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Abstract 

Ni catalyst had good catalytic activity for hydrogen generation from glycerin. The results showed that, 15 % 

Ni and 2 % Li loading was the best loading. The best impregnation sequence was dipping Li first and then Ni. 

15 % Ni, 2 % Li-Al2O3 catalyst was suitable for hydrogen generation. The suitable operation conditions were 

temperature 600℃, glycerol liquid space velocity of 0.24h-1 and water/alcohols ratio: 16. In these conditions, the 

hydrogen generation rate was up to 6.2. Ni was the active component and Li changed the carrier’s pore structure 

by increasing catalysts resistance of carbon deposition. 
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1. Introduction  

Day to day huge consumption and limitation of natural resource, it has become essential to find an alternative 

way which can be sustainable and renewable energy source [1]. Biodiesel has been attracted and now 

commercially produced due to its environmental benefits and national energy security [2]. As the biofuel 

production significantly increasing by the transesterification of vegetables oil where almost 10 % (w/w) glycerin 

produced as a byproduct.  
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Several applications of glycerin negotiable in different areas such as in food, cosmetics and pharmaceutical and 

other industries, although it is costly to refine crude glycerin for small and medium sized plants [3, 4]. Hydrogen 

generation can be the most acceptable way from byproduct glycerin. Hydrogen is the easiest and abundant 

element for the fuel industry[5]. Now, it has been essential to find a renewable and sustainable raw material 

source for hydrogen generation where approximately 95 % H2 produced from fossil fuel-based feed stocks 

which are nonrenewable and also create environmental problems [6]. Several processes such as aqueous-phase 

reforming (APR) [7, 8], gasification[9], auto thermal reforming [10], supercritical water reforming [11] and 

steam reforming [12] processes use to produce hydrogen. 

 

In this paper, steam reforming process studied where certain catalysts contributed to yield the hydrogen 

generation and carbon deposition. γ-Al2O3 as a carrier used because of cheaper, high availability and low 

reactivity characteristics although observed some disadvantages for example low reactivity and surface area 

affecting the metallic dispersion and the metal-support interaction [13]. Catalysts such as Pt, Ni, Ru, Pd and Ir 

mentioned good activity and selectivity for hydrogen generation for aqueous-phase reforming process [7, 8, 14, 

15]. Even combination with Sn to Ni catalyst accelerated the selectivity for hydrogen production and decreased 

the selectivity toward the alkane formation which reported by Dumesic Research [16-18]. Here in this paper, Li 

was effectively increased the resistance for carbon deposition, and the best capacity was 2 %. It was observed Li 

should be dipped after dipping Ni, and 15 % Ni 2 % Li-Al2O3 catalyst had best stability, catalytic activity and 

resistance of carbon. 

2.  Experimental methods and procedures 

2.1 Catalyst preparation 

The catalyst was prepared by impregnation method. A certain amount of alumina put into muffle furnace and 

calcined for 5 hours while 600 ℃ temperature was used to obtain γ-Al2O3 as a carrier.  Nickel nitrate was added 

with a certain amount of deionized water to make Ni dipping solution. Lithium Nitrate also was added with a 

certain amount of deionized water to make Li dipping solution. γ-Al2O3 carrier was weighed and impregnated 

into the impregnating solution for 12 hours at 120 ℃ in oven and dried to 7 hours at 600 ℃ then calcined was 

used a muffle furnace for 6 hours which showed in figure 1(a) . 

 

figure 1 (a) . Catalyst flow chart 
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Before using catalyst should be reduced according to hydrogen reduction method by following way: catalyst 

kept into the tubular reactor with 700 ℃ temperature. N2 was purged before heating piping. Temperature 

increasing led to high purity hydrogen. The reduction of catalyst was done at 700 ℃ for 4 hours.  

2.2 Characterization catalyst 

Surface area is the total surface area per unit mass of material; the total surface area per gram of substance, unit: 

m2/g. Catalyst surface area was characterized by SSA-4300-type surface area analyzer. The instrument principle 

was based on the analysis of multi-layer adsorption theory, by BET equation. 

2.3 Steam reforming process 

Glycerol and water were used for the superheated steam gasification which was mixed by a static mixer. Then 

imported into the tubular reactor for steam reforming. After the reaction it went through the condenser divided 

into two parts: liquid and gas. Condensate and gas products were collected from liquid phase and analyzed by 

gas chromatography. Flow chart of the reaction   showed in Fig 1(b). 

 

 

 

 

 

 

 

 

 

 

1--water tank; 2--glycerin storage tank; 3--water vapor chamber; 

4--glycerol vaporization chamber; 5--static mixer; 6--reactor; 7--condenser; 8--cold trap 

 

Figure 1(b): Glycerin steam reforming process 
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Reaction products were divided into gas and liquid. Gas products contained N2, H2, CH4, CO, CO2. SP-2100 gas 

chromatograph was used for testing compositions. Liquid was collected with a cold trap, and then GC112A gas 

chromatograph was used for the condensate unreacted glycerol analysis. 

 

2.4. Analysis methods (liquid, gas) 

2.4.1. Condensate analysis 

GC112A gas chromatograph was used for analyzing glycerol condensate. Area normalization of quantitative 

methods was used by using FID detector to determine the composition and content of the condensate in order to 

calculate the unreacted amount of glycerol. 

 

Preparations of sample solution: measured 2ml condensate 50ml in the jar, added 20ml ethanol, shook well. 

GC112A gas chromatograph analysis test conditions shown in Table 1. 

 

Table 1. GC112A analysis of test conditions 

 

chromatography 

name 

stationary phase oven 

temperature (℃) 

 detector 

temperature (℃) 

injector 

temperature (℃) 

GC112A SE-54 220 300 300 

N2 carrier gas: 0.04MPa, and the volume: 0.02µL 

 

2.4.1. Gas product analysis 

GC112A gas chromatograph was used to analyze the glycerol hydrogen gas products by Dual-valve two-pillar 

system. Correct normalization of quantitative methods were used by using TCD detector to determine the gas 

composition and content of the product. SP-2100 gas chromatograph was analyzed the test conditions which 

showed in Table 2. 

 

Table 2. SP-2100 analysis test conditions 

 

chromatography 

name 

stationary phase oven  

 (℃) 

detector 

temperature (℃) 

injector 

temperature(℃) 

Sample 

Injection 

 

SP-2100 

GDX-502  

60 

 

100 

 

60 

Six-way 

injection 

valve 

5A molecular 

sieve 

Ar carrier gas: 0.04MPa，Hot-wire temperature: 150℃ 

 

Correction factor was calculated by the standard gas chromatographic analysis. Laboratory standard gas content 

showed in Table 3; the correction factor and retention time statistics showed in Table 4. 
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Table 3. Content of the standard gas 

 

Name CO CO2 H2 CH4 N2 

Content (%) 3 16.11 49.97 4.99 25.93 

 

Table 4. Correction factor and retention time tables 

 

3. Experiments 

3.1. Single-factor experiment 

 

The life of the catalyst were investigated to ensure that the catalyst had sufficient stability to 

support experiments for a longer period of time. For the active component of Ni as a catalyst, the 

experiment on the Ni loadings were studied. In order to increase the resistance against coke 

formation the loadings of Li also studied. 

 

N2 was used as the entrained air to keep better flow rate in the pipeline. Temperature also an important factor in 

the reaction. Indeed, temperature and molar ratio was studied as well. 

 

3.2. Orthogonal experimental Design 

Single factor experiment identified 15%Ni2%Li-Al2O3 catalyst and the influence of various factors had studied. 

In order to find the optimum conditions for 15%Ni2%Li-Al2O3 catalyst four factors and three-level orthogonal 

test were studied which showed in Table 5 and 6, respectively. 

 

Table 5. Factors level table 

 
Factors level temperature Water /alcohol liquid space velocity of glycerol blank 

Level 1 600℃ 16 0.36 h-1 e 

Level 2 700℃ 8 0.24 h-1 e 

Level 3 500℃ 24 0.12 h-1 e 

 

Name H2 CO2 N2 CH4 CO 

Correction factor 0.0000682 0.001575 0.00065 0.000296 0.0008968 

Retention time 20771 40465 60460 80772 14.456 
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Table 6. Orthogonal design table 

 

Factors level Reaction temperature / ℃ Water/alcohol Liquid space velocity / h-1 

Level 1 600 16 0.36 

Level 2 600 8 0.24 

Level 3 600 24 0.12 

Level 4 700 16 0.24 

Level 5 700 8 0.12 

Level 6 700 24 0.36 

Level 7 500 16 0.12 

Level 8 500 8 0.36 

Level 9 500 24 0.24 

 

4.  Results and discussion  

4.1. Catalyst behavior and factors affecting 

4.1.1. Catalyst life and the impact of Ni / Li loadings  

According to Fig 2 (a), the hydrogen production rate is very stable and that represents catalyst deactivation after 

the reaction of hydrogen within six hours. Hydrogen production rate increases with the increasing of Ni loading 

but the hydrogen production rate decreases significantly with the excessive Ni loadings according to Fig 2 (b). 

The optimal Ni loading is 15 % which obtain by following conditions: glycerol flow rate 0.04ml/min, water 

flow rate 0.80ml/min, entrained gas flow rate 10ml/min, catalyst bed temperature 600 ℃, Ni-Al2O3 (Ni loading 

of 0.6 %) and the catalytic activity versus time. 

According to fig 2 (c), the hydrogen yield goes higher with increasing of Li loading at first and then decreases 

Because Li can effectively reduce the catalyst activity and increases the resistance for carbon deposition. 

The best Li loading determine is 2 %. 

 

 
                                          (a)                                                                                    (b)                                                                                
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                                                                                     (c)      

Fig. 2. (a) Catalyst life curve and (b) Hydrogen yield with Ni loadings of the curve (c) Hydrogen yields with 

Li loadings of the curve 

 

4.1.5. The function of catalyst anti-carbon deposition 

According to Fig 3(a) and 3(b), can be described the catalyst loading of Li effectively increases the resistance to 

carbon deposition. It can be mentioned from Fig 3(a), the hydrogen yield curve trends in CO content of the 

curve is consistent and hydrogen production rate appeared higher than the theoretical value of 7. The 

fluctuations of hydrogen production rate is large, but the average hydrogen production rate is still relatively 

higher.  This is because of the hydrogen reaction process. The catalyst continues to deposit carbon but carbon 

accumulation on the catalyst to a certain extent, the reaction will occur as follows: C + H2O → CO + H2. And it 

be seen from Fig 3(b),the hydrogen production rate is relatively stable, and the average hydrogen yield is not 

less than 3-5 average yield of hydrogen.Therefore, the Li loadings available in 2 % which effectively anti-

carbon deposition. 

 

                                              (a)                                                                                        (b) 

Fig 3. (a) Ni15%-Al2O3 catalyst’s hydrogen yield and CO content curve (b) Ni15%Li2%-Al2O3 

catalyst’s hydrogen yield and CO 
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4.2. Process conditions and the effect of hydrogen generation 

4.2.1. The influence of temperature, water alcohol ratio, liquid space velocity & entrained gas flow 

According to same conditions which mentioned in 4.1.1, the hydrogen yield and temperature curves shown in 

Fig 4(a) where firstly, the production of hydrogen increases. If the temperature exceeds 600 ℃, the hydrogen 

production rate declines. Same conditions followed with Ni-Al2O3 (Ni loading of 0.6 %) catalyst which adjust 

the water flow so that water-alcohol ratio range is 8 to 24. Hydrogen yield and water-alcohol ratio curves shown 

in Fig 4(b) where the hydrogen yield increases with the water/ alcohol ratio and then decreases and point 16 is 

the best. 

 

In Fig 4(c) shows, hydrogen yield decreases with the increasing liquid space velocity. Liquid space velocity of 

a reaction represent processing capacity, so the liquid space velocity is bigger than the processing capacity is 

better. When the liquid space velocity is 0.24 and 0.36, the hydrogen yield is still relatively high. But the liquid 

space velocity higher than 0.36, the hydrogen yield decrease significantly which indicating that the catalyst has 

limited handling capacity. So the best solution for the catalyst Liquid space velocity is 0.24h-1. Again, in 

Figure 4(d) shows, the hydrogen yield increases in order to increase the entrained gas flow rate first increases 

and then decreases. The optimal flow of entrained gas is 10 ml /min. If the entrained gas flow too much, the 

residence time will be too short so the reaction will be incomplete. 

 

 

 

 

                                               (a)                                                                                    

(b)                              

 

 

 

 

                                              (c)                                                                                        (d) 

Fig 4. (a) Hydrogen yield and temperature curves (b) Hydrogen yield and water-alcohol ratio curve(c) 

Glycerol liquid space velocity on the impact of hydrogen yield (d)Hydrogen yield curve for entrained gas flow 
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5. Conclusion 

Glycerin studied as raw material for hydrogen generation in steam reforming technology with the precious 

metals and non-precious metals catalyst system. The research results showed that the experiment device design 

was reasonable, met glycerin steam reforming hydrogen generation requirements. Single factor and orthogonal 

experiments result showed that with γ-Al2O3 carrier and Ni had good catalytic activity for glycerin steam 

reforming of hydrogen reaction. Among them the best capacity was Ni 15 %. And in the catalyst system, Li 

effectively increased the resistance for carbon deposition, and the best capacity was 2 %. Experiments also 

found that Li should be dipped after dipping Ni and 15 %Ni2 % Li-Al2O3 catalyst had good stability, catalytic 

activity and resistance of carbon. The optimum process conditions for glycerin water vapor catalytic reforming 

reaction were: temperature 600℃, liquid space velocity 0.24h-1, a molar ratio of water to alcohol 16. In the 

optimum process conditions, the hydrogen generation rate was 6.2; glycerol conversion rate was 94.16%, and 

the selectivity of hydrogen was 94.45%. 

 

 

References 

[1] A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'Hare, D.M. Kammen, Ethanol Can Contribute to 

Energy and Environmental Goals, Science, 311 (2006) 506-508. 

[2] J.C. Thompson, B.B. He, Characterization of crude glycerol from biodiesel production from multiple 

feedstocks, Applied Engineering in Agriculture, 22 (2006) 261-265. 

[3] S. Adhikari, S.D. Fernando, A. Haryanto, Hydrogen production from glycerin by steam reforming over 

nickel catalysts, Renewable Energy, 33 (2008) 1097-1100. 

[4] N. Luo, X. Fu, F. Cao, T. Xiao, P.P. Edwards, Glycerol aqueous phase reforming for hydrogen generation 

over Pt catalyst - Effect of catalyst composition and reaction conditions, Fuel, 87 (2008) 3483-3489. 

[5] S. Dunn, Hydrogen futures: toward a sustainable energy system, International Journal of Hydrogen Energy, 

27 (2002) 235-264. 

[6] B.C.R. Ewan, R.W.K. Allen, A figure of merit assessment of the routes to hydrogen, International Journal of 

Hydrogen Energy, 30 (2005) 809-819. 

[7] R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of biomass-derived 

hydrocarbons in liquid water, Nature, 418 (2002) 964-967. 

[8] R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, A review of catalytic issues and 

process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated 

hydrocarbons over supported metal catalysts, Applied Catalysis B-Environmental, 56 (2005) 171-186. 

168 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2014) Volume 15, No  2, pp 160-169 

[9] R. Hashaikeh, I.S. Butler, J.A. Kozinski, Selective promotion of catalytic reactions during biomass 

gasification to hydrogen, Energy & Fuels, 20 (2006) 2743-2747. 

[10] P.J. Dauenhauer, J.R. Salge, L.D. Schmidt, Renewable hydrogen by autothermal steam reforming of 

volatile carbohydrates, Journal of Catalysis, 244 (2006) 238-247. 

[11] A.J. Byrd, K.K. Pant, R.B. Gupta, Hydrogen production from glycerol by reforming in supercritical water 

over Ru/Al2O3 catalyst, Fuel, 87 (2008) 2956-2960. 

[12] G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Renewable hydrogen from ethanol by autothermal 

reforming, Science, 303 (2004) 993-997. 

[13] I.N. Buffoni, F. Pompeo, G.F. Santori, N.N. Nichio, Nickel catalysts applied in steam reforming of glycerol 

for hydrogen production, Catalysis Communications, 10 (2009) 1656-1660. 

[14] J.W. Shabaker, R.R. Davda, G.W. Huber, R.D. Cortright, J.A. Dumesic, Aqueous-phase reforming of 

methanol and ethylene glycol over alumina-supported platinum catalysts, Journal of Catalysis, 215 (2003) 344-

352. 

[15] J.W. Shabaker, G.W. Huber, R.R. Davda, R.D. Cortright, J.A. Dumesic, Aqueous-phase reforming of 

ethylene glycol over supported platinum catalysts, Catalysis Letters, 88 (2003) 1-8. 

[16] G.W. Huber, J.W. Shabaker, J.A. Dumesic, Raney Ni-Sn catalyst for H-2 production from biomass-derived 

hydrocarbons, Science, 300 (2003) 2075-2077. 

[17] G.W. Huber, R.D. Cortright, J.A. Dumesic, Renewable alkanes by aqueous-phase reforming of biomass-

derived oxygenates, Angewandte Chemie-International Edition, 43 (2004) 1549-1551. 

[18] J.W. Shabaker, G.W. Huber, J.A. Dumesic, Aqueous-phase reforming of oxygenated hydrocarbons over 

Sn-modified Ni catalysts, Journal of Catalysis, 222 (2004) 180-191. 

 

169 
 


