
 

International Journal of Sciences: 
Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
http://gssrr.org/index.php?journal=JournalOfBasicAndApplied 

--------------------------------------------------------------------------------------------------------------------------- 

Analysis of Saint Venant Model Closure Laws from 3D 

Model Simulations   

Amel Soualmiaa*, Slim Houssem Talbib 

aLaboratoire Science et Technologie de l’eau de l’INAT, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisie 
bLaboratoire Science et Technologie de l’eau de l’INAT, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisie 

aEmail: amel.inat@hotmail.fr  
bEmail: shtalbi@hotmail.fr 

 

Abstract 

In this work, in a first step, the effects of secondary motions on the transverse distribution of the depth average 

velocity in free surface flows above non uniform bottom roughness is illustrated by simulations based on an 

anisotropic algebraic Reynolds stress model (3D). These 3D-simulations were applied to determine the wall 

friction and the dispersion terms present in the depth average momentum equation. In a second step, closure 

laws of these terms were tested to define a 2D-Saint Venant model which is solved to calculate the transverse 

profile of the depth averaged velocity. This process could allow analyze of scale change problems. 

Keywords: Secondary motions; free surface; roughness; dispersion; closure laws; the depth averaged velocity. 

1. Introduction 

Turbulent flow in open-channels with rough beds has been the subject of numerous experimental and 

computational studies due to its importance in engineering and environmental applications. For example, 

empirical values of boundary shear in rough channels were reported by Knight [1], and Knight, Demetriou and 

Hamed [2]. Recently, Chen and Chiew [3] have investigated the response of velocity and turbulence to sudden 

changes in bed roughness in open-channel flow.  
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In contrast to empirical studies, numerical investigations of open channels are limited because it is much more 

difficult to model flow in open channels than in closed conduits. Also, turbulent free surface flows present 

complex distribution of the bed shear stress which undulates in the transverse direction due to roughness 

variations of fixed or mobile beds. Theses bed shear patterns result from three-dimensional structures in each 

transverse section of the flow as a consequence of the existence of secondary currents driven by turbulence 

anisotropy [4]. These complexities can limit the predictive capabilities of existing free surface flow models: this 

is the case for 3D-models, founded on one point turbulence closures and also for 2D-Saint Venant models 

obtained by the depth averaging of the local equations and used currently in the field [5]. To progress in this 

way, in the present study, the closure problems of a 2D-Saint Venant model were analyzed using the results of     

3D-similations, with an anisotropic algebraic Reynolds stress model. 

2. Mean momentum balance for fully developed flows 

Fully developed flows are considered in straight rectangular open channels with constant bed slope α. Let (x, y, 

z) be an orthogonal coordinate system in which x and y are the longitudinal and transverse coordinates, and the 

z-axis is normal to the channel bottom. The components of the mean velocity and the turbulent fluctuations in 

the x, y and z coordinate directions are denoted by U, V, W and u, v, w, respectively. The flow being fully 

developed in the x-direction, all the mean quantities are only dependant on y and z coordinates and we can 

express the equations for the mean motion in terms of the quantities (U, Ψ, Ω), in which Ψ and Ω are the stream 

function and the vorticity of secondary flows, respectively. Neglecting the effect of the viscosity the equations 

of U, Ψ, Ω (the 3D model) can be wrote as: 
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The prediction of the mean velocity field from equations (1) to (3), requires second-order closure models of the 

Reynolds stresses notably allowing an accurate calculation of the turbulence anisotropy term 

zyvw ∂∂−∂ /)( 222
that plays a main role in the generation of secondary flow vorticity (2). Currently used in 

field applications, the 2D-Saint Venant approach is founded on the introduction of depth-averaged quantities. 

The depth-averaging of a quantity G is denoted by <G> and defined by: 

∫
h
Gdz

0
= >G<h                                                                   (4) 

The spatial fluctuation g’’ is the difference between G and <G>: 

g″= G - <G>      and       <g″> = 0                                                               (5)                
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The depth averaging of (1) leads to the 2D-Saint Venant equation: 

0sin)( =−+Φ+Φ− bTSF hghh
dy
d ταρ                             (6) 

Where:   

><=Φ uvT ρ                                                                                    (7) 

><=Φ '''' vuSF ρ                                                                          (8) 

Where h is the water depth; 

In fully developed flow, the depth-averaged quantities are only dependent on the lateral coordinate y and the 

differential (6) expresses the depth averaged balance of the longitudinal momentum, between the gravity force     

ρhg sinα, the bottom friction τb = ρ u*², and the two diffusion-dispersion terms, the depth averaged turbulent 

flux ΦT and the dispersion flux ΦSF due to the longitudinal momentum advection by the secondary velocity field. 

To predict the transverse evolution of <U>, equation (6) requires closure models for the three last terms, the 

local shear stress velocity u* or the local friction coefficient Cf = (τb /0.5 ρ <U>²) = (2u*²/<U>²) and the 

dispersion fluxes ΦT and ΦSF. 

3. Numerical Simulations 

3.1. The algebraic Reynolds stress model 

In the 3D model (equations (1), (2) and (3)), the turbulent stresses were expressed by a model issued from the 

Reynolds stress transport model of Gibson and Rodi [6]. The components of the Reynolds tensor present in 

equations (1) and (2) are detailed in [4], where other precisions on this 3D model are given. In all the figures, 

the results of the anisotropic model are referred by the abbreviation NPF, (for Non Parallel Flow). On the same 

figures are also presented results obtained by assuming the flow is parallel (V=W=0): this case is referred by the 

abbreviation PF. 

3.2. Boundary conditions 

At the wall, z=0 and 0 ≤ y ≤ λ: The longitudinal mean velocity is given by the logarithmic law. The wall 

boundary conditions for k and ε express the equilibrium between production (k) and dissipation (ε). At the free 

surface and on the lateral boundaries, symmetry conditions were imposed.  
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The boundary conditions for the secondary flow are expressed in terms of the stream function Ψ and the 

longitudinal vorticity Ω taken as Ψ = 0 and Ω = 0 on the limits of the integration cross-section.   
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3.3. Test cases 

This model was applied to Muller and Studerus [7] experiments, and to three other configurations of model 

roughness, in open channels of the same width, B=0.64 m. In these experiments, the bed forms correspond to 

smooth strips and rough strips of characteristic height KS, arranged in an alternate manner as indicated in 

(Figure 1). Neglecting the effect of lateral walls, the simulations were limited to a symmetrical cell of length 

λ=dS+dR situated in the central zone of the channel. In the 3D-simulations we adopted the function C(KS
+) of the 

roughness number KS
+= ((u*KS) / ν),  which is given by the expression of Naot et Emrani [8] to account for the 

transition between the rough and the smooth strips:  

])20²3.0)(209ln[)( 11 −+++−+ +++= SSSS KKKKC κ                        (10) 

Table 1 gives the main characteristics of the open channel flows and the bed forms. 

 

Fig. 1. shapes of the bed forms in the different roughness configurations. 

Table 1. Characteristics of the open channel flows 

Characteristics Depth (cm) Sin (α) KS (mm) dS (cm) DR (cm) 

Muller case (a) 8 0.00143 2.5 10 6 

The first roughness model configuration (b) 8 0.00143 5 10 6 

The second roughness model configuration (c) 8 0.00143 9 10 6 

The third roughness model configuration (d) 8 0.00143 2.5 2 14 

Concerning the numerical resolution, for this 3D model, because of symmetrical conditions the simulation is 

considered only on the half cross section of the channel. More details could be found in [4].  

4. Closure laws and resolution of the depth-averaged momentum equation (Saint Venant model) 

Here we consider the closure laws of the depth-averaged equation (6), the Saint Venant model. 
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4.1. Closure laws 

Closure assumptions have to be defined to calculate the friction coefficient Cf, the turbulent flux ΦT and the 

secondary motion dispersion flux ΦSF defined in (7) and (8). They were determined from the 3D-simulations 

with the anisotropic model, and then we attempted to define algebraic relations to express the fluxes as functions 

of <U>. To propose a wall friction law applicable to rough, smooth and intermediate regimes, we used the 

logarithmic formulation developed by Labiod [9] from his experiments in a rectangular open channel with a 

sharp variation of the bottom roughness. He proposed the following implicit expression: 
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                                (11) 

In which Re = ((<U> h) / ν) and C(KS
+) is a roughness function. E is a constant, which is equal to 2.5 for our 

test cases. In figure 2, we plotted the transverse profiles of Cf determined in a first step from the 3D-simulations 

with the anisotropic model, and in a second step with the logarithmic law (11). 

 

 

(a)                                                                                           (b) 

 

(c)                                                                                           (d) 

Fig. 2.  Transverse distribution of the bottom friction coefficient: (a) Muller case, (b) First roughness model configuration, (c) Second 

roughness model configuration and (d) Third roughness model configuration.  
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We can observe the logarithmic law gives a good prediction of Cf above the smooth zone comparatively to NPF 

and PF simulation but it underestimates Cf above the rough zone ((a), (b) and (c)). On the contrary, the 

logarithmic law gives a good prediction of Cf above the rough zone comparatively to NPF simulation but it 

overestimates Cf above the smooth zone (d). 

The following closures for ΦT and ΦSF were proposed: 

><−=><=Φ U
dy
dhuDuv TT *ρρ                                                      (12) 

><=><=Φ U
dy
dhuvu SFSF *"" ρλρ                                                   (13) 

These proposed formulations are based on the transverse gradient of the vertical mean velocity. In equations 

(12), and (13), DT and λSF are constants, DT =0.05 and λSF=0.23. These terms are calibrated by comparing these 

fluxes values (from (12) and (13)) and the ones issued from the 3D model. It is to note that calculations are 

achieved by smoothing the term (u* d<U>/dy) to remove the discontinuities due to sharp variations of the 

bottom roughness.  

4.2. Results of the 2D model simulations 

The numerical resolution of the 2D model, equation (6), which is a second order differential equation with 

boundary conditions, was achieved with the closures (12), and (13), where DT =0.05 and λSF=0.23. A finite 

difference method was employed. The corresponding curves are denoted by the abbreviations 2D. The 2D 

model presents an acceptable prediction of the transverse distribution of the mean velocity along each vertical 

<U> (Figure 3, where <U+> = <U>/Um, and Um is the section averaged velocity). In fact we note that the 2D 

shape curves are near the curves NPF obtained by the anisotropic 3D model. This shows the important role of 

the secondary flow dispersion. 

We also note that the PF simulation gives a minimum and a maximum of <U+> above the rough and smooth 

zones respectively; the inverse distribution is obtained from the NPF simulation; a result which is expected, as 

the secondary currents are neglected. All these behaviors show the important role of the secondary flow 

dispersion flux ΦSF, in the depth averaged equation (6). 

5. Conclusions 

In this paper, were analyzed the closure problems of 2D-Saint Venant equation from simulations with a 3D-

model including an anisotropic algebraic Reynolds stress model. In fact the turbulent flux and the secondary 

motion dispersion flux were calculated by the 3D-model, to be compared to the proposed closure laws for these 

terms, in order to resolve the Saint Venant model, which predict the depth-averaged velocity. An acceptable 

agreement between the 2D and the 3D simulations was obtained. In perspective to generalize this approach of 

scale change, other experiments will be load and considered. 
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(a)                                                                                           (b) 

 

 
(c)                                                                                           (d) 

Fig. 3.  Transverse distribution of non-dimensional depth averaged velocity: (a) Muller case, (b) First roughness model configuration, (c) 

Second roughness model configuration and (d) Third roughness model configuration. 
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