A Generalization of Notion Group as Dynamical Groups

Abolfazl Ebrahimzadeh ${ }^{\text {a } *}$, Ali Delbaznasab ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Zahedan Branch, Islamic Azad University, Zahedan, Iran. ${ }^{b}$ Department of Mathematics, Faculty of Mathematics and Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.
${ }^{a}$ Email: abolfazl35@yahoo.com
${ }^{b}$ Email: delbaznasab@gmail.com

Abstract

In this paper the concept of groups will be extended by a dynamical system to the dynamical groups and we will investigate some results about them. Also notions coset and qoutient dynamical group are introduced.

Keywords: Dynamical groups; group; qoutient dynamical group.

1. Introduction

Some generalizations of notion group are presented sofar. For example generalized group is introduced by Molaie [2] and is studied in [1-6]. We assume the reader is familiar with the definition of dynamical system [7]. In this paper we introduce a new generalization of group by notion dynamical system that we call dynamical group. The paper is organized as follows. In Section 2 the notion of dynamical groups is introduced, also we define dynamical subgroups and give some properties and examples about dynamical groups. In Section 3 we define and study notions coset and qoutient dynamical groups.

[^0]
2. Dynamical groups

Definition 2.1. Let G be a non-empty set and o be an associative operation on G. We say (G, f, g, h, o) is a dynamical group if the functions $f: G \rightarrow G, g: G \rightarrow G$ and $h: G \rightarrow G$ be injective and satisfies the following conditions:
i) There exists $\mathrm{e} \in \mathrm{G}$ such that for every $\mathrm{x} \in \mathrm{G}$,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x}) \operatorname{og}(\mathrm{e})=\mathrm{f}(\mathrm{e}) \operatorname{og}(\mathrm{x})=\mathrm{h}(\mathrm{x}) \tag{1}
\end{equation*}
$$

Which e is called the identity element of ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{o}$)
ii) For every $x \in G$ there exists $x^{\prime} \in G$ such that

$$
\begin{equation*}
f(x) \operatorname{og}\left(x^{\prime}\right)=f\left(x^{\prime}\right) \operatorname{og}(x)=h(e) \tag{2}
\end{equation*}
$$

Which x^{\prime} is called the inversion element of x in (G, f, g, h, o). Note that every function of the functions f, g, h is considered as a dynamical system.

Remark 2.2. The notion of dynamical groups is a generalization of groups. In fact if $f=g=h$ and the functions are injective and surjective then (G, o) is a group because if $x \in G$ and $\bar{e}=f(e)$ then there exists $\overline{\mathrm{x}} \in \mathrm{G}$ such that $\mathrm{x}=\mathrm{f}(\overline{\mathrm{x}})$ and we can write

$$
\begin{align*}
\text { èox } & =f(e) o f(\bar{x}) \\
& =f(e) \operatorname{og}(\bar{x}) \\
& =h(\bar{x})=f(\bar{x})=x, \tag{3}
\end{align*}
$$

Also

$$
\begin{align*}
x o \bar{e} & =f(\bar{x}) o f(e) \\
& =f(\bar{x}) \operatorname{og}(e) \\
& =h(\bar{x})=f(\bar{x})=x \tag{4}
\end{align*}
$$

Now let $y \in G$. Since f is surjective there exists $x \in G$ such that $y=f(x)$. By the property (2), there exists $x^{\prime} \in G$ such that: (let $\mathrm{y}^{\prime}=\mathrm{f}\left(\mathrm{x}^{\prime}\right)$)

$$
y^{\prime} y^{\prime}=f(x) o f\left(x^{\prime}\right)=f(x) \operatorname{og}\left(x^{\prime}\right)
$$

$$
\begin{align*}
& =h(e)=f(e)=\bar{e} \tag{5}\\
& y^{\prime} o y=f\left(x^{\prime}\right) \operatorname{of}(x)=f\left(x^{\prime}\right) \operatorname{og}(x) \\
& =h(e)=f(e)=\bar{e} \tag{6}
\end{align*}
$$

So (G, o) is a group.
Example 2.3. Let G be an abelian group and $a, b \in G$. If $f(x)=a x, g(x)=b . x$ and $h(x)=a . b$. x. Then we have

$$
\begin{align*}
\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{e}) & =\mathrm{a} \cdot \mathrm{x} \cdot(\mathrm{~b} \cdot \mathrm{e}) \\
& =\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{~b}=\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{x} \\
& =\mathrm{h}(\mathrm{x}) \tag{7}\\
\mathrm{f}(\mathrm{e}) \cdot \mathrm{g}(\mathrm{x}) & =\mathrm{ae} \cdot(\mathrm{~b} \cdot \mathrm{x}) \\
& =\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{x}=\mathrm{h}(\mathrm{x}) \tag{8}
\end{align*}
$$

where e is the identity element of G .

On the other hand let $\mathrm{x} \in \mathrm{G}$ and x^{\prime} be the Inversion element of x in G , then we can write

$$
\begin{align*}
& \mathrm{f}(\mathrm{x}) \cdot \mathrm{g}\left(\mathrm{x}^{\prime}\right)=\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{~b} \cdot \mathrm{x}^{\prime} \\
& =\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{x} \cdot \mathrm{x}^{\prime} \\
& =\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{e}=\mathrm{h}(\mathrm{e}) \tag{9}\\
& \mathrm{f}\left(\mathrm{x}^{\prime}\right) \cdot \mathrm{g}(\mathrm{x})=\mathrm{a} \cdot \mathrm{x}^{\prime} \cdot \mathrm{b} \cdot \mathrm{x} \\
& \quad=\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{x}^{\prime} \cdot \mathrm{x} \\
& \quad=\text { a.b.e }=\mathrm{h}(\mathrm{e}) \tag{10}
\end{align*}
$$

Hence ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$) is a dynamical group.

Example 2.4. Let $\mathrm{G}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. We define an operation on G by

$$
\begin{align*}
& \mathrm{aa}=\mathrm{a}, \mathrm{ab}=\mathrm{b}, \mathrm{ac}=\mathrm{a}, \\
& \mathrm{ba}=\mathrm{a}, \mathrm{bb}=\mathrm{c}, \mathrm{bc}=\mathrm{b} \\
& \mathrm{ca}=\mathrm{c}, \mathrm{cb}=\mathrm{a}, \mathrm{cc}=\mathrm{c} \tag{11}
\end{align*}
$$

Also let the functions $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are defined by

$$
\begin{array}{r}
f(a)=b, \quad f(b)=a, \quad f(c)=c \\
g(a)=b, \quad g(b)=c, \quad g(c)=a \\
h(a)=b, \quad h(b)=a, \quad h(c)=c \tag{12}
\end{array}
$$

Then ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$) is a dynamical group because
i) b is the identity elelment because

$$
\begin{gather*}
f(a) g(b)=b c=a b=f(b) g(a)=b=h(a), \\
f(b) g(b)=a c=f(b) g(b)=a=h(b) \\
f(c) g(b)=c c=c a=f(b) g(c)=c=h(c) . \tag{13}
\end{gather*}
$$

ii) Inverse element: we can write

$$
\mathrm{a}^{\prime}=\mathrm{c}, \quad \mathrm{~b}^{\prime}=\mathrm{b}, \quad \mathrm{c}^{\prime}=\mathrm{a}
$$

because

$$
\begin{gather*}
f(a) g\left(a^{\prime}\right)=b a=c b=f\left(a^{\prime}\right) g(a)=a=h(b) \\
f(b) g\left(b^{\prime}\right)=a c=f\left(b^{\prime}\right) g(b)=a=h(b) \\
f(c) g\left(c^{\prime}\right)=c b=b a=f\left(c^{\prime}\right) g(c)=a=h(b) \tag{14}
\end{gather*}
$$

Proposition 2.5. Let ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$) be a dynamical group, then $\left(\mathrm{x}^{\prime}\right)^{\prime}=\mathrm{x}$.

Proof. It can be deduced from property 2.2.

Definition 2.6. Let ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$) be a dynamical group. A non-empty subset H of G is called a dynamical subgroup of G if $\left(\mathrm{H},\left.\mathrm{f}\right|_{\mathrm{H}},\left.\mathrm{g}\right|_{\mathrm{H}},\left.\mathrm{h}\right|_{\mathrm{H}}\right.$, o) be a dynamical group.

Since f, g, h are injective, $\left.f\right|_{H},\left.g\right|_{H},\left.h\right|_{H}$ are injective.

Definition 2.7. We say two dynamical groups ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{o}$), ($\overline{\mathrm{G}}, \overline{\mathrm{f}}, \overline{\mathrm{g}}, \overline{\mathrm{h}}, \overline{\mathrm{o}}$) are isomorphic if there exists a bijective function $\varphi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ such that
i) $\varphi($ xoy $)=\varphi(x) \bar{o} \varphi(y)$,
ii) $\varphi \circ \mathrm{of}=\overline{\mathrm{f}} \circ \varphi, \varphi \mathrm{og}=\overline{\mathrm{g}} \circ \varphi, \varphi \mathrm{oh}=\overline{\mathrm{h}} \circ \varphi$.

Then φ is called an isomorphism.

Proposition 2.8. Let ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{o}$), ($\overline{\mathrm{G}}, \overline{\mathrm{f}}, \overline{\mathrm{g}}, \overline{\mathrm{h}}, \overline{\mathrm{o}})$ be two dynamical groups and $\varphi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ be an isomorphism. Then
i) If e is the identity element of (G, f, g, h, o), then $\varphi(e)$ is the identity element of $(\overline{\mathrm{G}}, \overline{\mathrm{f}}, \overline{\mathrm{g}}, \overline{\mathrm{h}}, \overline{\mathrm{o}})$,
ii) If x^{\prime} is the inversion element of x in (G, f, g, h, o, then $\varphi\left(x^{\prime}\right)$ is the inversion element of $\varphi(x)$ in $(\overline{\mathrm{G}}, \bar{f}, \overline{\mathrm{~g}}, \overline{\mathrm{~h}}, \overline{\mathrm{o}})$.

Proof.

i) By definition 2.1 it is sufficient to show that

$$
\begin{equation*}
\overline{\mathrm{f}}(\mathrm{x}) \overline{\mathrm{g}}(\varphi(\mathrm{e}))=\overline{\mathrm{f}}(\varphi(\mathrm{e})) \overline{\mathrm{g}}(\mathrm{x})=\overline{\mathrm{h}}(\mathrm{x}) \tag{15}
\end{equation*}
$$

From definition 2.7 we have

$$
\begin{align*}
\overline{\mathrm{f}}(\mathrm{x}) \overline{\mathrm{g}}(\varphi(\mathrm{e})) & =\overline{\mathrm{f}}(\mathrm{x}) \varphi(\mathrm{g}(\mathrm{e})) \\
& =\varphi\left(\mathrm{f}\left(\varphi^{-1} \mathrm{x}\right)\right) \varphi(\mathrm{g}(\mathrm{e})) \\
& =\varphi\left(\mathrm{f}\left(\varphi^{-1} \mathrm{x}\right)(\mathrm{g}(\mathrm{e}))\right) \\
& =\varphi\left(\mathrm{h}\left(\varphi^{-1} \mathrm{x}\right)\right) \\
= & \left(\varphi \mathrm{oho} \varphi^{-1}\right)(\mathrm{x})=\overline{\mathrm{h}}(\mathrm{x}) . \tag{16}
\end{align*}
$$

Also

$$
\begin{align*}
\overline{\mathrm{f}}(\varphi(\mathrm{e})) \overline{\mathrm{g}}(\mathrm{x}) & =\varphi(\mathrm{f}(\mathrm{e}))\left(\varphi \mathrm{ogo} \varphi^{-1}\right)(\mathrm{x}) \\
& =\varphi(\mathrm{f}(\mathrm{e})) \varphi\left(\mathrm{g}\left(\varphi^{-1} \mathrm{x}\right)\right) \\
& =\varphi\left((\mathrm{f}(\mathrm{e}))\left(\mathrm{g}\left(\varphi^{-1} \mathrm{x}\right)\right)\right) \\
& =\varphi\left(\mathrm{h}\left(\varphi^{-1} \mathrm{x}\right)\right) \\
= & \left(\varphi \circ \mathrm{oho} \varphi^{-1}\right)(\mathrm{x})=\overline{\mathrm{h}}(\mathrm{x}) . \tag{17}
\end{align*}
$$

ii) We show that

$$
\begin{equation*}
\overline{\mathrm{f}}(\varphi(\mathrm{x})) \overline{\mathrm{g}}\left(\varphi\left(\mathrm{x}^{\prime}\right)\right)=\overline{\mathrm{f}}\left(\varphi\left(\mathrm{x}^{\prime}\right)\right) \overline{\mathrm{g}}(\varphi(\mathrm{x}))=\overline{\mathrm{h}}(\varphi(\mathrm{e})) \tag{18}
\end{equation*}
$$

We can write

$$
\begin{aligned}
\overline{\mathrm{f}}(\varphi(\mathrm{x})) \overline{\mathrm{g}}\left(\varphi\left(\mathrm{x}^{\prime}\right)\right) & =\varphi(\mathrm{f}(\mathrm{x})) \varphi\left(\mathrm{g}\left(\mathrm{x}^{\prime}\right)\right)=\varphi\left(\mathrm{f}(\mathrm{x}) \mathrm{g}\left(\mathrm{x}^{\prime}\right)\right) \\
& =\varphi(\mathrm{h}(\mathrm{e}))=\left(\varphi \mathrm{oho} \varphi^{-1}\right)(\varphi(\mathrm{e}))
\end{aligned}
$$

$$
\begin{equation*}
=\overline{\mathrm{h}}(\varphi(\mathrm{e})) \tag{19}
\end{equation*}
$$

Also

$$
\begin{align*}
\overline{\mathrm{f}}\left(\varphi\left(\mathrm{x}^{\prime}\right)\right) \overline{\mathrm{g}}(\varphi(\mathrm{x})) & =\varphi\left(\mathrm{f}\left(\mathrm{x}^{\prime}\right)\right) \varphi(\mathrm{g}(\mathrm{x})) \\
& =\varphi\left(\mathrm{f}\left(\mathrm{x}^{\prime}\right) \mathrm{g}(\mathrm{x})\right)=\varphi(\mathrm{h}(\mathrm{e})) \\
& =\left(\varphi \circ \mathrm{oho}^{-1}\right)(\varphi(\mathrm{e}))=\overline{\mathrm{h}}(\varphi(\mathrm{e})) . \tag{20}
\end{align*}
$$

3. Coset and qoutient dynamical group

Definition 3.1. Let ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{o}$) be a dynamical group. Also let H be a dynamical subgroup of G and $\mathrm{c} \in \mathrm{G}$. We define left and right cosets of H in G as

$$
\begin{gather*}
c H=\{f(c) g(h) \mid h \in H\}, \tag{21}\\
H c=\{f(h) g(c) \mid h \in H\} . \tag{22}
\end{gather*}
$$

Remark 3.2. Let H be a dynamical subgroup of dynamical group ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{o}$) and e be the identity element of G. Then we have

$$
\begin{equation*}
\mathrm{eH}=\mathrm{He}=\mathrm{h}(\mathrm{H}) \tag{23}
\end{equation*}
$$

Because

$$
\begin{align*}
e H & =\{f(e) g(x) \mid x \in H\}=\{f(x) g(e) \mid x \in H\} \\
& =H e=\{h(x) \mid x \in H\}=h(H) . \tag{24}
\end{align*}
$$

Lemma 3.3. Let H be a dynamical subgroup of dynamical group (G, f, g, h). Also let for each $x, y \in G$

$$
\begin{array}{r}
f(x) g(y)=g(y) f(x) \\
f(x y)=f(x) f(y) \\
g(x y)=g(x) g(y) \tag{25}
\end{array}
$$

Then for every $\mathrm{c}, \mathrm{b} \in \mathrm{G}$

$$
\begin{equation*}
(\mathrm{cH})(\mathrm{bH})=(\mathrm{cb}) \mathrm{H} . \tag{26}
\end{equation*}
$$

Proof.

$$
\begin{align*}
(c H)(b H) & =\{f(c) g(h) \mid h \in H\}\left\{f(b) g\left(h^{\prime}\right) \mid h^{\prime} \in H\right\} \\
& =\left\{f(c) g(h) f(b) g\left(h^{\prime}\right) \mid h, h^{\prime} \in H\right\} \\
& =\left\{f(c) f(b) g(h) g\left(h^{\prime}\right) \mid h, h^{\prime} \in H\right\} \\
& =\left\{f(c b) g\left(h h^{\prime}\right) \mid h, h^{\prime} \in H\right\} \\
& =(c b) H . \tag{27}
\end{align*}
$$

Proposition 3.4. Let H be a dynamical subgroup of dynamical group ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$), such that Also let for each $\mathrm{c} \in$ $\mathrm{G}, \mathrm{cH}=\mathrm{Hc}$. Also let for every $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{align*}
& f(x) g(y)=g(y) f(x) \\
& f(x y)=f(x) f(y) \\
& g(x y)=g(x) g(y) . \tag{28}
\end{align*}
$$

Then the family of left (right) cosets of H in (G, f, g, h)which is shown by ($\frac{G}{H}, f^{\prime}, g^{\prime}, h^{\prime}$) is a dynamical group called the quotient dynamical group of G by H such that $f^{\prime}, g^{\prime}, h^{\prime}$ are defined by

$$
\begin{align*}
& \mathrm{f}^{\prime}(\mathrm{cH})=\mathrm{f}(\mathrm{c}) \mathrm{H}, \\
& \mathrm{~g}^{\prime}(\mathrm{cH})=\mathrm{g}(\mathrm{c}) \mathrm{H}, \\
& \mathrm{~h}^{\prime}(\mathrm{cH})=\mathrm{h}(\mathrm{c}) \mathrm{H} . \tag{29}
\end{align*}
$$

Proof.

It is necessary to check the axioms of dynamical group on $\frac{G}{\mathrm{H}}$.
$f^{\prime}, g^{\prime}, h^{\prime}$ are injective functions. If e is the identity element in (G, f, g, h), then eH is the identity element in $\left(\frac{\mathrm{G}}{\mathrm{H}}, \mathrm{f}^{\prime}, \mathrm{g}^{\prime}, \mathrm{h}^{\prime}\right)$ because

$$
\mathrm{f}^{\prime}(\mathrm{cH}) \mathrm{g}^{\prime}(\mathrm{eH})=\mathrm{f}(\mathrm{c}) \mathrm{Hg}(\mathrm{e}) \mathrm{H}
$$

$$
\begin{align*}
& =\mathrm{f}(\mathrm{c}) \mathrm{g}(\mathrm{e}) \mathrm{H} \\
& =\mathrm{h}(\mathrm{c}) \mathrm{H}=\mathrm{h}^{\prime}(\mathrm{cH}) \tag{30}\\
\mathrm{f}^{\prime}(\mathrm{eH}) \mathrm{g}^{\prime}(\mathrm{cH}) & =\mathrm{f}(\mathrm{e}) \mathrm{Hg}(\mathrm{c}) \mathrm{H} \\
& =\mathrm{f}(\mathrm{e}) \mathrm{g}(\mathrm{c}) \mathrm{H} \\
& =\mathrm{h}(\mathrm{c}) \mathrm{H}=\mathrm{h}^{\prime}(\mathrm{cH}) \tag{31}
\end{align*}
$$

Now Let c^{\prime} be the inverse of c in (G, f, g, h). We show that $c^{\prime} H$ is the inverse of $c H$ in $\left(\frac{G}{H}, f^{\prime}, g^{\prime}, h^{\prime}\right)$.

$$
\begin{align*}
\mathrm{f}^{\prime}(\mathrm{cH}) \mathrm{g}^{\prime}\left(\mathrm{c}^{\prime} \mathrm{H}\right) & =\mathrm{f}(\mathrm{c}) \mathrm{Hg}\left(\mathrm{c}^{\prime}\right) \mathrm{H} \\
& =\mathrm{f}(\mathrm{c}) \mathrm{g}\left(\mathrm{c}^{\prime}\right) \mathrm{H} \\
& =\mathrm{h}(\mathrm{e}) \mathrm{H}=\mathrm{h}^{\prime}(\mathrm{eH}), \tag{32}\\
\mathrm{f}^{\prime}\left(\mathrm{c}^{\prime} \mathrm{H}\right) \mathrm{g}^{\prime}(\mathrm{cH}) & =\mathrm{f}\left(\mathrm{c}^{\prime}\right) \mathrm{Hg}(\mathrm{c}) \mathrm{H} \\
& =\mathrm{f}\left(\mathrm{c}^{\prime}\right) \mathrm{g}(\mathrm{c}) \mathrm{H} \\
& =\mathrm{h}(\mathrm{e}) \mathrm{H}=\mathrm{h}^{\prime}(\mathrm{eH}) \tag{33}
\end{align*}
$$

So the axioms of dynamical group are satisfied in $\left(\frac{\mathrm{G}}{\mathrm{H}}, \mathrm{f}^{\prime}, \mathrm{g}^{\prime}, \mathrm{h}^{\prime}\right)$.

Example 3.5. Let ($\mathrm{G}, \mathrm{f}, \mathrm{g}, \mathrm{h}$) be the dynamical group of example 2.3 with $\mathrm{aa}=\mathrm{a}$ and $\mathrm{bb}=\mathrm{b}$. Also let H be a dynamical subgroup of dynamical group G such that for each $c \in G, c H=H c$. Then ($\frac{G}{H}, f^{\prime}, g^{\prime}, h^{\prime}$) is a quotient dynamical group because by proposition 3.4 we can write

$$
\begin{align*}
& f(x) g(y)=(a x)(b y) \\
& =(a y)(b x)=g(y) f(x) \text {, } \tag{34}\\
& f(x y)=a x y=a a x y \\
& =(a x)(a y)=f(x) f(y), \tag{35}\\
& g(x y)=b x y=b b x y \\
& =(b x)(b y)=g(x) g(y) . \tag{36}
\end{align*}
$$

4. Conclusion

We introduced the notion dynamical groups as a generalization of concept group. Also we defined notions coset and qoutient dynamical group and we presented some propositions and examples about them.

References

[1] J. O. Adeniran, J. T. Akinmoyewa, A. R. T. Solarin and T. G. Jaiyeola. "On Some Algebraic Properties of Generalized Groups." Acta Mathematica Academiae Paedagogicae Nyregyh aziensis, Vol. 27, pp. 23-30, 2011.
[2] M. R. Molaei. "Generalized actions." Proceedings of the First International Conference on Geometry, Integrability and Quantization. Coral Press Scientific Publishing Proceedings of the First International Conference on Geometry, pp. 175-180, 1999.
[3] M.R. Molaei. "Generalized groups." Bull. Inst. Polit. Di. Iase Fasc, 3(4), PP. 21-24, 1999.
[4] M.R. Molaei. "Topological generalized groups." Int. Jour. Appl. Math, 2(9), PP. 1055-1060, 2000.
[5] M.R. Molaei and A. Tahmoresi. "Connected topological generalized groups." Mathematics, 12(1), PP. 1322, 2004.
[6] M. R. Mehrabi and A. Oloomi. "Generalized subgroups and homomorphisms." Arabs Jour. Math. Sc, Vol. 6, PP. 1-7, 2000.
[7] Ya. G. Sinai. "Dynamical Systems." Aarhus Univ, Vol. 1, 1970.

[^0]: * Corresponding author.

 E-mail address: abolfazl35@yahoo.com.

