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Abstract 

The paper proposes a novel higher-order sliding modes (HOSM) control scheme for a class of uncertain 

nonlinear systems. The HOSM-based control scheme is developed based on the Filippov’s differential inclusion 

and local properties of affine nonlinear systems with control constraints. The resulting control provides 

exponential stability and ensures robustness against modeling errors and parameter uncertainties. The proposed 

HOSM-based control scheme is used to design a short-period pitch-axis flight control system of a short-range 

tactical missile where performance and robustness are demonstrated via computer simulations. 

Keywords: Flight control system design; Higher-order sliding modes; Missile dynamic and control; Nonlinear 

robust control 

1. Introduction  

For high tracking performance, the design of a missile’s flight control system (FCS) is driven by the 

characteristics of the guidance commands which are determined by the overall system and homing loop 

requirements. In many interception and navigation applications, the selection of the performance index changes 

with the flight phase of the  
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missile which requires the change of the autopilot type within the FCS. Because of the short amount of time 

involved in the endgame interception phase, the basic requirements for a tactical missile’s FCS to achieve a 

successful hit-to-kill engagement are fast response, minimum error, and robustness against disturbances.  

 

In order to alleviate the problems associated to the classical linear autopilot and to respond to the requirements 

of successful endgame engagement against clever targets, various studies have focused on the problem of 

nonlinear autopilot design for tactical missiles during the last few years. Researchers have sought to augment the 

classical autopilots with modern robust controllers yielding many control FCSs schemes [1-10]. Although many 

of these FCSs ensure good tracking, their application is restrained due to certain conceptual and implementation 

shortcomings such as linearization, high computational cost, and vulnerability to disturbances.    

 

Since their development, Higher-Order Sliding Modes (HOSM) have been receiving more attention and study 

from aeronautical and aerospace communities. Having proved their high accuracy and robustness, HOSM have 

been increasingly used to design high-performance FCSs for advanced missiles [11-22]. HOSMs controllers 

mitigate the problems associated with standard sliding mode controllers such as high-order dynamics, chattering 

effect, and control input smoothness. 

 

In this paper a new nonlinear discontinuous HOSM control scheme is derived and used to design an advanced 

HOSM-based pitch-axis tactical missile FCS. Different from the recursive or nested algorithms presented in 

[23,24], the proposed approach uses directly the higher-order time derivatives of the sliding variable in one 

combination. This reduces the complexity of the controllers’ architecture for systems with higher relative 

degrees. Two different pitch-axis autopilots are designed; pitch-rate and angle-of-attack (AOA) autopilots. The 

performance requirements of these autopilots are demonstrated via computer simulations. 

 

The outline of this paper is as follows. The nonlinear short-mode missile’s dynamics are presented in section 2. 

In section 3 the problem of designing discontinuous HOSM-based control is stated and the proposed HOSM 

scheme is derived. Computer simulations are conducted in section 4 to demonstrate the efficiency and 

advantages of the proposed HOSM-based missile’s FCS. Section 5 concludes the paper. 

2. Missile Longitudinal Short-period Dynamics 

The short period mode of the longitudinal motion can be described as follows 

• Missile short-mode dynamics 

   �
𝛼̇𝛼 = 𝐾𝐾𝛼𝛼𝑀𝑀𝐶𝐶𝑛𝑛(𝛼𝛼,𝑀𝑀)𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) +  𝑞𝑞 + 𝑔𝑔

𝑣𝑣𝑠𝑠𝑀𝑀
𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)

𝑞̇𝑞 = 𝐾𝐾𝑞𝑞𝑀𝑀2𝐶𝐶𝑚𝑚(𝛼𝛼,𝑀𝑀) + 𝐾𝐾𝑞𝑞𝑀𝑀2𝑒𝑒𝑚𝑚𝑞𝑞 + 𝑑𝑑𝑚𝑚𝛿𝛿       
�                                                             (1)   

 

where the aerodynamic coefficients 𝐶𝐶𝑛𝑛  and 𝐶𝐶𝑚𝑚  are estimated as follows 
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�
𝐶𝐶𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)�𝑎𝑎𝑛𝑛 |𝛼𝛼|3 + 𝑏𝑏𝑛𝑛𝛼𝛼2 + 𝑐𝑐𝑛𝑛�2 −𝑀𝑀

3� �|𝛼𝛼|�                       

𝐶𝐶𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)�𝑎𝑎𝑚𝑚 |𝛼𝛼|3 + 𝑏𝑏𝑚𝑚𝛼𝛼2 + 𝑐𝑐𝑚𝑚�−7 + 8𝑀𝑀
3� �|𝛼𝛼|�               

�                                (2) 

• Missile velocity and flight patch angle 

The missile velocity and trajectory are introduced by means of Mach number 𝑀𝑀 and path angle 𝛾𝛾 as exogenous 

scheduling parameters generated by the following equations 

     

�
𝑀̇𝑀 = −𝐾𝐾𝑧𝑧𝑀𝑀2�𝐶𝐶𝐷𝐷0 − 𝐶𝐶𝑧𝑧(𝛼𝛼,𝑀𝑀)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � − 𝑔𝑔

𝑣𝑣𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)

𝛾̇𝛾 = −𝐾𝐾𝑍𝑍𝑀𝑀𝐶𝐶𝑍𝑍(𝛼𝛼,𝑀𝑀)𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) − 𝑔𝑔
𝑣𝑣𝑠𝑠𝑀𝑀

𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)          
�                                                     (3) 

• Missile normal acceleration 

𝜂𝜂 = 𝐾𝐾𝑧𝑧𝑀𝑀2𝐶𝐶𝑛𝑛(𝛼𝛼,𝑀𝑀)                                                                                          (4) 

• Actuator dynamics: 

𝛿̈𝛿 = −𝜔𝜔𝑎𝑎2𝛿𝛿 −  2𝜉𝜉𝑎𝑎𝜔𝜔𝑎𝑎𝛿̇𝛿 + 𝜔𝜔𝑎𝑎2𝛿𝛿𝑐𝑐                                                                         (5) 

 

The state-space representation of the model (3) is written as follows 

 

�
𝒙̇𝒙 = 𝑨𝑨(𝒙𝒙)𝒙𝒙 + 𝒃𝒃𝑢𝑢                  
𝑦𝑦 = 𝒄𝒄𝑇𝑇𝒙𝒙𝒅𝒅                               

�                                                                            (6) 

where 

⎩
⎪
⎨

⎪
⎧ 𝒙𝒙 = [𝑥𝑥1     𝑥𝑥2]𝑇𝑇 = [𝛼𝛼       𝑞𝑞]𝑇𝑇 ,   𝑢𝑢 =  𝛿𝛿

𝑨𝑨(𝒙𝒙) =  �
𝐴𝐴11 (𝒙𝒙)        1

 𝐴𝐴21 (𝒙𝒙)       0
� ,                 𝒃𝒃 =  [0     𝑑𝑑𝑚𝑚 ]𝑇𝑇

𝐴𝐴11(𝒙𝒙) =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥1)𝐾𝐾𝛼𝛼𝑀𝑀�𝑎𝑎𝑛𝑛𝑥𝑥1
2 + 𝑏𝑏𝑛𝑛 |𝑥𝑥1| + 𝑐𝑐𝑛𝑛�2 −𝑀𝑀

3� ��𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1)

𝐴𝐴21(𝒙𝒙) =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥1)𝐾𝐾𝑞𝑞𝑀𝑀2�𝑎𝑎𝑚𝑚𝑥𝑥1
2 + 𝑏𝑏𝑚𝑚 |𝑥𝑥1| + 𝑐𝑐𝑚𝑚�−7 + 8𝑀𝑀

3� ��    

�                                            (7)   

 

𝐴𝐴11(𝒙𝒙) and 𝐴𝐴21(𝒙𝒙) are uncertain sufficiently smooth functions and 𝒙𝒙𝒅𝒅 = [𝛼𝛼𝑑𝑑(𝑡𝑡) 𝑞𝑞𝑑𝑑(𝑡𝑡)]𝑇𝑇 is the desired output 

vector. The variables -20°≤ 𝛼𝛼 ≤ 20°  , 1.5 ≤ 𝑀𝑀 ≤ 3 , 𝑞𝑞 , 𝛾𝛾 , and 𝛿𝛿  denotes Angle-Of-Attack (AOA), Mach 

number, pith rate, path angle, and elevator deflection, respectively. The parameters 𝑣𝑣𝑠𝑠 = 1036.4 (𝑓𝑓𝑓𝑓/𝑠𝑠) , 

𝑃𝑃0 = 973.3 (𝑙𝑙𝑙𝑙/𝑓𝑓𝑓𝑓2) , 𝐼𝐼𝑦𝑦 = 182.5 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑓𝑓𝑓𝑓2)  , 𝑆𝑆 = 0.44 (𝑓𝑓𝑓𝑓2) , 𝑑𝑑 = 0.75 (𝑓𝑓𝑓𝑓) , 𝑚𝑚 = 13.98 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) , 𝜔𝜔𝑎𝑎 =

150 (𝑟𝑟𝑟𝑟/𝑠𝑠), and 𝜉𝜉𝑎𝑎 = 0.7 denotes sound speed, static pressure, moment of inertia with respect to pitch axis, 

reference area, reference diameter, airframe mass, actuator natural frequency, and actuator damping ratio, 

respectively. Numerical values of aerodynamic coefficients of a pitch-axis missile model at an altitude of 20,000 

ft are listed in Table 1 [7]. 
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Table 1. Aerodynamic coefficients  

Coefficient Value 

𝐾𝐾𝑧𝑧  0.7𝑃𝑃0𝑆𝑆/𝑚𝑚𝑣𝑣𝑠𝑠 

𝐾𝐾𝑚𝑚  0.7𝑃𝑃0𝑆𝑆𝑆𝑆/𝐼𝐼𝑦𝑦  

𝑎𝑎𝑛𝑛  19.373 

𝑏𝑏𝑛𝑛  −31.023 

𝑐𝑐𝑛𝑛  −9.717 

𝐶𝐶𝐷𝐷0 −0.30 

𝑎𝑎𝑚𝑚  40.434 

𝑏𝑏𝑚𝑚  −64.015 

𝑐𝑐𝑚𝑚  2.922 

𝑑𝑑𝑚𝑚  −11.803 

𝑒𝑒𝑚𝑚  −1.719 

 

The control objectives are to design an inner-loop feedback controller with 𝒄𝒄 = [0  1]𝑇𝑇 to track a pitch rate 

command 𝑞𝑞𝑐𝑐(𝑡𝑡) and an outer-loop feedback controller with 𝒄𝒄 = [1  0]𝑇𝑇 to track an AOA command 𝛼𝛼𝑐𝑐(𝑡𝑡). 

3. Discontinuous HOSM-based Control Design  

3.1. Problem statement 

Consider a certain class of dynamical systems characterized by smooth nonlinear dynamics and represented by 

the following closed-loop state-space feedback 

�𝒙̇𝒙 = 𝑨𝑨(𝒙𝒙)𝒙𝒙 + 𝒃𝒃(𝒙𝒙)𝑢𝑢
𝑦𝑦 = 𝜎𝜎(𝒙𝒙)                    

�                                                                             (9)  

where 𝒙𝒙 ∈ R𝑛𝑛 , 𝜎𝜎 ∈ R, and 𝑢𝑢 ∈ R. The functions 𝐴𝐴𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑖𝑖  are uncertain continuous sufficiently differentiable 

functions. Using discontinuous higher-order sliding mode (HQSM) control approach, the control problem 

considered in this study aims to design high-performance dynamic controllers for real-time tracking missions in 

spite of internal and external disturbances. The discontinuous HQSM-based control approach is formulated 

under the following assumptions [23,24]. 

Assumption 1: The matrix 𝑨𝑨(𝒙𝒙) and the vector 𝒃𝒃(𝒙𝒙) are partitioned into nominal and uncertain parts as follows 

�𝑨𝑨
(𝒙𝒙) = 𝑨𝑨𝑛𝑛𝑛𝑛𝑛𝑛 (𝒙𝒙) + ∆𝑨𝑨(𝒙𝒙)
𝒃𝒃(𝒙𝒙) = 𝒃𝒃𝑛𝑛𝑛𝑛𝑛𝑛 (𝒙𝒙) + ∆𝒃𝒃(𝒙𝒙)

�                                                                    (10) 

 with 

�
‖∆𝑨𝑨(𝒙𝒙)‖ ≤ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 ≜ max𝑥𝑥∈𝕏𝕏|∆𝑨𝑨(𝒙𝒙)| ∈ ℝ+

‖∆𝒃𝒃(𝒙𝒙)‖ ≤ 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ≜ max𝑥𝑥∈𝕏𝕏|∆𝒃𝒃(𝒙𝒙)| ∈ ℝ+
�                                                (11) 
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where 𝕏𝕏 is the oerationg space of the system (9). 

Assumption 2: The control input 𝑢𝑢 is a Lebesgue-measurable signal (affine scalar function) with  

|𝑢𝑢(𝑡𝑡)| ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ+                                                                                  (12) 

Assumption 3: The output constraint 𝜎𝜎(𝒙𝒙) is of r-order differentiability class where r defines the relative degree 

of the output constraint 𝜎𝜎(𝒙𝒙) with respect to the control input 𝑢𝑢 [25]. 

Assumption 4: the output function 𝜎𝜎(𝒙𝒙) and its successive time derivatives up to 𝑟𝑟 − 1  form a non-empty 

integral set  

𝜎𝜎𝑟𝑟 = �𝒙𝒙 ∈ 𝕏𝕏| 𝜎𝜎(𝒙𝒙) = 𝜎̇𝜎(𝒙𝒙) = ⋯ = 𝜎𝜎(𝑟𝑟−1)(𝒙𝒙) = 0� ≠ ∅ − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠                                     (13)  

Assumption 5: if the assumption (3) holds and r is constant and known, the rth- order time derivative of the 

output constraint 𝜎𝜎(𝒙𝒙) satisfies the following equality [25] 

𝜎𝜎(𝑟𝑟) = 𝑝𝑝(𝒙𝒙) + 𝑞𝑞(𝒙𝒙)𝑢𝑢                                                                              (14) 

where 𝑝𝑝(𝒙𝒙) = 𝐿𝐿𝒇𝒇𝑟𝑟 𝜎𝜎(𝒙𝒙) and 𝑞𝑞(𝒙𝒙) = 𝐿𝐿𝒈𝒈𝐿𝐿𝒇𝒇𝑟𝑟−1𝜎𝜎(𝒙𝒙𝑜𝑜) ≠ 0. Due to the assumption 1, the functions 𝑝𝑝(𝒙𝒙) and 𝑞𝑞(𝒙𝒙) are 

bounded continuous functions on an open set 𝒳𝒳(𝒙𝒙𝑜𝑜) ⊂ 𝕏𝕏 around a given initial condition 𝒙𝒙𝑜𝑜  with 

0 < 𝜌𝜌− ≤ 𝑞𝑞(𝒙𝒙) ≤ 𝜌𝜌+          |𝑝𝑝(𝒙𝒙)| ≤ 𝜗𝜗                                                      (15) 

𝜌𝜌−,𝜌𝜌+ and 𝜗𝜗 are some positive constants. 

Assumption 6: According to the geometric-differential theoretical framework [25], the system (9) is feedback 

equivalent under a local diffeomorphic coordinate transformation 𝑧𝑧𝑘𝑘 = 𝜎𝜎(𝑘𝑘) (𝑘𝑘 =  0, … , 𝑟𝑟) . A controllable 

Brunovsky canonical form can be constructed as follows  

𝒛̇𝒛 = 𝚲𝚲𝒛𝒛 + 𝚼𝚼𝑢𝑢                                                                              (16) 

where 

�
𝚲𝚲 =  �𝐿𝐿𝒇𝒇𝜎𝜎(𝒙𝒙)   𝐿𝐿𝑓𝑓2𝜎𝜎(𝒙𝒙)  …  𝐿𝐿𝑓𝑓𝑟𝑟−1𝜎𝜎(𝒙𝒙)   𝐿𝐿𝑓𝑓𝑟𝑟𝜎𝜎(𝒙𝒙)�T

𝚼𝚼 =  �0      0  …     0     𝐿𝐿𝒈𝒈𝐿𝐿𝒇𝒇𝑟𝑟−1𝜎𝜎(𝒙𝒙𝑜𝑜)�T                   
�                                          (17) 

3.2. Design of discontinues r-HQSM controllers 

Theorem 1 [24]:  Let assumptions 1-6 hold, a bounded r-sliding mode feedback controller such as  

𝑢𝑢𝑟𝑟 = −GΨ𝑟𝑟−1,𝑟𝑟�𝜎𝜎, 𝜎̇𝜎… ,𝜎𝜎(𝑟𝑟−1)�                                                                        (18) 
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can be constructed in the constraint-space (16) to drive the constraint output 𝜎𝜎(𝒙𝒙) and its successive (𝑟𝑟 − 1) 

time derivatives towards their zero level in finite time and in spite of uncertainties and disturbances.   

Theorem 2:  Let 𝐾𝐾1, … ,𝐾𝐾𝑟𝑟 > 0 , the following higher-order sliding mode-based  controller 

�
𝑢𝑢𝑟𝑟 = −GΨ𝑟𝑟�𝜎𝜎, 𝜎̇𝜎… ,𝜎𝜎(𝑟𝑟)�                                                                                     
Ψ𝑟𝑟 = 𝜎𝜎(𝑟𝑟) + 𝐾𝐾1�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0

𝑖𝑖=𝑟𝑟−2 � ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0
𝑖𝑖=𝑟𝑟−2 �

�                     (19) 

stabilizes the origin of the system (16) and ensure the establishment of the r-sliding mode 𝜎𝜎 ≡ 0 in finite time 

provided that the gain G and the design parameters 𝐾𝐾𝑖𝑖  are selected such that  

𝐺𝐺 > 𝜗𝜗 𝜌𝜌−��𝜎𝜎(𝑟𝑟)� + 𝐾𝐾1�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0
𝑖𝑖=𝑟𝑟−2 ��⁄                                          (20) 

The controller (19) can be implemented using one of the following saturation functions 

Ψ𝑟𝑟 = �Ψ𝑟𝑟 ∆⁄                   if |Ψ𝑟𝑟 | ≤ ∆ 
Ψ𝑟𝑟 = sign(Ψ𝑟𝑟)   if  Ψ𝑟𝑟 > ∆

�                                                                     (21) 

or 

Ψ𝑟𝑟 = ∆ − exp⁡(−μΨ𝑟𝑟)                                                                                 (22) 

where ∆ and μ are convergence parameters. 

Proof of theorem 2: Define a sliding function  s = σ(𝑟𝑟−1)  and consider the following Lyapunov candidate 

function 

𝑉𝑉 = 1
2
𝑠𝑠𝑇𝑇𝑠𝑠                                                                             (23) 

Using the equations (14) and (19), the first-order time-derivative of the function 𝑉𝑉 is given as follows 

𝑉̇𝑉 = 𝑠𝑠𝑇𝑇𝑠̇𝑠 = 𝑠𝑠𝑇𝑇𝜎𝜎(𝑟𝑟)                                                                                                                                              
= 𝜎𝜎𝑇𝑇𝒄𝒄𝑻𝑻[𝑝𝑝(𝒙𝒙) + 𝑞𝑞(𝒙𝒙)𝑢𝑢]                                                                                                                             

= 𝜎𝜎𝑇𝑇𝒄𝒄𝑇𝑇 �𝑝𝑝(𝒙𝒙) − G𝑞𝑞(𝒙𝒙) �𝜎𝜎(𝑟𝑟) + 𝐾𝐾1�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0
𝑖𝑖=𝑟𝑟−2 � ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0

𝑖𝑖=𝑟𝑟−2 ���

≤ |𝜎𝜎𝑇𝑇|𝒄𝒄𝑻𝑻�𝜗𝜗 − G𝜌𝜌−��𝜎𝜎(𝑟𝑟)� + 𝐾𝐾1�𝜎𝜎(𝑟𝑟−1) + ∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0
𝑖𝑖=𝑟𝑟−2 ���                                                                

≤ −|𝜎𝜎𝑇𝑇|𝒄𝒄𝑻𝑻𝜗𝜗 �G𝜌𝜌−��𝜎𝜎(𝑟𝑟)�+𝐾𝐾1�𝜎𝜎(𝑟𝑟−1)+∑ 𝐾𝐾𝑖𝑖𝜎𝜎(𝑖𝑖)0
𝑖𝑖=𝑟𝑟−2 ��

𝜗𝜗
− 1�                                                         

≤ −𝜂𝜂|𝜎𝜎𝑇𝑇|                                                                                                                                                       

             (24) 

4. HOSM-based Missile’s Longitudinal Autopilots Design and Validation    

In this section, the proposed HOSM-based control scheme is validated through different nonlinear numerical 

simulations. For all the scenarios, the sliding variable 𝜎𝜎(𝒙𝒙) is selected as  

𝜎𝜎(𝒙𝒙) = 𝒄𝒄𝑇𝑇𝒆𝒆 = 𝒄𝒄𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝒅𝒅)                                                                               (25) 
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with 𝒄𝒄 ∈ ℝ𝑛𝑛 . The identity (14) is fulfilled as follows 

𝜎𝜎(𝑟𝑟) = 𝒄𝒄𝑇𝑇𝒆𝒆(𝑟𝑟) = 𝑝𝑝(𝒙𝒙) + 𝑞𝑞(𝒙𝒙)𝑢𝑢                                                               (26) 

4.1. Outer-loop AOA autopilot 

The control task here is to enforce the missile’s airframe to follow a desired AOA path using the nominal form 

of the dynamic model (6). According to the assumption 3, from the model (6) it is easy to find that the relative 

degree of the dynamics 𝑢𝑢 → 𝜎𝜎(𝒙𝒙) ≡ 𝛿𝛿 → 𝛼𝛼 is 𝑟𝑟 = 2 which yields 

 

𝜎𝜎(2) = [1 0] �𝛼𝛼
(2)

𝑞𝑞(2)�                                                                                                                       

= �𝐾𝐾𝛼𝛼𝑀𝑀
𝜕𝜕𝐶𝐶𝑛𝑛
𝜕𝜕𝜕𝜕

𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) − 𝐾𝐾𝛼𝛼𝑀𝑀𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)� �𝐾𝐾𝛼𝛼𝑀𝑀𝐶𝐶𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) +  𝑞𝑞 + 𝑔𝑔
𝑣𝑣𝑠𝑠𝑀𝑀

𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)�

+𝐾𝐾𝑞𝑞𝑀𝑀2𝐶𝐶𝑚𝑚 + 𝐾𝐾𝑞𝑞𝑀𝑀2𝑒𝑒𝑚𝑚𝑞𝑞 −  𝛼𝛼𝑑𝑑
(2)(𝑡𝑡) + 𝑑𝑑𝑚𝑚𝛿𝛿                                                

= 𝑝𝑝(𝒙𝒙) + 𝑞𝑞(𝒙𝒙)𝛿𝛿                                                                                                            

             (27)                                                    

The controller (19) is given as follows 

�
𝑢𝑢2 = −GΨ2�𝜎𝜎, 𝜎̇𝜎,𝜎𝜎(2)�                                     
Ψ2 = 𝜎𝜎(2) + 𝐾𝐾1|𝜎̇𝜎 + 𝐾𝐾0𝜎𝜎| ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜎̇𝜎 + 𝐾𝐾0𝜎𝜎)

�                                 (28) 

 

Scenario 1: tracking of an asymptotic path 

 

In this scenario, the performance and robustness of the proposed HOSM-based control scheme are evaluated 

through a smooth tracking of an asymptotic path. Nominal-, 25% underestimated-, and 50% overestimated-form 

of the model (6) were used in this simulation as shown in Figure 1.  

 

Scenario 2: tracking of sinusoidal path  

The control objective of this scenario is to track a sinusoidal reference trajectory at the extreme AOA conditions 

with  𝛼𝛼𝑑𝑑(𝑡𝑡) = 20 sin(2𝑡𝑡) (deg). Figure 2 shows the time-history of the AOA response and its corresponding 

control effort. 

(a) 
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(b) 

Figure 1.  Time-histories of a tracking of asymptotic path scenario: (a) AOA response, (b) corresponding 

aerodynamic control. 

 

 

(a) 

 
(b) 

Figure 2.  Time-histories of a tracking of a sinusoidal path scenario: (a) AOA response, (b) corresponding 

aerodynamic control. 

 

4.2. Inner-loop pitch rate autopilot 

It the case of pitch rate control, the missile’s airframe is enforced to follows a desired pitch rate path as inner-

loop control. According to the assumption 3, from the model (6) the relative degree of the dynamics 𝑢𝑢 →

𝜎𝜎(𝒙𝒙) ≡ 𝛿𝛿 → 𝑞𝑞 is 𝑟𝑟 = 1 which results in 
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𝜎𝜎(1) = [0 1] �𝛼𝛼
(1)

𝑞𝑞(1)�                                       

= 𝐾𝐾𝑞𝑞𝑀𝑀2𝐶𝐶𝑚𝑚 + 𝐾𝐾𝑞𝑞𝑀𝑀2𝑒𝑒𝑚𝑚𝑞𝑞 + 𝑑𝑑𝑚𝑚𝛿𝛿 
= 𝑝𝑝(𝒙𝒙) + 𝑞𝑞(𝒙𝒙)𝛿𝛿                             

                                                       (29)                                                    

The controller (19) is given as follows 

�
𝑢𝑢1 = −GΨ2(𝜎𝜎, 𝜎̇𝜎)                               
Ψ1 = 𝜎𝜎(1) + 𝐾𝐾1|𝐾𝐾0𝜎𝜎| ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐾𝐾0𝜎𝜎)

�                                                             (30) 

Scenario 3: tracking of pitch rate command 

Using the nominal form of the model (6), the missile’s airframe is enforced to track a pitch rate pattern as shown 

in Figure 3. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.  Time-histories of a tracking of a pitch rate pattern scenario: (a) pitch rate response , (b) AOA 

response, (c) Normal acceleration latex, (d) aerodynamic control. 

 

5. Conclusion  

A robust higher-order sliding mode (HOSM) control scheme for nonlinear uncertain systems driven by an affine 

control input is proposed. The main contributions of this paper are the design of robust finite-time convergent 

HOSM-based controllers without resort to recursive procedures and chattering effect reduction even for first-

order dynamics. The proposed HOSM-based control scheme was applied to designing pitch-axis autopilots for a 

short-range tactical missile during the endgame interception. High-tracking precision and robustness against 

heavy uncertainty conditions were achieved while the control input was maintained smooth. 

Similar to many existing discontinuous sliding mode control algorithms, the proposed HOSM-based control 

scheme does not require an exact dynamic model of the controlled system or process. The only requirements for 

real-time implementation are the measurements of the sliding variable, the relative degree of the system output 

with respect to its input, and the bounds or restrictions (15). The unbounded uncertainties or disturbances, 

undefined relative degree, and high measurement noises remain unsolved problems and main challenges for the 

extension of the proposed research. 
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