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Abstract 

Bankruptcy has recently upraised as an excessive concern due to the recent world crisis. Early forecasting of 

firms bankruptcy provides decision-support information for financial and regulatory institutions.  In spite of 

several progressive methods that have widely been proposed, this area of research is not out dated and still needs 

further examination. In this paper, the performance of different multiple classifier systems are assessed in terms 

of their capability to appropriately classify bankruptcy and non-bankruptcy Iranian firms listed in Tehran Stock 

Exchange (TSE). On the other hand, TSE have had very high return which provided more than 140 percent 

return in last year. For this reason, TSE could be more attractive for investors. Most data mining techniques 

provided significant improvements over the linear regression. In addition, non-linear classifiers afford 

enhancement in performance over the linear techniques. 

Keywords: Bankruptcy prediction; Financial distress; Machine learning 

1. Introduction  

Due to the significant consequences which bankruptcy imposes on different groups of society as well the 

noteworthy troubles qualified by firms during the Global Financial Crisis, the crucial importance of measuring 

and providing for credit risk have highlighted. 
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Since the mid-1990s, there has been growing concern in emerging and developing economies among 

researchers. One of the least studied emerging markets is the Tehran Stock Exchange (TSE), however a study of 

the TSE would contribute to the literature on emerging and developing markets finance especially Middle East. 

The value of Tehran Stock Exchange return was increased by 140 percent at the end of 2013. Regarding the 

growth in financial services, there have been swelling sufferers from off ending loans. Therefore, bankruptcy 

risk forecasting is a critical part of a financial institution’s loan approval decision processes. 

Bankruptcy risk prediction is a procedure that determines how likely applicants are to bankruptcy with their 

repayments. Review of literature on the subject confirmed hand full of studies conducted in the last four 

decades. Despite of these studies, the recent credit crisis indicated that yet there are areas of the study that needs 

researchers’ attention. Moreover, emerging of the regulatory changes such as Basel III accord and the need for 

more precise and comprehensive risk management procedures justifies need of research in area of credit risk 

modeling and banking supervision. This requirement like these pushes companies especially banks and 

insurance companies to have a very robust and transparent risk management system.  

Since the study of [15], bankruptcy prediction becomes a challenging issue in corporate finance. Earlier, most of 

the studies on bankruptcy risk focused on firm-specific indicators as a predictor of firms bankruptcy across 

United States including [24, 26]. Although, majority of the studies used the firm-specific variables, some 

researchers tried to use some other indicators such as interest rate, stock index return and GDP that affects 

bankruptcy prediction. As a result of relationship between general economic and bankruptcy rates, some 

attempts have been made to predict bankruptcy based on macroeconomic variables. Earlier surveys using U.S. 

firms [22, 34] revealed that macroeconomic indicators affect bankruptcy prediction.  

The majority of the discussion related to bankruptcy prediction develops around the decisive works of [2, 28, 

35, 32]. The author of [2] applied Multivariate Discriminant Analysis (MDA) for the first time to classify failed 

and non-failed U.S firms. Researchers still use this model as a benchmark to predict firm bankruptcy. Altman's 

Z-score model is a linear analysis of five ratios and this score is a basis for firm classification. Besides, [8] 

employed the same MDA technique for bankruptcy prediction some years prior to failure. Similarly, to assess 

the predictive accuracy of accounting ratios, [21] measured the prediction achievement of a selected set of 

accounting ratios for U.S ventures. The use of technique as a benchmark tool for bankruptcy prediction shows 

researchers trust on the technique [19].  

Risk bankruptcy prediction is conventionally observed from a binary classification standpoint. Therefore, 

classification or regression methods used to generate a classifier which creates a numerical output to 

demonstrate the probability of a firm to repay its obligations (good applicant) or bankruptcy or display 

undesirable behavior (bad applicant). Adding to the debate on bankruptcy prediction methodology Crook et al, 

(2007) suggested logistic regression as one of the leading methods. Similarly, linear regression/ discriminant 

analysis and decision trees are other popular methods [11, 9]. These methods are easy to develop and levels of 

performance are acceptable. In addition, there is abundance of literature revolving around the application of 

other methodologies. Some includes statistical techniques such as survival analysis, graphical models and 

Markov chains. Other methods are from the machine learning/data mining approaches such as; support vector 
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machines [5] and genetic algorithms. Principally, machine learning techniques have shown superior 

performance over statistical ones [29]. Putting simply, nonlinear approaches such as neural network and support 

vector machines outperform other methods but by a small margin [10] in order to non-linearity dependence 

between some financial ratios and bankruptcy probability. There are no hard and fast rules as to which 

methodology; a model developer should approve for this improbability. Consequently, a promising approach to 

adopt this uncertainly is to construct a number of classifiers using various techniques, and then choose one that 

proves best against the problem. It has been established that combining a set of independent classifiers with 

adequate accuracy leads to better performance, provided that the diversity among accurate based classifiers in an 

ensemble system is enforced in some way. Although, the research into classifier combination is remarkable, a 

few report empirical findings have been done on corporate bankruptcy. In addition, there has been little effort to 

compare the wide range of classifiers within previous studies.  

Significant advances have been made in the past few decades regarding methodologies for bankruptcy 

prediction. [6] introduced the Naïve Bayes approach using a single variable and Altman in 1968 suggested the 

use of Linear Discriminant Analysis (LDA). Since then several contributions have been made to improve the 

Altman’s results, using different techniques. The use of data mining techniques such as Artificial Neural 

Networks (ANN), decision trees, and Support Vector Machine (SVM) for bankruptcy prediction started in the 

late 1980s [31]. 

The authors in [16] used Decision Trees first time for bankruptcy prediction. Using this model, they classified 

firms to failed and non-failed based on firm-level and country-level factors. According to their results, this 

technique allows for an easy identification of the most significant characteristics in bankruptcy prediction. In 

another study, Quinlan (1986) noted that decision trees method can deal with noise or non-systematic errors in 

the values of features. There are some other studies which predicted bankruptcy using this method such as [25]. 

Detailed examination of corporate bankruptcy prediction by [30] showed a better performance of the hybrid 

model. They used four different techniques to predict corporate bankruptcy, which two of the methods were 

statistical and the outstanding two models were machine learning techniques. In different but related work, the 

authors in [30] suggested a model using genetic algorithms technique. Some other related studies have 

employed Artificial Neural Networks to predict bankruptcy.  

Artificial Neural Networks was first demonstrated experimentally by [20] to analyze bankrupt companies. Since 

then the method became a common accuracy amongst. Recently, some of the main commercial loan bankruptcy 

prediction products applied ANN technique. For example, Moody's public firm risk model ANN and many 

banks and financial institutions have developed this method for bankruptcy prediction [4]. More recently, the 

support vector machine was commenced for bankruptcy risk investigation. This technique which is based on 

statistical learning theory compared with the traditional methods is more accurate in predicting bankruptcy 

likelihood [18].  

2. Methodology 

2.1. Logistic Regression 
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Logistic regression is a type of regression methods [1] where the dependent variable is discrete or categorical, 

for instance, bankruptcy (1) and non-bankruptcy (0). Logistic regression examines the effect of multiple 

independent variables to forecast the association between them and dependent variable categories. According to 

[27,23] was the first researcher who used logistic technique in corporate bankruptcy perspective. He employed 

this technique to examine failures in the U.S. banking sector. Subsequently, [28] applied logistic regression 

more generally to a sample of 105 bankrupt firm and 2,000 non-bankrupt companies. His model did not 

discriminate between failed and non-failed companies as well as the multiple discriminant analysis (MDA) 

models reported in previous studies. According to [13], logistic regression is in the second place, after MDA, in 

bankruptcy prediction models. 

2.2.  Decision Tree 

Decision trees are the most popular and powerful techniques for classification and prediction. The foremost 

cause behind their recognition is their simplicity and transparency, and consequently relative improvement in 

terms of interpretability. Decision tree is a non-parametric and introductory technique, which is capable to learn 

from examples by a procedure of simplification. [16] first time employed decision trees to forecast bankruptcy. 

Soon after, some researchers applied this technique to predict bankruptcy and bankruptcy including [17, 25]. 

2.3.  Neural Networks 

Neural networks (NNs), usually non-parametric techniques have been used for a variety of classification and 

regression problems. They are characterized by associates among a very large number of simple computing 

processors or elements (neurons). Corporate bankruptcy have predicted using neural networks in early 1990s 

and since then more researchers have used this model to predict bankruptcy. As a result, there are some main 

profitable loan bankruptcy prediction products which are based on neural network models. Also, there are 

different evidence from many banks which have already expanded or in the procedure of developing bankruptcy 

prediction models using neural network [4]. This technique is flexible to the data characteristics and can deal 

with different non-linear functions and parameters also compound prototypes. Therefore, neural networks have 

the ability to deal with missing or incomplete data [33]. 

2.4.  Support Vector Machines 

Among different classification techniques, Support Vector Machines are considered as the best classification 

tools accessible nowadays. There are a number of empirical results attained on a diversity of classification (and 

regression) tasks complement the highly appreciated theoretical properties of SVMs. A support vector machine 

(SVM) produces a binary classifier, the so-called optimal separating hyper planes, through extremely nonlinear 

mapping the input vectors into the high-dimensional feature space. SVM constructs linear model to estimate the 

decision function using non-linear class boundaries based on support vectors.Support vector machine is based 

on a linear model with a kernel function to implement non-linear class boundaries by mapping input vectors 

non-linearly into a high-dimensional feature space. 
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Figure 1: The SVM learns a hyperplane which best separates the two classes. 

Based on conceptual elements of statistical learning and the potential of SVMs for firm rating, for the linear 

classification problem a SVM is defined and this method is simplified for nonlinear cases. In the linear case 

(figure 1) the following inequalities hold for all n points of the training set: 

Min          

xi
Tw+b ≥ 1-ξi        for      yi=1,                       

xi
Tw+b ≤ -1+ξi        for      yi=-1,                  

ξi ≥ 0 

This can be combined into two constraints: 

Yi (xi
Tw+b) ≥ 1-ξi 

ξi ≥ 0 

The basic idea of the SVM classification is to find such a separating hyperplane that corresponds to the largest 

possible margin between the points of different classes. 

3. Empirical experiment 

3.1. Data Description 

The dataset was used to classify a set of firms into those that would bankruptcy and those that would not 

bankruptcy on loan payments. It consists of 217 observations of Iranian companies. All of them were or still are 

listed on the Tehran Stock Exchange (TSE). Of the 217cases for training,100 belong to the bankruptcy case 

under paragraph 141 of Iran Trade Law and the other 117to non-bankruptcy case.   
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The 21 significant variables in this study were selected by using a two stages predictive variable selection 

process. At the first stage, bankruptcy prediction literature was reviewed and 65 variables from more than 230 

financial ratios were selected as predictive variables. These financial ratios were chosen based on their 

popularity in the literature. In the second stage, 21 variables were selected based on the availability of the 

necessary data. The components of the financial ratios which are estimated from data are explained below and 

table 1 shows the summary statistics for selected variables for bankruptcy and non-bankruptcy firms. 

To select the variables, two approaches including linear regression and decision tree analysis were used. The 

most significant variables based on two methods were identified. These variables selected from the 21 indicators 

for the model which could best discriminate the bankruptcy firms from the non-bankruptcy firms. These 

selected financial ratios include: EBIT to total assets (X1), current assets to total assets (X5), net profit to 

liability (X11), working capital to total assets (X6) and net profit to sale (X16). 

3.2. Experimental Results 

This section demonstrates the results and main findings of the analysis in order to probability of default. 

Considerable attention has been devoted to financial ratio analysis for classifying failed and non-failed 

companies. Based on the results, the most important indicators are liquidity and profitability. The liquidity 

position of a firm is when the firm is able to meet certain financial obligations. In other words, the firm has the 

ability to repay its obligations without incurring too much cost. Based on the results liquidity is one of the 

significant indicators which affects the probability of default. Beside this, more profitable firms are less 

probable to face default. The significant indicators then have been employed to model probability of default 

using machine learning techniques including, decision tree, neural network and support vector machine. 

Comparison of forecasting accuracy reveals that the SVM has a lower model risk than other models. According 

to the results, SVM is the best. The performance of logistic regression is significantly worse than other 

approaches. Generally, the findings for the classifiers are not predominantly unexpected and are well-matched 

with previous empirical researches of classifier performance for default risk data sets especially in case of SVM 

classifier. SVM with a high generalization capacity seems to be a capable technique for default prediction in 

Iran as an emerging economy. Also, table 2 shows the performance accuracy of different models.   

Roc curve plots the type II error against one minus the type I error. In the case of default prediction in this study, 

it describes the percentage of non-defaulting firms that must be inadvertently denied credit (Type II) in order to 

avoid lending to a specific percentage of defaulting firms (1- Type I) when using a specific model. Figure 2, 

shows the ROC curve for different classifiers. The results also state the improvement by the machine learning 

techniques is significant.  

5. Conclusion  

Default prediction takes an important role in the prevention of corporate default, which makes the accuracy of 

default prediction model be widely concerned by researchers. Appropriate identification of firms ‘approaching 

default is undeniably required.  
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 Table 1: The summary statistics for selected variables for bankruptcy and non-bankruptcy firms 

 

Definition 

of variable 

Means of 

non-

bankruptc

y 

companies 

Means of 

bankrupt

cy 

compani

es 

Test of 

equality 

of group 

means 

 

Definitio

n of 

variable 

Means of 

non-

bankruptcy 

companies 

Means of 

bankruptcy 

companies 

Test of 

equality 

of group 

means 

1 EBIT/TA 0.155647 -0.02608 0 12 NP/E -0.08432 -1.0931 0.079 

2 Ca/TA 0.086677 0.031281 0 13 S/TA 2.611479 2.424024 0.499 

3 Ca/CL 1.854502 1.178482 0 14 S/CA 4.410169 4.135828 0.511 

4 CA/CL 0.618186 0.584403 0.271 15 R/L 0.807465 0.561762 0 

5 CA/TA 0.151896 -0.05514 0 16 NP/S 0.039157 -0.04186 0 

6 WC/TA 0.098689 -0.87107 0.174 17 L/TA 0.522716 0.704322 0 

7 WC/S 9.504097 16.74657 0.147 18 L/E 16.12618 7.795392 0.483 

8 S/R 0.095607 -0.06198 0 19 LL/E 6.580743 0.176757 0.315 

9 NP/TA 0.095607 -0.06197 0 20 CL/E 9.545434 7.618636 0.738 

10 GP/S 0.602299 -0.616 0 21 CA/S 0.933685 0.426074 0.441 

11 NP/L 0.347821 0.080305 0      

 EBIT: Earning Before Interests and Taxes GP: Gross Profit  

 TA: Total assets   L: Liabilities  

 Ca: Cash    TI: Total Income  

 CL: Current Liabilities   LL: Long Term Liabilities 

 CA: Current Assets   E: Equity   

 WC: Working Capital   R: Receivables  

 S: Sale    NP: Net Profit   

 

Table 2: Performance of classifier systems 

 Classifier system % Accuracy % Misclassified % ROC Area 

B
aseline m

odels 

LR 69.12 30.76 82.3 

NN 83.41 17.38 91.3 

DT 74.79 19.12 83.8 

SVM 84.79 14.42 92.5 

    

 

By this time, various methods have been used for predicting default. The use of machine learning techniques is 

becoming common in different studies. Since the pioneering works of [6] and [2], many researches have been 

developed to predict corporate default using financial ratios, and it seems that these might be other quantitative 
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and qualitative variables that can help prediction. The results of this study states liquidity of the firm and 

profitability have proved significant effect on probability of default. In addition, machine learning classifiers 

outperform the statistical methods and among them SVM shows higher accuracy more than other three methods 

with statistical significance and especially suits for Iranian listed companies. Therefore, this study contributes to 

provide incremental evidence for default prediction research based on machine learning and guide the real world 

practice of DP to some extent. However, this study also has the limitation that the experimental data sets are 

only collected from Iranian listed companies, and further investigation can be done based on other countries’ 

real world data sets in future study. 

 

 
LR DT NN SVM 

 

Fig 2. ROC curve 

 

References  

[1] P.D.Allison,  (2001). Logistic Regression Using the SAS System: Theory and Application. Cary, NC: SAS 

Publishing, BBU Press. 

[2] Edward I.Altman, (1968). Financial Ratios, Discriminant Analaysis and the Prediction of Corporate 

Bankruptcy. Journal of Finance, 23(4), 589-609.  

[4] Atiya, A. (2001). Bankruptcy Prediction for Credit Risk using Neural Networks: A Survey and New Results. 

IEEE Transactions on Neural Networks, 12, 929-935.  

[5] Baesens, B., Gestel, T.V., Viaene, S., Stepanova, M.,  Suykens, J., Vanthienen, J., 2003a.Benchmarking 

state-of-the-art classification algorithms for credit scoring.Journal of the Operational Research Society 

54, 627–635. 

[6] Beaver, William H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4(3), 

71-111.  

184 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 19, No  1, pp 177-187 

[7] Blum, James D. (1977). Financial Statement Analysis: A New Approach. Journal of Finance, 32(3), 958-

961.  

[8] Blum, Marc. (1974). Failing Company Discriminant Analysis. Journal of Accounting Research, 12(1), 1-25. 

[9] Boyle, M., Crook, J. N., Hamilton, R., Thomas, L. C. 1992. Methods for credit scoring appliedto slow 

payers. In Credit Scoring and Credit Control, Thomas, L. C., Crook, J. N.,Edelman, D. B., eds., Oxford 

University Press, Oxford, 75-90. 

[10] Crook, J., Edelman D., Thomas, L. 2007. Recent developments in consumer credit risk assessment 

European  Journal of Operational Research, 183 (3): 1447- 1465. 

[11] Durand, D. (1941). Risk elements in consumer instalment financing. (Technical edition) ByDavid Durand. 

National bureau of economic research [New York]. 

[12] Deakin, Edward B. (1972). A Discriminant Analysis of Predictors of Business Failure. Journal of 

Accounting Research, 10(1), 167-179.  

[13] Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey ofbusiness failure with an emphasis 

onprediction methods andindustrialapplication. European Journal of  OperationalResearch,  90, 487– 513. 

[14] Hennawy, R. H. A., & Morris, R. C. (1983). THE SIGNIFICANCE-OF BASE YEAR IN DEVELOPING 

FAILURE PREDICTION MODELS. Journal of Business Finance & Accounting, 10(2), 209-223.  

[15] FitzPatrick, Paul Joseph. (1932). A comparison of the ratios of successful industrial enterprises with those 

of failed companies: Washington. 

[16] Frydman, H., Altman, E., & Kao, D. (1985). Introducing recursive partitioning for financial classification: 

the case of financial distress. Journal of Finance, 269-291.  

[17] Gepp, Adrian, Kumar, Kuldeep, & Bhattacharya, Sukanto. (2010). Business failure prediction using 

decision trees. Journal of Forecasting, 29(6), 536-555. doi: 10.1002/for.1153 

[18] Härdle, Wolfgang, Moro, Rouslan, & Schäfer, Dorothea. (2005). Predicting Bankruptcy with Support 

Vector Machines. Statistical Tools in Finance & Insurance, 225-248.  

[19] Hillegeist, S.A., Keating, E.K., Cram, D.P. and Lundstedt, K.G. (2004). Assessing the Probability of 

Bankruptcy, Review of Accounting Studies, 9(1), 5–34. 

[20] Hertz, J., Krogh, A., & Palmer, R.G. (1991). The Theory of Neural Network Computation. Addison 

Welsey: Redwood, CA.  

185 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 19, No  1, pp 177-187 

[21] Libby, Robert. (1975). Accounting Ratios and the Prediction of Failure: Some Behavioral Evidence. 

Journal of Accounting Research, 13(1), 150-161.  

[22] Liou, Dah-Kwei, & Smith, Malcolm. (2007). Macroeconomic Variables and Financial Distress. Journal of 

Accounting, Business & Management, 14, 17-31.  

[23] Martin, D. (1977). Early warnings of bank failure: A logit regression approach. Journal of Banking and 

Finance, 1, 249-276.  

[24] Merwin, C. (1942). Financing small corporations in five manufB.cturing industries, 1926-1936. New York: 

National Bureau of Economic Research.  

[25] Messier, JR. W., & Hansen, J. (1988). Inducing rules for expert system development: an example using 

bankruptcy and bankruptcy data. Management Science, 34, 1403-1415.  

[26] Meyer, Paul A., & Pifer, Howard W. (1970). Prediction of bank failures. Journal of Finance, 25(4), 853-

868.  

[27] Morris, Richard. (1997). Early warning indicators of corporate failure : a critical review of previous 

research and further mpirical evidence. Ashgate. 

[28] Ohlson, James A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of 

Accounting Research, 18(1).  

[29] Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent 

techniques - A review. European Journal of Operational Research, 180(1), 1-28.  

[30] Shin, K.S., and Lee, Y.J. (2002). A Genetic Algorithm Application in Bankruptcy Prediction Modeling. 

Expert Systems with Applications, 9, 503-512. 

[31] Shin, K.S., lee, T.S., & Kim, H.J. (2005). An application of support vector machines in bankruptcy 

prediction model. Expert system Application, 28(1), 127-135.  

[32] Shumway, Tyler. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of 

Business, 74(1), 101-124.  

[33] Smith, C.W., & Stulz, R.M. (1985). The Determinants of Firms’ Hedging Policies. Journal of Financial 

and Quantitative Analysis, 20(4), 391-405.  

[34] Vassalou, Maria, & Yuhang, Xing. (2004). Bankruptcy Risk in Equity Returns. Journal of Finance, 59(2), 

831-868. doi: 10.1111/j.1540-6261.2004.00650.x 

186 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 19, No  1, pp 177-187 

[35] Zmijewski, M.E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction 

Models. Journal of Accounting Research 22, 59–86. 

 

 

187 
 


	3. Empirical experiment

