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Abstract 

Recently, secondary batteries have attracted a lot of attention. They have been used as an energy source in 

electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. This attention increases by emerging 

more demand for decreasing CO2 gas in the air and having more renewable source. For those applications for 

rechargeable batteries and specifically Li-ion chemistry based ones, the battery management system (BMS) 

needs to have a very close to the truth guess of state of charge (SOC) of each individual cell in the battery pack. 

This research paper presents an extended Kalman filter based method to estimate SOC of Li-ion batteries. The 

validity of the procedure is demonstrated experimentally for an APR18650m1 LiFePO4 battery. 

Keywords: Extended Kalman Filter (EKF); State of Charge (SOC); Li-ion batteries; nonlinear filter; EV. 

1. Introduction  

For electrical energy storage, secondary batteries are one of the most first choices. This potential have gained 

due to those batteries ability to respond fast to energy demand, energy efficiency, and their availability. the 

worldwide demand for reduction in CO2 pollution, emerging renewable energy sources like solar panels and 

wind farms and finally increasing number of Electrical Vehicles (EVs) in streets, advanced battery systems have 

been proposed for a wide range of applications varying from EVS, hybrid electric vehicles (HEVs) to smart 

grids [1]. 
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Among different possible chemistries for secondary batteries in the market, Li-ion batteries have several 

advantages over NiMH and lead acid ones and gain more popularity. These advantages include higher energy 

density, less weight, longer cycle life than those of systems based on NiMH or lead acid. An appropriate battery 

model is necessary for proper design, engineering and operation of these battery systems require [2]. A lot of 

models have been proposed in the research world that are sufficiently accurate to show electrical behavior of Li-

ion batteries [3-6]. These models need to rely on parameters of the battery such as SOC, which is an inner state 

of the battery [7], to allow them working properly. In recent years, different methods are proposed by many 

researchers to improve the estimation of the SOC [8]. 

Lots of effort have been used to improve accuracy of SOC estimation. Coulomb counting method is the most 

common method used to estimate SOC [9-10]. However, this method has several disadvantages like sensitivity 

to the initial SOC value that could be inaccurately estimated and the accumulated error due to its integration 

nature [1, 10].  In addition to this method , a number of intelligent approaches has been developed in an attempt 

to achieve a more accurate SOC estimation, such as sliding mode observer [11,12], and the neural network 

method [13,14], and others methods have been investigated. 

For control and vehicle power management, accurate estimation of SOC is important [15,16]. However, in most 

of the estimation methods described above, the effect of current flow direction, SOC and temperature on the 

battery model parameters are not considered. Meaning that, the robustness of these SOC estimation algorithms 

has not been sufficiently assessed. More than that, a more strong method is needed to guess the SOC of a 

lithium ion cell.  

EKF is known to be optimal for handling recursive mathematical equations in nonlinear systems such as those 

encountered in Li-ion batteries. In this paper, first the electrical model to estimate Li-ion battery have been 

presented. Later on, EKF haven explained and is used to estimate SOC for Li-ion batteries used in EVs. Last 

section, concludes the paper. 

2. Electrical model of the battery 

SOC, as one of the most important information in BMS used in EVs , smart grids and robots [17-20] that cannot 

be measured directly during battery operation. As a result, estimating SOC is the only way to derive its value. 

To estimate this value, a battery model must be chose.  

To capture Li-ion battery performance for different applications, a variety of battery models have been 

developed. Among those models, the electrochemical models and the equivalent circuit models, are widely used 

in electrical engineering goals. The electrical circuit models to predict I-V characteristics of batteries, use 

voltage and current sources, capacitors and resistors. For this work we have used the electrical model presented 

in [4] as the battery model. This model is shown in Fig. 1. In this model, energy balance circuit is a part of 

model which delivers SOC to the voltage response circuit. In this model, the ohmic resistance 𝑅𝑜 consists of the 

bulk resistance and surface layer impedance, accounting for the electric conductivity of the electrolyte, separator 

and electrodes, the activation polarization is modeled by 𝑅𝑠  and 𝐶𝑠 , and the concentration polarization is 
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presented by 𝑅𝑙 and 𝐶𝑙. 

 

Figure 1: Electrical model for the Li-ion battery. 

 

To increase the model’s complexity, in this work the model’s components are assumed to be function of SOC. It 

is assumed that for charging and discharging, this model follows the same equations.  

The following equations, express the electrical behavior of the practical model: 

 𝑉𝑡 = 𝑉𝑜𝑐 − 𝑉𝑡𝑟𝑎𝑛𝑠 − 𝑅𝑜𝐼𝐿                            (1) 

𝑉𝑡𝑟𝑎𝑛𝑠 = 𝑉𝑠 + 𝑉𝑙                                               (2) 

𝑉𝑠̇ = − 1
𝑅𝑠𝐶𝑠

𝑉𝑠 + 1
𝐶𝑠
𝐼𝐿                                        (3) 

𝑉𝑙̇ = − 1
𝑅𝑙𝐶𝑙

𝑉𝑙 + 1
𝐶𝑙
𝐼𝐿                                        (4) 

In these equations, Vt  is the battery terminal voltage, VOC  is the battery open circuit voltage (OCV), IL  is 

charging/discharging current. Vs and Vl are respectively the short and long time transient voltage responses for 

charging/discharging. 

3. Extended Kalman filter 

Kalman filter (KF) is a well-known estimation theory introduced in 1960 is [16]. KF provides a recursive 

solution through a linear optimal filtering to guess systems’ state variables. However, in case of nonlinear 

systems, a linearization process will be used to approximate the nonlinear system with a linear time changing 

system at each step. Using this system in KF, would result in an extended Kalman filter (EKF) on a real 
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nonlinear system [23]. Following equations is shown in equations (5) and (6) are for nonlinear systems: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 ,𝑢𝑘) + 𝑤𝑘                              (5) 

𝑦𝑘+1 = 𝑔(𝑥𝑘 ,𝑢𝑘) + 𝑣𝑘                                 (6) 

where (5) is all of the system dynamics represented in state equations, (6) the output equation of the system with 

a static relationship. Function f( 𝑥𝑘 ,𝑢𝑘 ) and 𝑔(𝑥𝑘 ,𝑢𝑘)   are nonlinear transition function and nonlinear 

measurement function, respectively. Vectors wk and vk denote process and measurement noise, respectivly. For 

each time step, matrices of f(𝑥𝑘 ,𝑢𝑘), and g(𝑥𝑘 ,𝑢𝑘) are linearized close to the operation point by the first order in 

Tyler-series and the rest of series are truncated. Assuming that f(𝑥𝑘 ,𝑢𝑘), and g(𝑥𝑘 ,𝑢𝑘) are differentiable at all 

operating points and Ak = ∂f
∂x

|x=x� , Ck = ∂g
∂x

|x=x� . Later on, as shown in equation (7), EKF starts filtering with the  

available information on the initial state (𝑥�0+) and error (𝑃0+) covariance. 

𝑥�0+=E[𝑥0],𝑃0+ = 𝐸[(𝑥 − 𝑥�0+)(𝑥 − 𝑥�0+)𝑇] (7) 

The Kalman filter, as shown in Figure 2, includes two steps, i.e., a prediction step and a correction step. During 

the prediction step, the filter predicts the value of the present state, system output, and covariance using the 

process model. During the correction step, the filter improves the estimated/predicted state and the error 

covariance using an actual output measurement from the output model. Since the predicted estimate is 

calculated before the present measurement is taken, it is called a priori estimate. The corrected estimate is called 

a posteriori estimate because it is calculated after the present measurement. In terms of notation, a superscript 

“−”denotes a priori estimate while a superscript “+” denotes a posteriori estimate, and 𝑥�  denotes a state 

estimate. 

In figure 2, 𝑥�𝑘− is the priori state estimate at step time k and 𝑃𝑘− is its corresponding priori covariance. 𝐾𝑘 is the 

Kalman gain matrix, 𝑥�𝑘+ is the posteriori state estimate at step time k, and 𝑃𝑘  is its corresponding posteriori 

covariance matrix. In summary, the Kalman filter uses the entire observed input data {𝑢0,𝑢1, … ,𝑢𝑘}  and 

measured output data {𝑦0,𝑦1 , … ,𝑦𝑘}  to find the minimum squared error estimate 𝑥�𝑘   of the true state 𝑥𝑘 [4].  

4. SOC estimation using EKF 

As mentioned in section 3, EKF is an optimum state estimator for nonlinear systems. Basickly, EKF filters work 

with noisy measurement data and are not sensitive to the initial value’s of states due to its feedback control. 

Moreover, it can be used for accurate battery SOC estimation [22]. As EKF is formed in discrete space, 

equations (5) and (6) are transformed to their discrete counterparts to estimate SOC in discrete space. Following 

the form of EKF, the state equations for the nonlinear system of the battery are obtained as x1=Vs, x2=Vl and 

x3=SOC.  

As mentioned in intoroduction section, SOC as one of these states can not be measured directly.  However, the 

charging/discharging current 𝐼𝐿  and battery’s terminal voltage 𝑉𝑡  can be measured. Discrete time state space 
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Initial estimates for 𝑥�𝑘−1 and 𝑃𝑘−1 

 

 

form for practical model after linearization of equations (5) and (6) are shown in (7) and (8).  

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐼𝐿,𝑘 + 𝑤𝑘                                              (7) 

𝑉𝑡 = 𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝐼𝐿,𝑘 + 𝑣𝑘                                           (8) 

 

 

 

 

 

 

 

 

Figure 2: Complete picture of the operation of the extended Kalman filter [4] 

 

the state vector of practical model consists of three state variables as shown in (9). 

𝑥𝑘 = �
𝑉𝑠,𝑘
𝑉𝑙,𝑘
𝑆𝑂𝐶𝑘

�                                                                       (9) 

where in above equation, 𝑆𝑂𝐶𝑘 is the estimated  SOC at time step k which is equal to: 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 + 𝐼𝐿,𝑘
∆𝑡

𝐶�                                    (10) 

where ∆𝑡 equals to sampling time, C is the usable capacity of the battery’s available capacity. The matrixes A, 

B, C and D in equations (7) and (8) are defined as below: 

𝐴𝑘 = �
𝑒

−∆𝑡
𝑅𝑠,𝑘𝐶𝑠,𝑘 0 0

0 𝑒
−∆𝑡

𝑅𝑙,𝑘𝐶𝑙,𝑘 0
0 0 1

�                                                     (11) 

Time Update (‘Predict’) 

𝑋�𝑘− = 𝑓(𝑥�𝑘−1
+ ,𝑢𝑘−1) 

(1) Project the state ahead 

(2) Project the error covariance 

ahead 

𝑃𝑘− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄  

Measurement Update(‘Correct’) 

𝐾𝑘 = 𝑃𝑘−𝐶𝑇(𝐶𝑃𝑘−𝐶𝑇 + 𝑅)−1 

𝑋�𝑘 = 𝑋�𝑘− + 𝐾𝑘�𝑦𝑘 − 𝐶𝑋�𝑘−� 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘− 

(1) Compute the Kalman Gain 

(2) Update estimate with measurements 𝑦𝑘 

(3) Update the error covariance 
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𝐵𝑘 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑅𝑠,𝑘 �1 − 𝑒

−∆𝑡
𝑅𝑠,𝑘𝐶𝑠,𝑘�

𝑅𝑙,𝑘 �1 − 𝑒
−∆𝑡

𝑅𝑙,𝑘𝐶𝑙,𝑘�

−𝜂 ∆𝑡 𝐶𝑢𝑠𝑎𝑏𝑙𝑒� ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                          (12) 

𝐶𝑘 = 𝜕𝑉𝑡
𝜕𝑥
�
𝑥=𝑥�𝑘

−=�−1 −1 𝜕𝑉𝑜𝑐
𝜕𝑆𝑂𝐶

�
𝑆𝑂𝐶𝑘

−�                         (13) 

 

𝐷𝑘 = �−𝑅𝑜,𝑘�                                                                      (14) 

And state space equations output equals to: 

𝒚𝒌 = 𝑽𝑶𝑪(𝒌) − 𝑰𝑳,𝒌𝑹𝒐,𝒌 − 𝒗𝒔 − 𝒗𝒍                                     (15)       

5. Simulation results 

To confirm the validity of the proposed method for SOC estimation of Li-ion batteries and to compare the EKF 

method with the conventional coulomb counting method, a set of charge/discharge experiments are conducted 

on a Li-ion battery. This Li-ion battery is an APR18650m1 LiFePO4 battery with 1.1Ah nominal capacity. It is 

assumed that tests are done at room temperature.  

Figure 3 presents the estimated terminal voltage using the proposed EKF method along with the SOC estimation 

error. This test has been done at room temperature, cell was fully charged and discharging current is 1C (1.1A). 

In the EKF filter the initial parameters for P and Q as follows: 
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Figure 3: EKF estimation for a new cell’s (a) terminal voltage and (b) SOC discharged with 1C (1.1A) 

 

 

Figure 4: Current profile for the last experiment 

 

 

Figure 5: SOC estimation for a fully charged cell discharge with current profile presented in Figure 5. 
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The actual performance observed for the EKF is consistent with the behavior of its associated covariance matrix, 

computed from the algorithm in the Figure 2. SOC estimation error by EKF. 

Next test has been done with current profile presented in Figure 4 on a fully charged cell. The EKF starts 

estimation from 50% and converges to real SOC very fast. According to experiment results the EKF is able to 

estimate SOC and cell’s terminal voltage with mean error less than 1.1% and 44mV, respectively. Reference 

SOC and estimated SOC by EKF is presented in Figure 5. 

6. Conclusion 

This paper proposed a more universal form of battery modeling and SOC estimation method called EKF. For 

this goal the problem is formulated, and existing literature is reviewed. Then an equivalent circuit is used to 

model the battery, and an EKF approach is developed to estimate the state of charge. The proposed approach has 

been verified using different current. Based on battery test data, simulation results are presented to support the 

validity of the proposed estimation method. This approach could also be applied to other kinds of batteries and 

components. Using this approach SOC estimation error for the tested Li-ion cell is less than 4%. For future, to 

cover more practical conditions, temperature effect will considered on the model to estimate the SOC by EKF. 
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