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Abstract 

In this paper, we apply the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model of 

different lag order to model volatility of stock returns on Uganda Securities Exchange (USE). We use the Quasi 

Maximum Likelihood Estimation (QMLE) method to estimate the models. Akaike Information Criteria (AIC) 

and Bayesian Information Criteria (BIC) are used to select the best GARCH(p,q) model. From the empirical 

results, it has been found that USE returns are non-normal, positively skewed and stationary. Overall, 

GARCH(1,1) outperformed the other GARCH(p,q) models in modeling volatility of USE returns.  

Keywords: Volatility; Modelling; stock returns; GARCH(1,1).  

1. Introduction 

In the financial sector, the knowledge on volatility of any financial time series is an important aspect for risk 

management.  According to [1], volatility is defined as a statistical measure of the dispersion of returns for a 

given security or market index and it can either be measured using the standard deviation or variance between 

returns from that same security or market index.  
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There is observed considerable uncertainty and volatility both in the emerging and mature stock markets. Great 

concern is about the fluctuating returns of their investments due to the market risk and variation in the market 

price speculation as well as the unstable business performance, [2]. In the real world of financial markets, 

investors and financial analysts are generally more interested in the profit or loss of the stock over a period of 

time that is; the increase or decrease in the price, than in the price self. 

Modelling volatility in financial markets is important because it sheds further light on the data generating 

process of the returns, [3]  and the riskiness associated with the asset since volatility is related to risk, [4]. Due 

to the usefulness of volatility, various models have been developed since Engel’s paper of 1982.  

Engle (1982), [5] studied on ARCH and Bollerslev (1986), [6] on GARCH models, and revealed that, these 

models were designed to deal with the assumption of non-stationarity found in real life financial data. He further 

pointed out that these models have become widespread tools for dealing with time series heteroscedasticity. The 

ARCH and GARCH models treat heteroscedasticity as a variance to be modelled. The goal of such models is to 

provide a volatility measure like a standard deviation that can be used in financial decisions concerning risk 

analysis, portfolio selection and derivative pricing. 

The assumption that variance is constant through time is statistically inefficient and inconsistent, [8]. In real life, 

financial data for instance stock market returns data, variance changes with time (a phenomenon termed as 

heteroscedasticity), hence there is need for studying models which accommodate this possible variation in 

variance. Many studies have suggested that volatility of returns in stock markets world over can be modelled 

and forecasted using the GARCH type models.  

Financial time series usually exhibit stylized characteristics. Firstly, it was observed by [9], that financial returns 

displayed volatility clustering meaning that large changes in the price of an asset are often followed by other 

large changes, and small changes are often followed by other small changes. Secondly, [10] demonstrated that 

financial data exhibit leptokurtosis meaning that the distribution of the returns is fat-tailed. Finally, [11] 

introduced the leverage effect meaning that volatility is higher after negative shocks than after positive shocks of 

the same magnitude. A good volatility model, then, must be able to capture and reflect these stylized facts, [12]. 

The main objective of this study is to examine whether GARCH(1,1) model is the best at volatility modeling.  

The rest of the paper is organized as follows; section 2 looks at the methodology, section 3 discusses data 

analysis and results, section 4 discusses conclusions and recommendations. 

2.   Methodology  

2.1 GARCH(p,q) Model  

The Autoregressive Conditional Heterscedasticity (ARCH) model by Engle (1982) [5] and its generalization, 

GARCH by Bollerslev (1986) [6] are the major and widely used methodologies in modeling and forecasting 

volatility of financial time series.  The standard GARCH (p, q) model expresses the variance at time, t as:  

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 +∑ 𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2𝑞𝑞
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗 𝜎𝜎𝑡𝑡−𝑗𝑗2𝑝𝑝

𝑗𝑗=1 .                                                                                                                 (1) 
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𝜎𝜎𝑡𝑡2  is the  conditional variance, 𝜀𝜀𝑡𝑡   the residual returns, defined as;  𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 and    𝑧𝑧𝑡𝑡~𝑁𝑁(0,1) i.e are 

standardized residual returns. 𝜔𝜔, 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑗𝑗  are the parameters to be estimated. In order for the variance to be 

positive the necessary condition is that  𝜔𝜔 > 0, 𝛼𝛼𝑖𝑖 ≥ 0  (for  𝑖𝑖 = 1, … , 𝑞𝑞) and 𝛽𝛽𝑗𝑗 ≥ 0  (for 𝑗𝑗 = 1, … , 𝑝𝑝). For 𝑝𝑝 =

0 , equation (1) reduces to an ARCH(q) model and for  𝑝𝑝 = 0 = 𝑞𝑞 , equation(1) reduces to simply white noise. 

In this model, the conditional variance only depends on the magnitude, and not the sign, of the underlying asset. 

Large ARCH coefficients, 𝛼𝛼𝑖𝑖  imply that volatility reacts significantly to market movements while large GARCH 

coefficients, 𝛽𝛽𝑗𝑗  indicate that shocks are persistent, [13]. 

GARCH models can be estimated using Maximum Likelihood (ML) and Quasi Maximum Likelihood (QML) 

approaches. ML assumes and maximizes a density function for the parameters that are conditional on a set of 

sample outcomes. [6] Bollerslev, propose a QML technique that adjusts for small deviations from normality. 

Under this study, the models will be estimated using QML. 

2.2 Model selection  

In financial modelling, one of the main challenges is to select a suitable model from a candidate family to 

characterize the underlying data. The choice of a good model in the application of time series analysis is crucial; 

the total process cannot be automated since the context is all important and there is never a perfect or unique 

model.  Model selection criteria provide useful tools in this regard and assesses whether a fitted model offers an 

optimal balance between goodness-of-fit and parsimony. Ideally, a criteria will identify candidate models that 

are either too simplistic to accommodate the data or unnecessarily complex. The most common model selection 

criteria are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). A desirable 

model is one that minimizes the AIC or the BIC.  

                                                     

 𝐴𝐴𝐴𝐴𝐴𝐴 = −2(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜) + 2𝑘𝑘                                                                                                                 (2)  

𝐵𝐵𝐵𝐵𝐵𝐵 = −2𝑙𝑙𝑛𝑛(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,                                                                                                           (3)                                                                         
where N is the number of observations or equivalently, the sample size and k denotes the number of parameters. 

BIC penalizes more complex models (those with many parameters) relative to simpler models. This definition 

permits multiple models to be compared at once; the model with the highest posterior probability is the one that 

minimizes BIC.   
 Under this study, we consider four different GARCH(p,q) models; GARCH(1,1), GARCH(1,2), GARCH(1,3), 

and GARCH(1,4). 

3. Data analysis and results 

3.1 Data 

We data from the daily closing prices of the USE All share index for a period of starting from January 2005 to 

December 2013. Let 𝑃𝑃𝑡𝑡  and 𝑃𝑃𝑡𝑡−1 denote the closing market index of USE at the current(t) and previous day   (t-

1), respectively. The USE All Share returns (log returns or continuously compounded returns) at any time are 

given by: 

218 
 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 216-223  

𝑟𝑟𝑡𝑡 = log � 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

�                                                                                                                                             (4)                                                                                                                   

3.2 Basic statistics of USE return series 

Before we employ the GARCH model to our data under consideration, it is necessary that we study its statistical 

properties. These include among others; excesskurtosis, skewness, and Jarque- Bera statistic for normality.  

                                           

Table 1: Descriptive statistics of USE return series 

Statistic                                                        Value 

Maximum                                                    0.4766000 

Minimum                                                    -0.4844000 

Median                                                         0.0002228 

Mean                                                            0.0009705 

Standard deviation                                       0.03649952 

Excess Kurtosis                                            99.9358 

Skewness                                                      0.3190972 

Jarque-Bera                                                  630969.748 

JB probability                                               <2e-18 

No. of observations                                       1425 

 

Table1 above shows the descriptive statistics for the USE return series. The mean is close to zero as is expected 

for a time series. The return series are positively skewed an indication that the USE returns are non-symmetric. 

There is a high positive value of excess kurtosis indicating that the underlying distribution of the returns is 

leptokurtic or heavy tailed. The return series is non-normal according to the JB test which rejects normality at 

the 1% level. 
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Figure1: Distribution of USE All share Index and return series. 

From Figure1 above, the stock prices are non stationary while the return series are stationary with a mean return 

of zero. There is also evidenced volatility clustering in the return series which is similar to other studied stock 

exchanges. The quantile-quantile (Q-Q) plot shows that the USE return series are non-normal supporting the 

high positive excess kurtosis and the Jarque-Bera test indicated in Table 1. There is little evidence of serial 

correlation in the return series according to the autocorrelation function (ACF).  

Before we apply the GARCH models to the USE data, it is always required that we test if the USE return series 

are stationary and test if ARCH effects are present in the residual return series. To do this, we use Augumented 

Dickey Fuller (ADF) , [14] to test for stationarity and the ARCH-LM test, [5] to test for ARCH effects. Below is 

the table indicating the above tests. For the ADF tests, we reject the null hypothesis of a unit root if the test 

statistic is less than the critical values for the levels of significance. For the ARCH-LM test, we reject the null 

hypothesis that there are no ARCH effects in the residual returns if the probability is less than the significance 

level. Note that the Critical values are taken from MacKinnon(1996),[15] 

Table 2: ADF and ARCH_LM test results. 

Series                  ADF statistic 

 

           Critical Values             

    1%              5%                10% 

Price Index          -2.2484(11)       

Returns               -10.1458(11)           

-3.43              -2.86             -2.57                                       

-3.43              -2.86             -2.57 

 ARCH-LM test statistic                                                            Prob. chi-square(12) 

128.9103                                                                                       < 2.2e-16 
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From Table 2 above, we accept the null hypothesis of a unit root for the price index; meaning that the price 

index is non-stationary for all the significance levels while we reject the null hypothesis for the return series 

meaning that the USE return series are stationary.  The ARCH-LM test statistic indicates that there are ARCH 

effects present in the residual returns. 

3.3 Empirical Results 

We consider four GARCH(p,q) models; GARCH(1,1), GARCH(1,2), GARCH(1,3), and GARCH(2,1), estimate 

the parameters and compare their performance. The results are showed in the table below. 

Table 3: Estimation results of the GARCH (p,q) models 

Model      (1,1) (1,2) (1,3) (1,4) 

μ                                       

ω                

α             

 β1          

 β2    

β3             

β4          

(α + β)   

-5.36e-4                      

7.73e-6                                                            

6.14e-1*   

7.63e-1***        
-                      

-                      

-                     

1.377 

-5.34e-4          

7.72e-6   

6.13e-1   

7.63e-1    

1.0e-8                              

-                      

-              

1.376 

-5.39e-4          

7.72e-6     

6.13e-1**   

7.63e-1       

1.0e-8           

1.0e-8                

-                 

1.376 

-5.47e-4                 

7.69e-6              

6.14e-1**           

7.63e-1                  

1.e-8                    

1.0e-8                    

1.0e-8                       

1.377 

ARCH-LM   

Prob 

0.4075928 

0.9999999 

0.407486 

0.999999 

0.407340 

0.999999 

0.408595              

0.999999    

AIC        

BIC 

-4.3378           

-4.3231 

-4.3362           

-4.3177 

-4.3346              

-4.3125 

-4.3338                       

-4.3079 

             Note: *** indicates 1%, ** 5% and * 10% significance levels. 

From Table 3 above, it can be seen that the mean return is insignificantly different from zero for all the models. 

All the parameters; 𝜔𝜔, 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑗𝑗  have the expected signs. For GARCH(1,1), 𝛼𝛼  is significant at the 10% level 

while 𝛽𝛽  is significant at the 1% level. For the GARCH(1,2), all the parameters are non-significant while for 

GARCH(1,3) and GARCH(1,4), except for 𝛼𝛼  , the rest of the parameters are not significant. For all the models, 

the persistence;  𝛼𝛼 + 𝛽𝛽 > 1 indicating that the process is explosive. 

The ARCH LM statistics indicate that there are no ARCH effects remaining in the residuals of the USE return 

series. Overall, GARCH(1,1) outperformed the other models as observed from the smallest AIC and BIC values. 

4. Conclusion and Recommendations 

The volatility of USE returns has been modelled for a period of 04/01/2005 to 18/12/2013 using different 

GARCH(p,q) models; GARCH(1,1), GARCH(1,2), GARCH(1,3) and GARCH(1,4). 
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Basing on the empirical results obtained, we can conclude the following: Firstly, it was found that the USE 

returns are not normally distributed and ARCH effects were found to be present in the residual return series 

which supports the use of the above models. Secondly, the USE return series also exhibit volatility clustering 

and leptokurtosis as seen from the high excess kurtosis values. Thirdly, the persistence,  𝛼𝛼 + 𝛽𝛽 > 1 for all the 

models meaning that volatility of USE stock returns is an explosive process.  Over all, GARCH(1,1) performed 

best in modeling volatility of USE stock returns. 

 It is recommended that Integrated GARCH is used to better explain the volatility process of USE returns. It is 

also recommended that asymmetric GARCH models are also used to test for the presence of leverage effects in 

the USE returns.  
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