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Abstract 

Often in Applied statistics, population parameters are not known and could be inferred using the available 

sample data and this is the underpinning of statistical inference. Resampling technique such as jackknife offers 

effective estimates of parameters and its asymptotic distribution. In this paper, we present the jackknife estimate 

of the parameters of a simple linear regression model with particular interest on the correlation coefficient. This 

procedure provides an effective alternative test statistic for testing the null hypothesis of no association between 

the explanatory variables and a response variable. 
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1. Introduction  

After estimation of parameters in applied statistics it is always crucial to assess the accuracy of the estimator by 

its standard error and construction of confidence intervals for the parameter [1].  

Quenouille in 1956 developed a cross validation procedure known as jackknife (leave-one-out procedure) for 

estimating the bias of an estimator [2]. Two years later this method was further extended by John Tukey to 

estimate the variance of an estimator and the name Jackknife was coined for this cross validation method [3]. 
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The jackknife algorithm is an iterative procedure. The initial step is to estimate the parameter(s) from the entire 

sample. Then the  ith element (datum) is sequentially dropped from the sample and the model parameters 

estimated from the reduced sample data. The resultant estimates are called the partial estimate (pseudo 

estimates) [4]. The mean of the pseudo estimates is referred to as the jackknife estimate used in place of the 

main parameter value [5]. Also, from the pseudo estimates the standard errors of the parameters could be 

estimated using the standard deviation in order to enable a statistically significant test of the parameters and the 

construction of the confidence interval [6].  

Regression analysis has been widely used to explain the relationship between the explanatory variables and a 

response variable. However, jackknife was found viable in estimating the sampling distribution of the regression 

coefficients in the work of Efron [7], and further extended by Freedman [8] and Wu [9]. 

With a special case of the simple linear regression model, this article is aimed at illustrating an alternative to the 

classic test statistic for assessing the significance of the correlation coefficient using jackknife estimates. 

2. Methods 

The linear regression model could be given in matrix form 

𝐘 = 𝐗𝛉 + 𝛆                                                                      (1) 

Where 

𝐗 = �

x11 x12
x21 x22

⋯ x1p
⋯ x2p

⋮ ⋮
xn1 xn2

⋱ ⋮
⋯ xnp

�

n×p

, 

is the n × p  design matrix (matrix of the explanatory variables) and the remaining quantities are vectors 

corresponding to p × 1 regression parameters, n × 1 response variable and n × 1 normally distributed error term 

with zero mean and constant variance, defined by 

𝛉 = �
θ1
⋮
θp
�

p×1  

,   𝐘 = �
Y1
⋮

Yn
�
n×1  

  and  𝛆 = �
ε1
⋮
εn
�
n×1  

  . 

The simple linear regression model with one explanatory variable (x′i , i = 1,2,3,⋯ , n) and two parameters 

θ(0) and θ(1)  corresponding to the intercept and slope parameter is a special case of (1). Hence, the ordinary 

least square (ols) estimator of this model is 

�
θ� (0)
ols

θ� (1)
ols� = (𝐗′𝐗)−𝟏𝐗′𝐘                                                         (2) 
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Where 

𝐗 = �

1
1
⋮

x1
x2
⋮

1 xn

�

n×2

 

With variance covariance matrix of θ�(0)
ols and θ� (1)

ols given by 

var/cov�
θ�(0)
ols

θ�(1)
ols� = σ�2(𝐗′𝐗)−12×2                                                        (3) 

Where the diagonal elements of (3) are the variances of  θ�(0)
ols and θ� (1)

ols respectively, and the off-diagonals are 

their co-variances. 

Also, the least squares estimate of the correlation coefficient which measures the strength of a linear relationship 

is given by the Pearson product moment estimate 

ρ�x,y =
n∑ xiyi − ∑ xi ∑ yin

i=1
n
i=1

n
i=1

�(n∑ xi2 − [∑ xin
i=1 ]2n

i=1 )(n∑ yi2 − [∑ yin
i=1 ]2n

i=1 )
 .                            (4) 

This measure of strength lies within −1 ≤ ρ�x,y ≤ 1 where the closer it is to 1 the stronger the positive, if closer 

to -1 then the stronger the negative relationship, and the closer it is to 0, the weaker the relationship. 

Interestingly, -1, 0 and 1 estimates of this measure imply perfect negative, no and perfect positive relationships, 

respectively. Also, it is often necessary to test the significance of this parameter with the following hypothesis 

and test statistic 

Hypothesis: 

H0: ρ�x,y = 0 

H1: ρ�x,y ≠ 0 

Test Statistic 

ρ�x,y√n−2

�1−ρ�x,y
2

~tα,(n−2).  

However, the test statistic above is classical, and in this article we propose a jackknife based statistic 
ρ�x,y(J)

�var�ρ�x,y(J)�
~tα,(n−2) for testing the above hypothesis.  

The jackknife estimates of (2) and (4) is obtained by leaving-out the ith observation of the pair yi, x′i; i =
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1,2,3,⋯ , n and evaluating θ�ols(J) and ρ�x,y(J) the least squares estimates based on the remaining observations 

[10]. The estimates of θ�J and ρ�J, bias and variance using the pseudo values �θ�Ji and ρ�x,y(Ji)� are 

θ�J =
∑ θ�Jin
i=1

n
                                                                   (5) 

With bias 

bias =
∑ �θ�ols − θ�Ji�n
i=1

n
                                                          (6) 

Or more succinctly 

bias = θ�ols − θ�J                                                            (7) 

And the variance 

var�θ�J� =
∑ �θ�Ji − θ�J�

2n
i=1

n(n − 1)                                                      (8) 

Also, 

ρ�x,y(J) =
∑ ρ�x,y(Ji)
n
i=1

n
                                                      (9) 

With bias 

bias =
∑ �ρ�x,y − ρ�x,y(Ji)�n
i=1

n
                                            (10) 

Or 

bias = ρ�x,y − ρ�x,y(J)                                                        (11) 

And variance 

var�ρ�x,y(J)� =
∑ �ρ�x,y(Ji) − ρ�x,y(J)�

2n
i=1

n(n − 1)                                   (12) 

 

2.1 Algorithm for Jackknifing Simple Linear Regression Model 

Steps: 
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• Using a pair of independent sample of size (n)  of explanatory and response variables  (xi, yi)′, i =

1, 2, 3,⋯ , n. 

• Drop the first datum in both variable and estimate the ordinary least squares (ols) regression coefficients 

�θ� (0)J1 and θ� (1)J1� and the correlation coefficient �ρ�x,y(J1)� using n − 1 observations. 

• Drop the second datum and replace the initially dropped datum in (ii) and compute the ordinary least 

squares (ols) regression coefficients �θ�(0)J2 and θ� (1)J2� and the correlation coefficient �ρ�x,y(J2)� using n − 1 

observations. 

• Repeat steps (ii) and (iii) by replacing the (i − 1)th previously dropped observation and dropping the ith 

observation and then computing the ordinary least squares (ols) regression coefficients 

�θ� (0)Ji and θ� (1)Ji , i = 3, 4, 5,⋯ , n�  and the correlation coefficient  �ρ�x,y(Ji),i = 3, 4, 5,⋯ , n�  using n − 1 

observations at each iteration until all the observations in the pair (xi, yi)′, i = 1, 2, 3,⋯ , n  has been 

sequentially dropped and replaced in turns. Steps (ii) to (iv) results to an  dimensional vectors of pseudo 

values corresponding to θ�′(0)Ji, θ�′(1)Ji and ρ�′x,y(Ji). 

• Compute the jackknife regression parameters, correlation coefficients and their corresponding bias and 

standard errors using (5), (7), (8), (9), (11), and (12). 

3. Data and Simulation 

We have used the total demand and supply of FOREX (USD million) data from January 2008 to May 20014 (77 

data points) available on the Central Bank of Nigeria official website [11]. All computations are done using R 

programs for windows. 

3.1 Simulation Results 

Using the data in 2.0 we fit a simple linear regression model and the result is shown in Table 1. 

Table 1:  Parameter Estimates for the Fitted Simple Linear Regression Model 

 Parameters 

 θ(0) θ(1) 𝜌𝑥,𝑦 

Estimate 925.33554 0.49293 0.7232257 

Standard Error 182.61583 0.05435 - 

 

3.1.1  Jackknifing the Simple Linear Regression Model 

Table 2 shows the ols estimates of the pseudo values, jackknife estimates and their corresponding standard 

errors obtained from the leave-one-out procedure. 
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Table 2: ols Estimates 

S/N 𝛉�(𝟎)𝐉𝐢 𝛉�(𝟏)𝐉𝐢                𝛒�𝐱,𝐲(𝐉𝐢) 

1 952.7329 0.4867450 0.7188903 

2 966.5801 0.4822654 0.7111098 

3 972.6817 0.4806240 0.7101433 

4 959.0865 0.4842215 0.7119457 

5 945.4296 0.4886822 0.7203511 

⋮ ⋮ ⋮ ⋮ 

73 868.0236 0.5149849 0.7233487 

74 935.5823 0.4876679 0.7174566 

75 936.0865 0.4877716 0.7162645 

76 926.6243 0.4899442 0.7226179 

77 920.3058 0.4905668 0.7264761 

    𝛉�(𝟎)𝐉 𝛉�(𝟏)𝐉 𝛒�𝐱,𝐲(𝐉) 

 925.023 0.4930578 0.7232903 

   𝐒𝐄 𝛉�(𝟎)𝐉 𝐒𝐄  𝛉�(𝟏)𝐉 𝐒𝐄 𝛒�𝐱,𝐲(𝐉) 

 35.01666 0.01321761 0.0142381 

 

Table 3: Comparison between ols and Jackknife ols Estimates 

Estimates ols Jackknife Bias 

𝛉(𝟎) 925.33554 925.023 0.31254 

𝐒𝐄�𝛉(𝟎)� 182.61583 35.01666 - 

𝛉(𝟏) 0.49293 0.4930578 -0.0001278 

𝐒𝐄�𝛉(𝟏)� 0.05435 0.01321761 - 

𝝆𝒙,𝒚 0.7232257 0.7232903 -0.0000646 

𝐒𝐄�𝝆𝒙,𝒚� - 0.0142381 - 

3.1.2. Testing the significance of the correlation coefficient  

We shall proceed to test the significance of the correlation coefficient at 5% level of significance as follows: 

H0: ρ�x,y = 0 

H1: ρ�x,y ≠ 0 
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classic =
ρ�x,y√n − 2

�1 − ρ�x,y
2

=
(0.7232903)√77 − 2

�1 − (0.7232903)2
= 9.07093 

jackknife =
ρ�x,y(J)

SE�ρ�x,y(J)�
=

0.7232903
0.0142381

= 50.79964 

with critical value  tα,(n−2) = t0.05,(77−2) = 1.992102. 

Decision: 

Since both test statistics are larger than the critical value, we therefore conclude that there is enough evidence 

against the null hypothesis; hence, the correlation coefficient is significantly different from 0 at 5% level of 

significance. 

3.1.3. Discussions 

The jackknife (leave-one-out) ols estimator provides better estimates of the regression parameters than the ols 

method. From Table 3 above it could be seen that the Jackknife estimates of both the regression coefficients 

�θ(0) and θ(1)� and the correlation coefficient �ρx,y� are approximately the ols estimates with very small bias, it 

is interesting to observe that the Jackknife estimates has smaller standard errors (Efficiency property), a unique 

feature of a good estimator in comparison to their ols counterpart. The classic test statistic value for testing the 

significance of the correlation coefficient is smaller than the value obtained from the proposed jackknife test 

statistic; this is a consequence of a large variance of the ols estimates.  

4. Conclusion 

Jackknife results are misleading when the sample size is not large enough (n < 50),  [12]. Factually, the 77 

observations used in this study reveals that the Jackknife estimators are more efficient than their ols counterpart 

in estimating the coefficients of a linear regression model and the correlation coefficient. It also provides the 

asymptotic distribution of the above mentioned parameters, e.g., Table 2. The classic test statistic for testing the 

significance of the correlation coefficient is under-estimated, an effect of large standard error of the ols 

estimators and consequently, could lead to erroneously accepting the null hypothesis (Type II error). Without 

loss of generality, the jackknife based test statistic is better than its classic counterpart.   
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