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Abstract 

We study the log-gamma-Pareto distribution which includes as special cases two models such as gamma-Pareto 

and Pareto distributions. We demonstrate that its density function is an infinite linear combination of Pareto 

densities. Some mathematical properties of the new distribution are derived, such as moments, distribution of 

the order statistics, Shannon and Renyi entropies and maximum entropy characterization. We use maximum 

likelihood estimation to estimate model parameters and an application to a real data set illustrates its 

potentiality. We generate random numbers from the cdf of the distribution and obtain the mean, bias, mean 

square error, standard error, Kurtosis and Skewness for each parameter. 

Keywords:Log-gamma-generated distributions; Pareto distribution; moments; order statistics; entropies. 

1. Introduction 

Statistical distributions are playing a very important role in the scientific researches, since recognizing the 

probability distribution of the sample study denotes the key world in many situations.  
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Sometimes fitting a distribution to a given data set results in a poor fit. To deal with this problem, many 

statisticians attempt to generalize the distributions in order to produce a better fit for the data. The authors in [1] 

introduced two new families of distributions generated by log-gamma random variables. These two families of 

distributions has their cumulative distribution functions (cdfs) as 
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respectively, where (.)Γ  is the complete gamma function, (.)1(.) FF −= is the survival function of X and

∫
∞ −−=Γ
x

xdxexx 1),( αα is the upper incomplete gamma function. The cdf )(xF is referred to as the parent 

distribution. The authors in [1] gave the corresponding two probability density functions (pdf) as 
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respectively, where )(xf is the pdf of the parent distribution )(xF . The role of the parametersα andβ is to 

control tail weight and skewness of these distributions and give us the flexibility for modeling significantly 

skewed or tailed data. The authors in [1] then showed that the families (2) and (3) are generalized forms of 

distributions of k record values and they are also obtained by applying the inverse probability integral 

transformation to the log-gamma distribution. In this note, we shall work only with the family of distributions 

defined by (2).  

Consider the Pareto distribution with cdf (see the authors in [2]) 
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Inserting (4) in equation (1) yields the log-gamma-Pareto (LGP) distribution function as follows (see figure 1): 
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Using the transformation ty log−= , equation (5) reduces to 
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where 0,,, >θβα k and (.,.)Γ is the upper incomplete gamma function defined above. 

 

Figure 1: Possible shapes of LGP distribution function for different values of k,,βα andθ . 

The density function corresponding to (6) is given by (see figure 2) 
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where (.)Γ  is the complete gamma function. 

We motivate the use of this distribution in two ways. First, it extends the Pareto distribution and the gamma-

Pareto distribution introduced by the authors in [3]. Second, for n∈= αβ ,1 , we obtain the distribution of the 

lower record value from a sequence of independent and identically distributed random variables from a 

population with the Pareto distribution. If a random variable Y follows the log-gamma distribution with 

parametersα andβ , then the random variable kYX /1)1/( −=θ follows the LGP distribution with parameters
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k,,βα andθ . If a random variable Y follows the gamma distribution with parametersα andβ , then the 

random variable kyeX /1)1/( −−= θ follows the LGP distribution with parameters k,,βα andθ . A random 

variable X  having density (7) is denoted by ),,,(~ θβα kLGPX . 

 

Figure 2: Possible shapes of LGP density function for different values of k,,βα andθ . 

The hrf of the LGP distribution is given by (see figure 3) 
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The LGP quantile function can be obtained by inverting (6) as  

kzeQ
1

)1()(
−

−−= θλ , 

where 10 << λ and ]),([1 ααλΓΓ= −z . The inverse incomplete gamma function (.,.)1−Γ is already 

implemented in most used mathematical softwares (see the authors in [4]). 

Using equation (7), two special cases can be obtained as follows: 

1) For 1=β , the gamma-Pareto (GP) distribution is obtained 
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which introduced by the authors in [3]. 

 

 

Figure 3: Possible shapes of LGP hazard rate function for different values of k,,βα andθ . 

2) For 1== βα , the Pareto distribution is obtained 
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which introduced by the authors in [2]. 

This article is organized as follows. In section 2, we express )(xg in (7) as an infinite linear combination of 

Pareto density functions. In section 3, we obtain the moments and moment generating function. In section 4, we 

provide explicit expressions for the Shannon and Renyi entropies. Also, we propose suitable constraints for 

maximum entropy characterization of the log-gamma generated families in equation (2). In section 5, we discuss 

the distribution of the ith order statistic and its rth moment. We estimate the model parameters by maximum 

likelihood method in section 6. In section 7, we provide an application to a real dataset and generate a random 

number from the LGP distribution to illustrate the usefulness of the new model. 

2. Expansion for the LGP Density Function 
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Consider the density function (7) and let ( )kxy /θ= . Then equation (7) can be written as: 
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Next, using the binomial theorem ∑
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where ),;()( θ∗∗∗ = kxfxf denotes the density function of the Pareto distribution with shape parameter
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Hence, we can write 
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Equation (8) reveals that the LGP density is a linear combination of Pareto densities. So, several of its 

mathematical properties can be immediately obtained from those of the Pareto distribution. 

3. Moments and Moment Generating Function 

Let X  be a random variable distributed according to equation (7) and Z be a random variable with Pareto 

density function )(xf∗ , i.e. ),(~ θ∗kParetoZ . 

3.1. Moments 

It is known that, the rth moment about zero of Pareto distribution is )/()( rkkZE rr −= ∗∗θ . Then, by using 

equation (8), the rth moment about zero of the LGP distribution is given by 
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As an alternative method to calculate ordinary moments of the LGP distribution without using equation (8), by 

using equation (7), we obtain  
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In particular, the first two moments about zero can be derived by taking 1=r and 2=r in equation (10) as  
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Hence, the variance of LGP distribution can be easily obtained. 

3.2. Moment Generating Function 

It is known that the moment generating function (mgf) of the Pareto distribution is given by
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As an alternative method to calculate the mgf without using equation (8), we consider 
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By using equation (10) in equation (11), we obtain the moment generating function as
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4. Some Entropies 

The entropy represents a measure of uncertainty of a random variable. It is an important concept in many fields 
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of science such as theory of communication, physics, engineering and economics (see the authors in [7]). We 

provide expressions for the Shannon entropy and Renyi entropy of the LGP distribution and present suitable 

constraints for the maximum entropy characterization of the log-gamma-generated family (2). 

4.1. Shannon Entropy 

The author in [7] introduced the most popular measure of entropy which is called Shannon entropy. For a 

continuous distribution )(xG with density )(xg , the Shannon entropy is defined as 
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For the LGP distribution, the Shannon entropy is given by 
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4.2. Renyi Entropy  

Another popular measure of entropy is the Renyi entropy (see the author in [8]) defined by 
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where 0>v and 1≠v . Raising equation (7) to the power v  and using similar expansions to those in section 2, 

we obtain 
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where 1−+++=∗∗ krkmkskvk α and msb , is defined in section 2. Integrating the above expression from θ

to∞ leads to a linear combination of Pareto moments of orders )( v− , the Renyi entropy of X which follows the 

LGP distribution reduces to 
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4.3. Maximum Entropy Characterization 

The author in [9] showed that the Shannon entropy may also be used to identify a probabilistic model (see the 

author in [4]). Suppose a class of probability densities under a set of constraints 

},...,2,1,)]([)({ miXTExgF ii === α , 

for which all expectations are assumed to exist and be finite. One should choose a member from F as the 

density function for a random variable X if it maximizes the Shannon entropy. The chosen density is called the 

maximum entropy distribution. The authors in [3] provided suitable constraints for the gamma-generated 

distributions such that the maximum entropy distribution is unique. For the log-gamma-generated distributions 

defined in (2), we propose the following constraints: 

βαψ log)())](log[log( −=− xFE and ))](([log)]([log 1 y
Y eFfExfE −−= , 

where ),(~ βαGammaY and (.)ψ denotes the digamma function. It can be shown that under the above 

constraints, the maximum entropy distribution is unique. The proof of this statement is very similar to Zografos 

and Balakrishnan gamma-generated case, and thus it is omitted. 

5. The Distribution of the ith Order Statistic 

It is proved in the authors in [6] that the density function of the ith order statistic of the GEE distribution is an 

infinite weighted sum of GEE density functions and according to the authors in [4] the density function of the ith 

order statistic of the GEW distribution is an infinite weighted sum of Weibull densities. We shall prove that, for 

any log-gamma-generated distribution with density (2), the density of the ith order statistic in a random sample 

of size n can be expressed as an infinite weighted sum of log-gamma-generated densities defined in (2). 

Consider nXX ,...,1 i.i.d random variables distributed according to (2). The pdf of the ith order statistic, say

niX : , is given by  
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Using the binomial theorem and equation (1), we obtain 
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Since ))(log,()()](log,[ xFxF −−Γ=−Γ αγαα and using the power series from the authors in [10]. 

∑
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=
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αγ xx . 

we can express the pdf )(: xg ni as 
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Following the authors in [4], let
)(!

)1(
τατ

τ

τ +
−

=c and use the power series raised to a positive integer, as in 

section 2, to write 
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where l
l cd 0,0 = , ∑

=
−

− +−=
τ

ττ ττ
1

,
1

0, ][)(
w

lwwl dcwlwcd and Substituting from equation (2) in equation (13), 

we obtain 
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τ
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α

α  

where ταα ++=∗ )1(l , and )(xg
∗α

denotes the log-gamma-generated family (2) with two parameters ∗α

andβ . Then, it is obtained from (14) that the pdf of the ith order statistic from a random sample of size n for any 

log-gamma-generated family with density (2) can be expressed as an infinite sum of log-gamma-generated 

densities (2). 

Equations (8) and (14) can be used to write the pdf of the ith order statistic from a sample of size n of the log-

gamma-Pareto distribution as a linear combination of Pareto densities as follows: 

367 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 357-374 

 

)(
))((

)()1(

1
)!1()!(

!)(

11
1

0

1

0 0 1
:

xfdw

l
ji

j
in

iin
nxg

ll

lj

in

j

ji

l V
ni

∗++
∗

+

−

=

−+

=

∞

= ∈

Γ
Γ−

×








 −+







 −
−−

= ∑ ∑∑∑

αβ
α

τα
τυ

τ υ  

where )(1 xf∗ is Pareto density with scale parameterθ and shape parameter )(1 smrkk +++= ∗∗ α and the 

weights 
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The rth moment about zero of the ith order statistic from the log-gamma-Pareto distribution is given by 
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6. Maximum-likelihood Estimation 

In this section, we consider the estimation of the unknown parameters by method of maximum likelihood. For

nxxx ...,,, 21 a random sample of size n from the ),,,( θβα kLGP distribution, the log-likelihood function 

based on the given random sample is 
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The first partial derivatives of the log-likelihood function with respect to the parameters k,,βα and θ are, 

respectively, 

∑
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Equating the system of equations (15) with zero, we obtain 

∑
= 






































−−+−=

n

i

k

ix
nn

1

ˆ
ˆ

1loglog)ˆ(ˆlog0 θαψβ , 

∑
= 






















−+=

n

i

k

ix
n

1

ˆ
ˆ

1logˆ
ˆ

0 θ
β
α

, 

,
))/ˆ(1log())/ˆ(1(

)/ˆlog()/ˆ()1ˆ(

))/ˆ(1(
)/ˆlog()/ˆ()1ˆ(logˆlogˆ0

1
ˆˆ

ˆ

1
ˆ

ˆ

1

∑

∑∑

=

==

−−
−+

−
−−−+=

n

i
k

i
k

i

i
k

i

n

i
k

i

i
k

i
n

i
i

xx
xx

x
xxxn

k
n

θθ
θθα

θ
θθβθ

 

and 

)16(.
))/ˆ(1log())/ˆ(1(ˆ

)/ˆ(ˆ)1ˆ(

))/ˆ(1(ˆ
)/ˆ(ˆ)1ˆ(ˆ

ˆ
0

1
ˆˆ

ˆ

1
ˆ

ˆ

∑

∑

=

=

−−
−−

−
−−=

n

i
k

i
k

i

k
i

n

i
k

i

k
i

xx
xk

x
xkkn

θθθ
θα

θθ
θβ

θ
 

369 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 357-374 

 

The system of equations (16) can be solved numerically using statistical packages and the MLEs k̂,ˆ,ˆ βα  and 

θ̂  can be obtained. Under suitable regularity conditions, the distribution of the maximum-likelihood estimator 

)ˆ,ˆ,ˆ,ˆ(ˆ θβαφ k= of the vector parameter ),,,( θβαφ k= is given by 
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7. Application 

The LGP distribution is compared to the gamma distribution, the Pareto distribution, the gamma-Pareto (GP) 

distribution introduced by the authors in [3]. Each distribution was fitted to the dataset using computer facilities 

(Mathcad 2001). We calculated the MLEs for each model parameters and their standard errors, Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC) and the logarithm of the maximized 

likelihood for each fit. We calculated the Kolomogrov-Smirnov test statistic and its p-value to decide whether 

the LGP distribution or its special cases provided a superior fit. 

The data used in this application is from Colorado Climate Center, Colorado State University given inthe 

authors in [6]. The results of these data are presented in table 1. From these results, we can observe that the LGP 

distribution provides a very good fit to these data followed by the gamma, GP and Pareto distributions. 

Table (1). Estimates and relative goodness-of-fit measures for the one rain gauge data. 

Distributions Estimates LL AIC BIC K-S p-value 

Gamma ),( βα  5.28 

(0.219) 

0.03 

(0.0013) 

- - -568.97 1142 1147 0.062 0.925 

Pareto ),( θk  0.999 

(2.924) 

58.56 

(171.55) 

- - -607.17 1218 1224 0.29 0 

GP ),,( θα k  0.347 

(0.122) 

3.14 

(1.08) 

59.93 

(0.23) 

- -598.16 1202 1210 0.241 0 

LGP ),,,( θβα k  17.94 

(55.13) 

50.52 

(104.83) 

0.459 

(1.058) 

10.79 

(29.221) 

-565.11 1138 1149 0.041 0.996 
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where the values in the parentheses is the standard errors of the MLE's of the parameters. 

The second partial derivatives (17) are then evaluated at the resulted estimates of the LGP distribution's 

parameters in order to be used in finding the following variance-covariance matrix for the parameters k,,βα  

and θ :  



















−−
−−
−−

−−

=−

882.853014.153057761.547
014.15119.182.53508.57

305782.53109901947
761.547508.5719473039

)(1 φI  

Also, we will generate 1000 samples of sizes 15, 20…, 30 from LGP distribution for different values of the 

parameters k,,βα  andθ  using proposed random number generator, and then the maximum likelihood 

estimates for each sample will be obtained along with the mean, biases, mean square error, standard error, 

skewness and kurtosis of those estimates for different sample sizes. 

In table 2, we list the mean, biases, mean square error, standard error, skewness and kurtosis for the MLEs of the 

parameters k,,βα  and θ for 1000 random samples of sizes 15, 20…, 30. The table shows that the mean 

square error and the bias for the parameters k,,βα  and θ  decrease as the sample sizes increase. We used a 

statistical package called Mathcad 2001. 

Table (2).Means, Biases, Mean Square Errors, Standard Errors, Skewness and Kurtosis for the estimates of LGP 

distribution's parameters for different values of the parameters. 

223.1=α 512.0=β 00821.0=k 000215.0=θ  

n  Mean Bias MSE Standard error Skewness Kurtosis 

15 

α  1.4889 -0.2659 0.0884 0.0089 -1.4995 1.9391 

β  4.2216 -3.7096 15.6062 0.0905 -3.0194 9.3352 

k  0.1102 -0.102 0.0351 0.0105 3.1466 9.926 

θ  0.01102 -0.0109 0.0009 0.0019 3.1617 9.9975 

 

 

 

 

20 

α  1.5835 -0.3605 0.1307 0.0014 -0.0943 -1.7644 

β  4.6253 -4.1133 16.9222 0.0027 1.6026 1.0845 

k  0.0549 -0.0467 0.00022 0 1.7797 1.4123 

θ  0.0025 -0.0022 0 0 1.6357 1.0726 
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223.1=α 512.0=β 00821.0=k 000215.0=θ  

n  Mean Bias MSE Standard error Skewness Kurtosis 

 

 

 

25 

α  1.5201 -0.2971 0.1214 0.0073 -3.0583 9.5116 

β  4.5303 -4.0183 16.1966 0.009 -3.1489 9.9384 

k  0.0586 -0.0504 0.0027 0.0005 3.1623 10 

θ  0.0024 -0.0022 0 0 -3.1353 9.8751 

 

 

 

30 

α  1.5191 -0.2961 0.0995 0.0036 -2.2602 5.5044 

β  4.8427 -4.3307 19.4123 0.027 3.1373 9.8895 

k  0.0574 -0.0492 0.0024 0.0002 1.6392 1.2098 

θ  0.0024 -0.0021 0 0 -3.1141 9.7624 

 

8. Conclusion 

We introduced and studied the log-gamma-Pareto (LGP) distribution and developed, from previous partial 

proofs, two general results on the log-gamma-generated family (2), the distribution of the ithorder statistic and 

maximum entropy characterization. The general properties of the new distribution can be obtained by expressing 

its density function as a linear combination of Pareto density functions. It is very likely that the pdf of any 

member of the log-gamma-generated family of distributions (2) and (3) can be expressed as a linear 

combination of the parent pdf which will be generalized using these families. 

The real dataset example suggests the LGP distribution as an improved alternative to the Pareto distribution as a 

distribution of incomes and in reliability. 
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