝑧𝑖)�

𝑏
Γb2𝑣𝑖 + 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏)𝑑𝑖��𝒞

∑ 𝐵2(𝑎, 𝑏) �1 − 𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏)�
2

𝒞

, 

and 

𝐿𝑎𝜎 = −�
𝑧𝑖

𝜎[1 + 𝑒𝑧𝑖]
ℱ

+
𝜁5

∑ �1 − 𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏)�𝒞

+
∑ ��𝐺(𝑧𝑖)�

𝑎−1�1 − 𝐺(𝑧𝑖)�
(𝑏−1)(𝜉2𝑖) �

1
𝐵(𝑎, 𝑏) �𝐺(𝑧𝑖)�

𝑎Γ(𝑎)
2 [𝑜𝑖] �𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏)� 𝐷𝑖��𝒞

∑ 𝐵(𝑎, 𝑏) �1 − 𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏)�
2

𝒞

, 

where  

F,C are the sets of individuals for which yi is the loglifetime and log-censoring, respectively. 

 𝑧𝑖 = 𝑦𝑖−𝑥𝑖𝛽
𝜎

,  𝐺(𝑧𝑖) = � 𝑒𝑧𝑖

1+𝑒𝑧𝑖
�  , 𝐵(𝑎, 𝑏) = Γ𝑎Γ𝑏

Γ(𝑎+𝑏)
= ∫ 𝜛𝑎(1 − 𝜔)𝑏−1𝑑𝜛,1

0  

𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏) = � 𝜛𝑎(1 − 𝜔)𝑏−1𝑑𝜛,
�1−𝐺(𝑧𝑖)�

0
  𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏) =

1
𝐵(𝑎, 𝑏)

� 𝜛𝑎(1 −𝜔)𝑏−1𝑑𝜛,
1

�𝐺(𝑧𝑖)�
 

𝐷𝑖 = �𝑙𝑜𝑔�𝐺(𝑧𝑖)� − 𝜓(𝑎) + 𝜓(𝑎 + 𝑏)�,𝑑𝑖 = �− log�1 − 𝐺(𝑧𝑖)� + 𝜓(𝑏) − 𝜓(𝑎 + 𝑏)�, 

𝑜𝑖 = 3𝐹2�𝑎, 𝑎, 1 − 𝑏; 1 + 𝑎, 1 + 𝑎;𝐺(𝑧𝑖)�, [𝑜𝑖]𝑎 = 𝜕𝑎� 3𝐹2�𝑎, 𝑎, (1 − 𝑏); (1 + 𝑎), (1 + 𝑎);𝐺(𝑧𝑖)��, 

3𝐹2�𝑎, 𝑎, 1 − 𝑏; 1 + 𝑎, 1 + 𝑎;𝐺(𝑧𝑖)� = �
(𝑎)𝑛(𝑎)𝑛(1 − 𝑏)𝑛
(1 + 𝑎)𝑛(1 + 𝑎)𝑛

�𝐺(𝑧𝑖)�
𝑛

𝑛!

∞

𝑛=0

, 

𝑣𝑖 = 3𝐹2 �𝑏, 𝑏, (𝑎 − 1); (𝑏 + 1), (𝑏 + 1); �1 − 𝐺(𝑧𝑖)��, 

[𝑣𝑖]𝑏 = 𝜕𝑏 � 3𝐹2 �𝑏, 𝑏, (𝑎 − 1); (𝑏 + 1), (𝑏 + 1); �1 − 𝐺(𝑧𝑖)���, 

𝑞𝑖 = 2𝐹1�𝑎, (1 − 𝑏); (1 + 𝑎);𝐺(𝑧𝑖)�,   𝑢𝑖 = 2𝐹1 �𝑏, (1 − 𝑎); (𝑏 + 1); �1 − 𝐺(𝑧𝑖)��, 

𝜉1𝑖 = � 𝑥𝑖𝑒
2𝑧𝑖

𝜎[1+𝑒𝑧𝑖]2
− 𝑥𝑖𝑒

𝑧𝑖

𝜎[1+𝑒𝑧𝑖]
�  , 𝜉2𝑖 = � 𝑧𝑖𝑒

2𝑧𝑖

𝜎[1+𝑒𝑧𝑖]2
− 𝑧𝑖𝑒

𝑧𝑖

𝜎[1+𝑒𝑧𝑖]
�, 
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𝜁1 = �
1

𝐵(𝑎, 𝑏) �𝐺
(𝑧𝑖)�

𝑎Γ(𝑎)
2 𝑜𝑖 log�𝐺(𝑧𝑖)� +

1
𝐵(𝑎, 𝑏) 2�𝐺(𝑧𝑖)�

𝑎Γ(𝑎)
2 𝑜𝑖𝜓(𝑎)

−
1

𝐵(𝑎, 𝑏) �𝐺
(𝑧𝑖)�

𝑎Γ(𝑎)
2 𝑜𝑖[𝜓(𝑎) − 𝜓(𝑎 + 𝑏)]𝑑𝑖 �−

1
𝐵(𝑎, 𝑏) �𝐺

(𝑧𝑖)�
𝑎Γ(𝑎)

2 𝑜𝑖 + 𝐼�𝐺�𝑧𝑖��(𝑎, 𝑏)𝐷𝑖

− 𝐼�𝐺�𝑧𝑖��(𝑎,𝑏)�−𝜓(𝑎)
(1) + 𝜓(𝑎+𝑏)

(1) �� +
1

𝐵(𝑎, 𝑏)�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 [𝑜𝑖]𝑎
�, 

𝜁2 = ��1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖𝑙𝑜𝑔�1 − 𝐺(𝑧𝑖)� + 2�1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖𝜓(𝑏) + �−�1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖 +

𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏) log�1 − 𝐺(𝑧𝑖)�� 𝑑𝑖 + 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏)�𝜓(𝑏)
(1) − 𝜓(𝑎+𝑏)

(1) �� + �1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 [𝑣𝑖]𝑏, 

𝜁3 = ∑ �− 1
𝐵(𝑎,𝑏)

�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 [𝑜𝑖](𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) − 1
𝐵(𝑎,𝑏)

��1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑎)

2 𝑣𝑖 + 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏)𝑑𝑖� 𝐷𝑖 −𝒞

𝐵�𝐺(𝑧𝑖)�(𝑎, 𝑏)𝜓(𝑎+𝑏)
(1) − 1

𝐵(𝑎,𝑏)
�𝐺(𝑧𝑖)�

𝑎Γ(𝑎)
2 [𝑜𝑖]𝑎�, 

𝜁4 = −��−
(−𝜉1𝑖)  𝐵(1−𝐺�𝑧𝑖�)(𝑏, 𝑎)

�1 − 𝐺(𝑧𝑖)�
+ 𝑏�1 − 𝐺(𝑧𝑖)�

𝑏−1(−𝜉1𝑖)Γb2 �
1

Γ(𝑏 + 1) 𝑢𝑖 − 𝑣𝑖�
𝒞

+ 𝑏�1 − 𝐺(𝑧𝑖)�
𝑏−1(−𝜉1𝑖)Γb2𝑣𝑖 + �𝐺(𝑧𝑖)�

𝑎−1�1 − 𝐺(𝑧𝑖)�
(𝑏−1)(−𝜉1𝑖)𝑑𝑖�, 

𝜁5 = −�𝑒−𝑧𝑖(1 + 𝑒𝑧𝑖)(𝜉2𝑖)�𝐼(𝐺(𝑧𝑖))(𝑎, 𝑏)�
𝒞

+
1

𝐵(𝑎, 𝑏) 𝑎𝑒
−𝑧𝑖�𝐺(𝑧𝑖)�

𝑎(1 + 𝑒𝑧𝑖)(𝜉2𝑖)Γ(𝑎)
2 �

𝑞𝑖
Γ(1 + 𝑎)

− 𝑜𝑖�

+ ��
1

𝐵(𝑎, 𝑏)𝑎�𝐺
(𝑧𝑖)�

𝑎−1(𝜉2𝑖)Γ(𝑎)
2 [𝑜𝑖]�

𝒞

−��
1

𝐵(𝑎, 𝑏) �𝐺
(𝑧𝑖)�

𝑎−1�1 − 𝐺(𝑧𝑖)�
(𝑏−1)(𝜉2𝑖)𝐷𝑖�

𝒞

, 

 𝑧𝑖 = 𝑦𝑖−𝑥𝑖𝛽
𝜎

,  𝐺(𝑧𝑖) = � 𝑒𝑧𝑖

1+𝑒𝑧𝑖
�  , 𝐵(𝑎, 𝑏) = Γ𝑎Γ𝑏

Γ(𝑎+𝑏)
= ∫ 𝜛𝑎(1 − 𝜔)𝑏−1𝑑𝜛,1

0  

𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏) = � 𝜛𝑎(1 − 𝜔)𝑏−1𝑑𝜛,
�1−𝐺(𝑧𝑖)�

0
  𝐼�𝐺(𝑧𝑖)�(𝑎, 𝑏) =

1
𝐵(𝑎, 𝑏)

� 𝜛𝑎(1 −𝜔)𝑏−1𝑑𝜛,
1

�𝐺(𝑧𝑖)�
 

𝐷𝑖 = �𝑙𝑜𝑔�𝐺(𝑧𝑖)� − 𝜓(𝑎) + 𝜓(𝑎 + 𝑏)�,𝑑𝑖 = �− log�1 − 𝐺(𝑧𝑖)� + 𝜓(𝑏) − 𝜓(𝑎 + 𝑏)�, 

𝑜𝑖 = 3𝐹2�𝑎, 𝑎, 1 − 𝑏; 1 + 𝑎, 1 + 𝑎;𝐺(𝑧𝑖)�, [𝑜𝑖]𝑎 = 𝜕𝑎� 3𝐹2�𝑎, 𝑎, (1 − 𝑏); (1 + 𝑎), (1 + 𝑎);𝐺(𝑧𝑖)��, 

3𝐹2�𝑎, 𝑎, 1 − 𝑏; 1 + 𝑎, 1 + 𝑎;𝐺(𝑧𝑖)� = �
(𝑎)𝑛(𝑎)𝑛(1 − 𝑏)𝑛
(1 + 𝑎)𝑛(1 + 𝑎)𝑛

�𝐺(𝑧𝑖)�
𝑛

𝑛!

∞

𝑛=0

, 

𝑣𝑖 = 3𝐹2 �𝑏, 𝑏, (𝑎 − 1); (𝑏 + 1), (𝑏 + 1); �1 − 𝐺(𝑧𝑖)��, 
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[𝑣𝑖]𝑏 = 𝜕𝑏 � 3𝐹2 �𝑏, 𝑏, (𝑎 − 1); (𝑏 + 1), (𝑏 + 1); �1 − 𝐺(𝑧𝑖)���, 

𝑞𝑖 = 2𝐹1�𝑎, (1 − 𝑏); (1 + 𝑎);𝐺(𝑧𝑖)�,   𝑢𝑖 = 2𝐹1 �𝑏, (1 − 𝑎); (𝑏 + 1); �1 − 𝐺(𝑧𝑖)��, 

𝜉1𝑖 = �
𝑥𝑖𝑒2𝑧𝑖

𝜎[1 + 𝑒𝑧𝑖]2
−

𝑥𝑖𝑒𝑧𝑖
𝜎[1 + 𝑒𝑧𝑖]

�  , 𝜉2𝑖 = �
𝑧𝑖𝑒2𝑧𝑖

𝜎[1 + 𝑒𝑧𝑖]2
−

𝑧𝑖𝑒𝑧𝑖
𝜎[1 + 𝑒𝑧𝑖]

�, 

𝜁1 = � 1
𝐵(𝑎,𝑏)

�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 𝑜𝑖 log�𝐺(𝑧𝑖)� + 1
𝐵(𝑎,𝑏)

2�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 𝑜𝑖𝜓(𝑎) − 1
𝐵(𝑎,𝑏)

�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 𝑜𝑖[𝜓(𝑎) −

𝜓(𝑎 + 𝑏)]𝑑𝑖 �−
1

𝐵(𝑎,𝑏)
�𝐺(𝑧𝑖)�

𝑎Γ(𝑎)
2 𝑜𝑖 + 𝐼�𝐺�𝑧𝑖��(𝑎, 𝑏)𝐷𝑖 − 𝐼�𝐺�𝑧𝑖��(𝑎, 𝑏)�−𝜓(𝑎)

(1) + 𝜓(𝑎+𝑏)
(1) �� +

1

𝐵(𝑎,𝑏)�𝐺(𝑧𝑖)�
𝑎
Γ(𝑎)
2 [𝑜𝑖]𝑎

�, 

𝜁2 = ��1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖𝑙𝑜𝑔�1 − 𝐺(𝑧𝑖)� + 2�1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖𝜓(𝑏)

+ �−�1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 𝑣𝑖 + 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏) log�1 − 𝐺(𝑧𝑖)�� 𝑑𝑖

+ 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏)�𝜓(𝑏)
(1) − 𝜓(𝑎+𝑏)

(1) �� + �1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑏)

2 [𝑣𝑖]𝑏 , 

𝜁3 = ∑ �− 1
𝐵(𝑎,𝑏)

�𝐺(𝑧𝑖)�
𝑎Γ(𝑎)

2 [𝑜𝑖](𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) − 1
𝐵(𝑎,𝑏)

��1 − 𝐺(𝑧𝑖)�
𝑏Γ(𝑎)

2 𝑣𝑖 + 𝐵�1−𝐺�𝑧𝑖��(𝑎, 𝑏)𝑑𝑖� 𝐷𝑖 −𝒞

𝐵�𝐺(𝑧𝑖)�(𝑎, 𝑏)𝜓(𝑎+𝑏)
(1) − 1

𝐵(𝑎,𝑏)
�𝐺(𝑧𝑖)�

𝑎Γ(𝑎)
2 [𝑜𝑖]𝑎�, 

𝜁4 = −��−
(−𝜉1𝑖)  𝐵(1−𝐺�𝑧𝑖�)(𝑏, 𝑎)

�1 − 𝐺(𝑧𝑖)�
+ 𝑏�1 − 𝐺(𝑧𝑖)�

𝑏−1(−𝜉1𝑖)Γb2 �
1

Γ(𝑏 + 1) 𝑢𝑖 − 𝑣𝑖�
𝒞

+ 𝑏�1 − 𝐺(𝑧𝑖)�
𝑏−1(−𝜉1𝑖)Γb2𝑣𝑖 + �𝐺(𝑧𝑖)�

𝑎−1�1 − 𝐺(𝑧𝑖)�
(𝑏−1)(−𝜉1𝑖)𝑑𝑖�, 

and 

𝜁5 = −�𝑒−𝑧𝑖(1 + 𝑒𝑧𝑖)(𝜉2𝑖)�𝐼(𝐺(𝑧𝑖))(𝑎, 𝑏)�
𝒞

+
1

𝐵(𝑎, 𝑏) 𝑎𝑒
−𝑧𝑖�𝐺(𝑧𝑖)�

𝑎(1 + 𝑒𝑧𝑖)(𝜉2𝑖)Γ(𝑎)
2 �

𝑞𝑖
Γ(1 + 𝑎)

− 𝑜𝑖�

+ ��
1

𝐵(𝑎, 𝑏)𝑎�𝐺
(𝑧𝑖)�

𝑎−1(𝜉2𝑖)Γ(𝑎)
2 [𝑜𝑖]�

𝒞

−��
1

𝐵(𝑎, 𝑏) �𝐺
(𝑧𝑖)�

𝑎−1�1 − 𝐺(𝑧𝑖)�
(𝑏−1)(𝜉2𝑖)𝐷𝑖�

𝒞

. 
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