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Abstract 

This paper presents a new version of the Minimum Cost Flow Problem (MCFP). This version is the Minimum 

Convex and Differentiable Cost Flow Problem with Time Windows (MCDCFPTW). Given a directed graph 
),( AVG = , where V is a set of vertices, A is a set of arcs. Each vertex Vi∈  has a time-window ],[ ii ba  

within which the vertex may be visited with a non-negative service time Tti ∈  where, iii bta ≤≤ . Each arc 

Aji ∈),(  is associated with three  non-negative parameters: a positive capacity iju , an arbitrary transit cost 

ijc  and a transit time ., jiTtij ≠∈  In this new version, we derive the optimality conditions for minimizing 

convex and differentiable cost functions which satisfy a condition of the time windows, and devise an algorithm 

based on the primal-dual algorithm commonly used in linear programming. The proposed algorithm minimizes 

the total convex and differentiable cost of flow by incrementing the network flow along augmenting paths of 

minimum cost from the source vertex s  to the destination vertex .d  
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1. Introduction 

The Minimum Cost Flow Problem (MCFP) is a basic problem in network flow theory. The network flows are of 

fundamental importance in computer science, communication networks, industrial engineering, operation 

research, and many other areas. The standard formulation of the MCFP assumes that input data are known 

precisely. The Ahuja et al. in [1] textbook is an exhaustive reference on the subject. Like shortest path problem 

and maximum flow problem [9, 10, 11], the MCFP is a central problem in network flows. In [2] the MCFP with 

stochastic arc costs is studied and solution methods are developed based on two optimality concepts: cycle 

marginal cost, and network equilibrium. In [15] the MCFP with interval arc costs is considered and two solution 

methods are introduced based on extensions of some efficient combinatorial algorithms for the MCFP. In [13] 

the MCFP is established for fuzzy arc costs and, just as for the problem with interval arc costs, the proposed 

solution modifies the negative-cycle-canceling algorithm in order to allow the use of fuzzy numbers. 

Consequently, the MCFP has been studied extensively in the literature; [3, 18, 21]. 

   Given ),( AVG =  be a directed flow network, where V is a set of vertices and nV =  , A is a set of arcs, 

the two distinguished vertices, a source vertex Vs∈  with time window ],[ ss ba  and a departure time 0t , a 

destination vertex Vd ∈  with time window ],[ dd ba . Each vertex Vi∈  has a time-window ],[ ii ba  within 

which the vertex may be visited and a non-negative service time Tti ∈  where, .iii bta ≤≤  Each arc 

Aji ∈),(  is associated with three non-negative parameters: a positive capacity iju , an arbitrary transit cost 

ijc  and a transit time ,,...,2,1,,, njijiTt ij =≠∈  see [5, 6, 7, 8, 24]. The Minimum Convex and 

Differentiable Cost Flow Problem with Time Window (MCDCFPTW) asks to find an −ds, path that leaves a 

source vertex s  with time window ],[ ss ba  at time 0t  and minimizes the total arrival time, a convex and 

differentiable cost flow at a destination vertex d  with time window ],,[ dd ba  which satisfy the set of all 

constraints.  

The maximum flow problem tries to find out a maximum allowed flow from a source vertex s  to a destination 

vertex d  in which each arc Aji ∈),(  has a maximum allowed flow of iju . Now we wish to associate a 

further parameter ijc  with each arc, where ijc  is the cost of sending a unit flow along ),( ji . This has an 

obvious interpretation in any real network as well as any real application in practice where the unit cost may 

vary from arc to arc depending upon the nature of applications. The cost can be thought with a wide range of 

meaning. In a real network, it can a real cost to send a unit of data from one point to another point. It can also be 

other network parameters such as bandwidth, delay, probability. This extra consideration of costs poses a new 

problem. This is the problem of how to transport the units of flow across a network such that a minimum cost is 

incurred. The MCFP arises naturally in many contexts, including virtual circuit routing in communication 

networks, layout, scheduling, transportation, and hence has been studied extensively [16, 18, 20]. 
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In the conventional of the MCFP, the cost ijc  associated to each arc is normally a linear function of the flow 

carried by the arc. A large number of methods have been proposed for solving this MCFP. Among the most 

popular algorithms are the primal simplex method, primal-dual method, and the out-of-kilter method [1, 12, 15, 

19]. However, in practice, it is possible that the cost incurred in each arc is nonlinear function of its flow.  

A number of existing solutions can be applied to this convex cost flow problem. One possible way is to reduce 

the problem to a typical linear cost flow problem using piecewise linearization of the arc cost functions [17, 22]. 

This approach assumes that each of the convex functions is linear between successive integers, and then 

introduces a separate arc for each linear segment. In this way, the convex cost flow problem is transformed into 

the conventional MCFP, and solved by the existing MCFP algorithms. The convex cost flow problem has also 

been recently addressed by [11] with two approaches: 

• the minimum cycle cancelling method, 

• the cancel and tighten method for the MCFP based on [14] that proceeds by sending flows along negative 

cost cycles. 

In this paper, we present a new version algorithm based on primal-dual algorithm used in linear programming to 

address this convex cost flow problem. We modify the optimality condition in primal-dual algorithm so that it 

can be applied to convex and differentiable cost functions with time windows. In particular, we show that using 

the new optimality condition, we can minimize the total cost of flow by incrementing the network flow along 

the augmenting paths of minimum cost. 

In this paper, we give a new algorithm of a new version of the MCFP is MCDCFPTW and  organized as 

follows. In Sections 2, we present the basic concepts and formulate the problem of a minimum cost flow with 

time windows in which the cost functions are strictly convex and differentiable. In Section 3, we give the 

optimality condition of the MCDCFPTW. A new algorithm of the MCDCFPTW is presented in Section 4. 

Finally, the conclusion is given in Section 5. 

2. Basic concepts and formulation problem    

Let ),( AVG =  be a directed graph, where V is a set of vertices, A is a set of arcs. The vertex set V  consists 

of n  vertices denoted by 1,2,…,n, while the arc set A consists of all arcs .),( Aji ∈  Each arc ),( ji  has a cost 

ijc  that denotes the unit shipping cost along the arc ).,( ji  Each arc ),( ji  is associated with an amount ijf  of 

flow on the arc and iju  are the capacity also associated with arc ).,( ji  We associate a number ib  with each 

vertex ,Vi∈  which indicates its available amount of supply or demand. Vertex i  will be called a source, 

destination or transshipment vertex, depending on whether ,0,0  ii bb  or ,0=ib  respectively. This way, a 

plethora of real-world applications (in logistics) requiring the flow of various products from warehouses (supply 

vertex) to markets (demand vertex) through a number of transfer points (transshipment vertex) can be efficiently 
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modeled. If ,0∑

∈

=
Vi

ib  then the network G  will be a balanced network. Thus, the Minimum Convex and 

Differentiable Cost Flow Problem with Time Window (MCDCFPTW) can be stated formally as follows: 

∑
∈

=
Aji

ijij fcfz
),(

)()(                                                                                                                  (1) 

subject to:   ijij uf ≤≤0 , Aji ∈∀ ),(                                                                                   (2) 

i
Aijj

ji
Ajij

ij bff =− ∑∑
∈∈ ),(:),(:

, Vi∈∀                                                                                            (3) 

,jiij ttt ≤+  Vji ∈∀ ,                                                                                                            (4) 

,iii bta ≤≤  vi∈∀                                                                                                                (5) 

where, )( ijij fc  are the convex and differentiable cost functions of flow .ijf  The constraints (2), are capacity 

constraints of each arc ,),( Aji ∈  constraints (3), are the flow conservation equations of each vertex Vi∈  

and constraints (4), (5) are the time windows of each ., Vji ∈  

 

Fig. 1: Example of a directed network 

For simplicity and without lost of generality, we assume in what follows that there is at most one arc associated 

with each ordered pair of vertices ),,( ji  and that all arc costs are non-negative. In addition, we consider only 

the case where the cost functions )( ijij fc  are convex and differentiable by, 

),()1()())1(( ycxcyxc ijijij λλλλ −+≤−+  ]1,0[∈∀λ                                                  (6) 
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We denoted the right-hand and the left-hand derivatives of )(xcij  by )(xcij
+  and ),(xcij

−  respectively. The 

two conditions of the convex cost functions are given by the following: 

• If the cost function )(xcij  is differentiable at every point in which it is defined, then 

)(xcij
+ = )(xcij

−                                                                                                                    (7) 

• The condition ,0 ijij uf ≤≤ Aji ∈∀ ),(  needs to be satisfied, the cost function )(xcij  is defined 

only with positive .x  The point 0x  minimizes )(xcij  if and only if 0)( 0 ≥+ xcij  and 0)( 0 ≤− xcij  for 

,00 x  and 0)( 0 ≥+ xcij  for .00 =x                                                                                        (8) 

 
3. Optimality conditions of a convex and differentiable cost flow problem with time windows 

 

The MCFP is a classical non-linear programming. We extend and modify the conditions of primal-dual method 

in linear programming [1, 23] to apply for the case of convex and differentiable cost functions with time 

windows. In our approach, we assume a potential ip  to each vertex .Vi∈  We shall show that an optimum 

optimized solution for the convex and differentiable cost flow problem with time windows can be found based 

on the optimality conditions as shown in the following theorem. 

Theorem 1 A flow }{ ijf  satisfying the constraints (3), minimizes the total cost (1) with convex and 

differentiable cost functions with time windows  0)( ijij fc
 
if and only if there exist for each vertex Vi∈  a 

potential ip  for which the following conditions are satisfied: 

)( ijijij fcpp +≤−  if 0=ijf                                                                                                    (9) 

)()( ijijijijij fcppfc +− ≤−≤  if 0ijf                                                                                  (10) 

,jiij ttt ≤+  Vji ∈∀ ,                                                                                                             (11) 

,iii bta ≤≤  Vi∈∀                                                                                                                (12) 

Proof: (i) Suppose that the conditions (9), (10), (11) and (12) are satisfied for a flow }{ ijf . We will show that 

}{ ijf  is optimum; that is, it minimizes the total cost of flow. A flow is not optimum if there exists an arc 

Aji ∈),(  such that 0ijf  and ;0jif  that is because we can reduce the cost by setting jiijij fff −=
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and ,0=jif  an adjustment that still preserves the conservation of flow requirement at the vertex. We also 

impose ,0=ijf  if arc ),( ji  does not lie in G  at all. Hence, the constraints (3) can be rewritten as follows 

,
11

i

n

j
ji

n

j
ij bff =−∑∑

==  
ni ,...,2,1=                                                                                           (13) 

As well known in linear programming [4], }{ ijf  and ip  are feasible solutions of primal and dual problems 

respectively. There is a relation between them 

∑∑∑∑
==

=
n

ij

n

i
j

n

ji

n

i
i fpfp

1111
                                                                                                    (14) 

Substitute (13) into the total cost function (1) and use (14), we get 

∑∑∑∑∑∑∑
=======

−−+=−−+=
n

i
iiijji

n

ji
ijiji

n

j
ji

n

j
ij

n

i
i

n

ji
ijij

n

ji
ijij bpfppfcbffpfcfc

11,1111,1,
))()(()()()(                

(15) 

Since indexes i  and j  have the same role in the summation .
11
∑∑
==

n

i
ji

n

i
i fp  Therefore 

∑∑∑∑∑
=====

==
n

ji
ijj

n

i
ij

n

j
j

n

i
ji

n

i
i fpfpfp

1,1111

                                                                                (16) 

Substitute (16) into (15), we have 

∑∑∑
===

−−+=
n

i
iiijji

n

ji
ijij

n

ji
ijij bpfppfcfc

11,1,
))()(()(                                                             (17) 

Since the flow ijf  satisfies (9), (10), (11) and (12), we have 

)()( ijijijijij fcppfc +− ≤−≤
 
if 0ijf                                                                                  (18) 

)( ijijij fcpp +≤−
 
if 0=ijf                                                                                                    (19) 

Moreover, let ,)()()( ijjiijijijij fppfcfk −+=  is a convex, we have  
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)()()( jiijijijij ppfcfk −+= ++                                                                                                (20)  

)()()( jiijijijij ppfcfk −+= −−                                                                                                 (21)  

At the optimum, we can see that 0)( ijij fk +  and 0)( ijij fk −

 
for ,0ijf

 
and 0)( ≥+

ijij fk  for .0=ijf  

Obviously, because cost function )( ijij fc  is convex, ijjiijijijij fppfcfk )()()( −+=  is also convex. We 

can apply condition (8) and conclude that the flow ijf  makes the cost function )( ijij fk  minimum for every arc 

.),( Aji ∈  From (17), since ∑
=

n

i
iibp

1
 is constant, this indicates that the total convex and differentiable cost 

with time windows is minimized. Hence, ,ijf the flow which satisfies conditions (9), (10)), (11) and (12) is 

optimum.
  

(ii) Let ijf  be a minimum flow. We will show that there exist a potential set ip  that satisfies conditions (9), 

(10), (11) and (12). First, we assign an appropriate potential set as follows: 

Consider the sub-graph ),( AVG  of ),( AVG  which has the same set of vertices as G  and the arc set 

:),{( jiA = =+ )( ijij fc =− )( ijij fc )}(/
ijij fc                                                                            (22) 

Obviously, on every arc ),( ji  of G  the flow ,0ijf  since 0=ijf  the left derivative )( ijij fc−  is not 

defined. Assume the graph G  consists of a number of connected sub-graph. We choose an arbitrary vertex 

from each connected sub-graph, and assign the potential 0. We then assign the potentials to all other vertices in 

the following manner: 

Let ip  be the potential already assigned to vertex .i  We assign 

)(/
ijijij fcpp +=  if ,0ijf                                                                                                  (23)

                                                                             

)(/
ijijij fcpp −=  if .0jif                                                                                                  (24) 

The potential jp  is said to be coordinate to j  with time window ],[ jj ba  along the arc .),( Aji ∈  Now, each 

vertex has been provided with a potential. We now show that in this way, the potential set assigned will satisfy 

conditions (9), (10), (11) and (12). 
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Assume that in G  there exist an arc ),( vu  with  0uvf  and );(/

uvuvuv fcpp ≠−  this violates condition 

(10). According to the way we assign the potentials, the potential up  has been coordinated to u  with time 

window ],[ uu ba  along a chain ),...,,( 10 uiii m =  and the potential vp  to v  with time window ],[ vv ba  along 

a chain ).,...,,( 110 viiii mpp == ++  Together with the arc ),( vu  we obtain a coordinated cycle: 

),...,,,...,,( 0110 iiviuiii pmm ==== +α                                                                              (25) 

The flow going on each arc of α  is always positive. Now, we modify the flows on the arcs of α  slightly in the 

following way: 

On the arcs of +α  (arcs on which the flow goes in the same direction as the orientation of α ), we increase the 

flows by a value h ; on the arcs of −α , we decrease the flows by the value h . The flows on all the other arcs 

remain unchanged. Obviously, the vertex constraint (3) remains unaffected. 

 

Consider the cost difference resulting between the old and the new flows  

++−= ∑
+∈

)()((
),(

hfcfc ijijij
ji

ij
α

µ )()((
),(

hfcfc ijijij
ji

ij −−∑
−∈α

                                           (26) 

By the Taylor series, we get 

+−= ∑
+∈

)(((
),(

/
ij

ji
ij fch

α

µ )())((
),(

/ hofc ij
ji

ij +∑
−∈α

                                                                    (27) 

According to the formulation rules (23), (24) for ,ip  we can say that if there is a flow from i  to j , then  

.)(/
ijijij ppfc −=  Hence, equation (27) assumes the following form 

)())((

)()...)(...(
/

02
/

1110

hofcpph

hopppfcppppph

uvuvuv

imvijuvumiii

+−−=

+−+−+−−+−+−= +−µ

          (28)   
 

For sufficiently small ,0h  however, this expression is certainly greater than zero if ).(/
uvuvuv fcpp −  

But if ),(/
uvuvuv fcpp −  we modify the flow in the opposite way with the above; that is, on the arcs ,+α  

we decrease the flow by ;h  on that of ,−α  we increase it by .h  The resulting difference can be obtained in an 

analogous way. It is easy to see that by modifying the flow in this way, the total cost of flow can be lower.  
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However, this contradicts with the fact that ijf  is an optimum flow. Hence, we can conclude our assumption 

that there exists an arc ),( vu  with 0uvf  and /
uvuv cpp ≠−  is not true. In other words, the potential set we 

defined satisfies conditions (9), (10), (11) and (12). 

  Remark: The capacity iju  of arc ),( ji  into account, since when 0=ijf  or ,ijij uf =  only either the right-

hand or left-hand derivative of )( ijij fc  exists; hence the cost function )( ijij fc  is only differentiable for 

.0 ijij uf   From condition (7), we have  )()( ijijijij fcfc −+ =  for .0 ijij uf    

4. Algorithm of a minimum convex and differentiable cost flow problem with time windows 

Theorem 2 Let the cost functions be convex and differentiable with time windows, then a flow ijf  is optimum 

if and only if there exists a potential set ip  such that 

)( ijijij fcpp +≤−  for 0=ijf                                                                                                 (29) 

)( ijijij fcpp +=−  for ijij uf 0                                                                                       (30) 

)( ijijij fcpp −≥−  for ijij uf =                                                                                               (31) 

,jiij ttt ≤+  Vji ∈∀ ,                                                                                                             (32) 

,iii bta ≤≤  vi∈∀                                                                                                                 (33)  

According to the optimal conditions obtained in the previous section, we can now present the proposed primal 

dual algorithm for solving the convex and differentiable cost flow problem with time windows given by: 

 

Begin 

   Find a feasible flow; 

   While ip  of vertex i  with time window ],[ ii ba  not satisfying optimality conditions Do 

   Begin 

       Build ),( AVG  where )};()()(:),{( /
ijijijijijij fcfcfcjiA === −+  
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       Select a vertex u  with time window ],[ uu ba  in every connected sub-graph in G and set    ;0=up  

       For every vertex j  with time window ],[ jj ba  of arc ),( ji  that ip  is assigned Do 

       Begin 

           If 0ijf  then );(/
ijijij fcpp +=  

           If 0ijf  then );(/
ijijij fcpp −=  

       End 

       If there exist up  and vp  not satisfying optimality conditions then 

       Begin 

            Find the coordinated cycle α  that contains u  and ;v  

            Modify the flow along ;α  

       End 

    End 

End 

 

The present algorithm uses a labeling process, we assign the potential set according to criteria (23), (24); that is, 

the potential of vertex j  with time windows ],[ jj ba  is assigned based on the potential ip  of vertex i  with 

time windows ],[ ii ba  which has previously been assigned. The potential jp  is said to be coordinated with the 

vertex j  along the arc ).,( ji  If there exist vertices u  and  v  that up  and vp  do not satisfy the optimality 

conditions, we will find the coordinated cycle ),...,,,...,,( 0110 iiviuiii pmm ==== +α
 

where 
ti

p  is 

coordinated to li  along the arc ).,( 1 ll ii −  The flow of α  is modified to lower the cost as follows. On the arcs 

where the flow goes in the same or opposite direction as the orientation of ,α  the flow is increased or reduced 

by a value .h  The value h  is fund to minimize the cost incurred in the cycle .α  
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5. Conclusion 

In this paper, we present a new algorithm of a new version of the MCFP. This algorithm is a modification and 

combination of the maximum flow algorithm by Ford & Fulkerson and primal-dual algorithm commonly used in 

linear programming. The proposed algorithm minimizes the total convex and differentiable cost of flow by 

incrementing the network flow along augmenting paths of minimum cost from the source vertex s  to the 

destination vertex d  satisfy the time window condition. The class of this problem has a crucial of many 

applications on a large and complicated in network optimization. 
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