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Abstract 

Optical mapping provides two-dimensional recordings of cardiac electric activity that vary in time.  If it is 

employed to study ischemia, filters should be designed to preserve the maximum slope of the action potential as 

much as possible.   We evaluate temporal filters (low-pass and temporal averaging with different radii) and find 

that the.  Spatial filters (spatial averaging with different radii and constant or Gaussian weights) generally gave 

good results both for maximum slope preservation and signal-to-noise ratio (SNR) increase.  Spatial averaging 

with radius 2, in particular achieved a SNR of 65 for synthetic data and 40 for real data while reducing the 

maximum slope by less than 20%; it also results in high-quality action potential waveform, activation map, and 

action potential duration map.  We conclude that spatial averaging with radius 2 is an appropriate filter for 

optical mapping with our system. 

Keywords: Type your keywords here, separated by semicolons. 

1. Introduction 

Cardiac ischemia is a restriction of blood supply to the heart, which occurs when a coronary vessel is partially or 

completely blocked, e.g. by atherosclerosis or a thrombus.   
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While restoration of blood supply is usually the goal of ischemia treatment, the reperfusion of ischemic tissue 

can cause additional damage known as reperfusion injury [1].   

Because of the high prevalence and severity of ischemia, animal models have been developed to study the 

mechanisms of ischemia and develop reperfusion approaches that avoid or minimize reperfusion injury [2-4]. 

A convenient technique to studied ischemia in isolated animal hearts is optical mapping, which uses voltage-

sensitive fluorescent probes to convert electrical activity into optical signals that can be recorded with fast, 

sensitive cameras [5-7].  Optical mapping signals are, however, noisy and should be filtered to obtain acceptable 

signal-to-noise ratios (SNRs).  At the same time, filters should be chosen in a way that minimizes alterations to 

the underlying signal; in the case of ischemia it is especially important to preserve the maximum slope of the 

action potential upstroke of the underlying signal, because it is a measure of the degree of ischemia. 

Here, we study the effect of low-pass filtering, temporal averaging, and spatial averaging on optical mapping 

movies, both in synthetic data and in data recorded from optical mapping experiments.  Synthetic data consist of 

simulated cardiac activity with added noise; for these data, it is easily possible to quantify the distortion because 

the undistorted signal is available.  Our goal is to determine a filtering scheme that reaches a high SNR; we 

consider 30-35 an acceptable value.  At the same time, we want to minimize the reduction in maximum slope 

and do not accept a reduction by more than 25%.   

2. Materials and Methods 

2.1. Experimental recording of action potentials 

All experiment protocols conformed to National Institutes of Health guidelines and followed our approved 

animal protocol. The hearts of adult New Zealand rabbits (n=3) were surgically removed, the aorta immediately 

cannulated, and the heart flushed with and immersed in cold cardioplegic solution (in mM: glucose 280, KCl 

13.4, NaHCO312.6, mannitol 34).  Hearts were placed in an optical mapping setup and retrogradely perfused 

with Tyrode solution (in mM: NaCl 130, KCl 4.0, CaCl2 1.8, MgCl2 1.0, NaHCO3 24, NaH2PO4 1.2, glucose 

5.6) and bubbled with 95%O2/5%CO2 at a pressure of 60-80 mmHg, with pH kept between 7.35 and 7.45 and 

temperature 37.5±0.5°C. 

Optical mapping was performed after injecting a 5 ml bolus of the voltage-sensitive fluorescent probe di-4-

ANEPPS (10μM).  The electro-mechanical uncoupler blebbistatin (10μmol/L) was added to the Tyrode solution 

to reduce motion artifacts. As shown in Fig. 1, the heart was illuminated with a 532 nm, 1000 mW, diode-

pumped solid-stated laser (Shanghai Dream Lasers), which was diffused and directed towards the heart via a 

dichroic mirror  Fluorescence was recorded through a 715 nm LP filter at 1000 frames/s with a CCD camera 

(Little Joe, SciMeasure).   

2.2 Synthetic data and filtering 

Synthetic data where generated by simulating electrical activity in a sheet of cardiac tissue with the Luo-Rudy 
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model [8].  Simulations were performed on a 300 x 300 pixel medium with a time step of 10 μs and a space step 

of 100 μm.   The medium was stimulated in the center, and the synthetic data were taken from the point of 

stimulation with a sampling frequency of 1000 Hz.  White noise was added using Matlab's random number 

generator. Temporal and spatial averaging filters of all radii used uniform weights that were normalized (i.e. 

their sum was 1) in all cases.  The Gaussian filter we used had standard deviation σ=1.475 and was represented 

by the following 7x7 matrix: 

𝐺𝐺7 = 1
264

⎝

⎜
⎜
⎜
⎛

0 1 2 3 2 1 0
1 3 6 8 6 3 1
2 6 13 16 13 6 2
3 8 16 20 16 8 3
2 6 13 16 13 6 2
1 3 6 8 6 3 1
0 1 2 3 2 1 0⎠

⎟
⎟
⎟
⎞

. 

 

 

Figure 1. Schematic diagram of the optical setup.  Arrows indicate the direction of light propagation. 

2.3 Determination of SNR and maximum slope 

The signal amplitude was determined by subtracting the minimum of the signal (over one action potential) from 

the maximum of the signal, the noise level was defined as the amplitude of the signal during the resting phase 

(after the action potential, when the noise-free signal would be constant).  To determine the SNR, we divide the 

signal amplitude by the noise level. 

The maximum slope is computed by finding the maximum of (V(t)-V(Δt))/Δt of the signal.  We chose  Δt=7 ms 

in all our computations. 

2.4 Noise analysis 

The camera is a main source of noise in the optical mapping, and the noise it produces can be conveniently 

characterized.  We computed the temporal and spatial autocorrelation functions of the camera noise. 
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At(Δt)=1
𝑁𝑁
∑ 𝑥𝑥1[𝑡𝑡]𝑥𝑥1[𝑡𝑡 + 𝑘𝑘]𝑁𝑁−1
𝑡𝑡=0  

As(Δx)=1
𝑁𝑁
∑ 𝑥𝑥1[𝑛𝑛]𝑥𝑥1[𝑛𝑛 + 𝑘𝑘]𝑁𝑁−1
𝑛𝑛=0  

where At(Δt) and As(Δx) is the autocorrelation of the camera noise in time and in space, respectively. N is the 

number of samples, x1 is the camera noise, and k is the shift of the signal.   To normalize the autocorrelation, we 

divided by the variance. 

 

Figure 2. Autocorrelation of the camera noise in time. 

 

 

Figure 3. Autocorrelation of the camera noise in space. 

 

3. Results 

3.1 Autocorrelation of camera noise 

Figures 2 and 3 show the autocorrelation of the camera signal in the absence of a stained heart, both in time and 

in space.   The autocorrelation drops to zero immediately both in time and space: The same pixel in subsequent 
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frames is uncorrelated, and so are adjacent pixels in the same frame.  This justifies the use of white noise in the 

generation of our synthetic signals. 

3.2 Low-pass filters 

Figure 4 shows the power spectrum density of the signal (stimulated heart is present) and noise (stimulated heart 

is absent).   

 

Figure 4. Power spectrum density of raw image and camera noise. 

It is apparent that the signal does not contain significant components above ~40 Hz so that low-pass filtering is a 

promising strategy.  Figure 5 shows how maximum slope and SNR are affected by low-pass filters of different 

cutoff frequencies (generated by Matlab).  

 

Figure 5. Slope and SNR vs cut-off frequency for low-passed filtered synthetic data 

The maximum slope is only mildly affected by the low-pass filtering:  For a cutoff at 120 Hz the maximum 

slope is 18.6 mV/ms, for 20 Hz, the most aggressive cutoff tested, it is still 16 mV/ms.  The improvement in 

SNR is likewise modest:  For a cutoff at 120 Hz, we have SNR=14.5, while a cutoff of 20 Hz yields SNR=18.  

314 
 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 15, No  2, pp 310-320  

In conclusion, low-pass filters designed to leave the main components of the signal intact do not sufficiently 

improve the SNR. 

3.3. Temporal averaging filters 

Figure 6 shows how temporal averaging affects maximum slope and SNR for different filter radii. A filter of 

radius r=7increases the SNR to 26, which is not sufficient for us, while the maximum slope has already dropped 

to ~ 8 mV/ms, which is less than half of the unfiltered maximum slope (22.2 mV/ms), an unacceptable 

reduction.   

 

Figure 6. Slope and SNR vs. filter radius for time-averaged synthetic data. 

It is intuitive that temporal averaging would strongly affect the maximum slope of a signal, because it is 

designed to even out differences in time; at the same time, the SNR gain is modest because the averaging occurs 

in one dimension (time), so that the number of pixels over which averaging occurs grows linearly with the filter 

radius, as opposed to spatial filtering where the number grows quadratically (in two-dimensional media). 

3.4. Spatial averaging filters 

Figure 7shows our results for spatial filtering.  The maximum slope of the unfiltered signal was 20.5 mV/ms, it 

was reduced to approximately 18 mV/ms for a r=2 and to 13 mV/ms for a r=7.   

At the same time, the SNR increased approximately linearly with the filter radius from its original value of 12, 

measuring 65 at r=2 and 330 at r=7.  This excellent performance has two reasons:  First, the number of pixels 

over which averaging is performing grows quadratically with radius so that a rapid increase of SNR with radius 

can be expected.  At the same time, the maximum slope should be much less affected by spatial than by 

temporal filtering.  If, for example, all pixels where excited in synchrony, spatial filtering would not reduce the 

maximum slope at all.  The mild reduction that we observe is most likely a consequence of the fact that our test 

signal was a propagating wave, so that there is a small shift in the activation times of neighboring pixels. 
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Figure 7. Slope and SNR vs. filter radius for spatially averaged synthetic data. 

Beyond spatial averaging filters, we also tested 7x7 (r=3) Gaussian convolution kernel spatial filters (standard 

deviation σ=1.475), with likewise good results.  Table 1 shows a comparison of the r=2 Gaussian filter with r=2 

and r=3 spatial averaging filters.  We see that the r=2 Gaussian filter and the r=2 averaging filter give very 

similar results, while the r=3 averaging filter substantially reduces the slope for just a small increase in SNR.  

We favor the r=2 averaging filter because of its simplicity. 

Table 1: Comparison of spatial filters 

 

 

 

3.5. Testing on real data: Maximum slope and SNR 

Figure 8shows the effect of spatial averaging (r=2) on maximum slope and SNR for real optical mapping data.  

 

Figure 8. Slope and SNR vs. filter radius for spatially averaged  real data. 

 SNR Slope 

Radius=2  constant 41.96 145 

Radius=3 Gaussian 41.82 160 

Radius=3 constant 45.99 117.2 
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As for the synthetic data, the maximum slope is not affected very much, it decreases from its initial value of 7.7 

mV/ms to 6.3 mV/ms at r=2 and 5.9 mV/ms for r=6.  The slopes in real data are generally much lower than in 

synthetic data; this is a known limitation of optical mapping that stems from photon diffusion9.  The SNR grows 

rapidly, from ~18 for the raw data to ~40 for r=2 and ~50 for r=6.  The SNR does not grow as consistently as for 

the synthetic data show in Fig. 7; this suggests that the optical mapping signal contains other noise besides the 

white noise added to the synthetic signal.  At any rate, the results for SNR with spatial filters of radius greater or 

equal to 2 are acceptable to us. 

3.6. Testing on real data: action potentials, activation maps, and amplitude maps 

Figure 9 shows the effect of two waysof spatial averaging on real action potentials.  The original signal is show 

in Panel a.  Panel b shows the same signal spatially averaged with r=2; Panel with Gaussian filtering (r=3).  

Both filters exhibit a substantially reduced noise level with no discernible change in signal slope.  There is no 

apparent difference in the quality of the two filters. 

 

Figure 9. (a) Representative raw optical action potential from a single pixel location; (b)the signal following r=2 

spatial filtering; (c) the signal following r=3 Gaussian convolution spatial filtering. 

Another important mode of evaluation of cardiac activity are activation maps.  In activation map illustrates the 

order in which different points of the cardiac surface are electrically activated (i.e. the local voltage increases 

from resting level to excited level).  Figure 10 shows activation maps computed for on original movie of cardiac 

activation (Panel a) and activation maps for the same data after spatial averaging with radius 2.  In both panels it 

can be seen that the earliest activation (darkest shade of gray) occurs slightly above the center of the field of 

view.  The unfiltered image is, however, noisy and speckled, and especially at the periphery of the heart, there 

are missing pixels because high noise levels and low illumination make a determination of activation time 
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imprecise.  In the filtered image, the activation map extends smoothly to the edge of the heart and gives a clear 

illustration of the activation sequence. 

 

Figure 10. Activation Map: (a) from unfiltered signal; (b) from spatially averaged signal (r=2). 

Figure 11 shows the action potential duration (APD) map for unfiltered and filtered signals.  Similar to the 

activation map, the APD map of the unfiltered signal (Panel A) is speckled and it is not possible to detect small 

regional variations in APD.  The filtered APD map (APD) is smooth and shows clearly that the APD is reduced 

in the vicinity of the stimulation site.  The filtered image can also be “stretched”, i.e. its grayscale values can be 

linearly rescaled to cover the whole available range from black to white (this is not useful for the unfiltered 

image because due to the noise, the available grayscale range is already being used).  The stretched image (Panel 

c) achieves substantially better resolution and uncovers regional variation in the APD. 

4. Discussion 

In this paper, we tested a variety of filters to improve the SNR of optical mapping signals.  Since we are 

planning to use optical mapping for the study of ischemia, and this requires careful measurement of the 

maximum slope of the action potential, we were interested in filters that minimize the change in action potential 

slope.   

Our results show that temporal filters, low-pass filtering as well as temporal averaging, perform poorly for our 

purposes.  In low-pass filtering, we cannot obtain a SNR above 18 without filtering out major signal 

components, for temporal filtering, only aggressive radii of 5 or more push the SNR above 20, while the 

maximum slope is reduce to a fraction of its original value. 

Spatial filters, on the other hand, can meet all our requirements.  Spatial averaging with radius 2 in particular 

achieves an increase from ~12 to ~ 50 for synthetic data and ~18 to ~40 for real optical mapping data.  At the 

same time, the maximum slope is largely preserved; it drops by less than 20% in either case.  Gaussian spatial 

filters achieved results that were equivalent to spatial averaging. 
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Figure 11. APD map: (a) from unfiltered signal; (b) from spatially averaged signal (r=2); (c) from spatially 

averaged signal with rescaled color bar. 

In more detailed tests of spatial averaging with radius 2, we found that it the action potential wave form, 

activation map, and APD map all have excellent quality for the real optical mapping data we used as input. 

The main limitation of this paper is that we restricted ourselves to relatively simple kinds of filters (low-pass, 

averaging, and Gaussian filters); more sophisticated filters based on spatial Fourier transforms may be able to 

get even better results.  Also, our synthetic data generation did not incorporate the photon dynamics inside the 

tissue; more advanced synthetics data generation that does include them would be able to get a closer match 

between synthetic and real data. 

5. Conclusions 

For optical mapping experiments of ischemia, which require both high SNR and preservation of the action 

potential maximum slope, spatial filters perform well while temporal filters are inadequate.  Spatial averaging 

with radius 2, in particular resulted in high-quality signals, activation maps, and APD maps. 
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